Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrys- talline mixed powders. Microstructural studies show that the composite coatings present a layer...Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrys- talline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were in- vestigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaC1 solutions, indicating supe- rior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion re- sistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.展开更多
A nanostructured thermal barrier coating is prepared by air plasma spraying using the 8wt% Y_2O_3 partially stabilized zirconia nano-powder with an average grain size of 40 nm. The microstructure and phase composition...A nanostructured thermal barrier coating is prepared by air plasma spraying using the 8wt% Y_2O_3 partially stabilized zirconia nano-powder with an average grain size of 40 nm. The microstructure and phase composition of feedstock nano-powder and coating are investigated using SEM, TEM and XRD. It is found that the as-sprayed zirconia coating has an average grain size of 67 nm and mainly consistes of metastable tetragonal phase, together with some monoclinic phase and tetragonal phase. Thermal treatment results show that the grains of the nanostructured coating grow slightly below 900℃, whereas over 1000℃ the gains grow rapidly and monoclinic phase noticeably appeares.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungst...In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.展开更多
Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the c...Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microhardness measurement. Meanwhile, the friction and wear behaviors were analyzed and compared using a ball-on-disk tribometer. The results show that the conventional coating has lamellar stacking characteristic and has some pores. However, the nanostructured coating shows a bimodal microstructure, which is composed of both fully melted regions and partially melted regions. According to the microstructural difference, the partially melted regions can be divided into liquid-phase sintered regions (a three-dimensional net or skeleton-like structure: Al2O3-rich submicron particles embedded in the TiO2-rich matrix) and solid-phase sintered regions (remained nanoparticles). The microstructural characteristics of the liquid-phase sintered region are formed due to the selective melting of TiO2 nanoparticles during plasma spraying. On the other hand, the TiO2 and Al2O3 nanoparticles of the solid-phase sintered regions are all unmelted during plasma spraying. Due to the existence of nanostructured microstructures, the nanostructured coating has a higher microhardness, a lower friction coefficient, and a better wear resistance than the conventional coating.展开更多
Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microsco...Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microsco- py (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500℃ in static air was inves- tigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approxi- mately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhe- sive wear.展开更多
In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC cerami...In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC ceramic powder used as coating material to obtain different Ni-based SiC alloys coating. Micro-structure and micro-hardness analysis of the coating layer were followed, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70% Ni60, 30% SiC powder has best properties with plasma spray welding, in which the micro-hardness can achieve 1100 HV, meanwhile can improve the thermal property of hot-forging die dramatically.展开更多
In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results...In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0.2. Within the measuring range, top speed of in-flight particles reached 800m/s. Particle acceleration was accomplished within 4cm down stream of the nozzle. Average particle velocity (about 450m/s) exceeded local sound speed (340m/s) even at a mean standoff distance of 17cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately. Image diagnosis showed that the result of in-flight particle velocity measurement is credible.展开更多
Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr204 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) a...Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr204 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) analyses show that NiCr204 spinel has been fabri- cated with the space group Fd3m. Scanning electron microscope (SEM) photographs show that the coating consists of a laminated structure with homogeneous grains and high porosity because of the unique feature of plasma spraying. The emissivity measurement and Fourier transformation infrared radiation (FT-IR) spectra show that NiCr204 has a high emissivity of about 0.91 because of its special spinel structure APS is a suitable method to produce high emissivity coatings.展开更多
The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4Vsubstrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then...The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4Vsubstrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then plasma-sprayed using atmospheric plasma spraying. The structural transformations of the powders along with the morphological and mechanical changes of the coatings were examined by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and hard- ness testing. The results showed that after plasma spraying, the grain size increased, and the lattice strain decreased. However, the grain size of this compound after spraying was still in the nanometer range. The coating was uniform and exhibited good adhesion to the substrate. The microhardness and fracture toughness of the nanocomposite coating were higher than those of a nanostructured NbSi2 coating.展开更多
In order to overcome the limitations of low adhesion strength and poor thermal-shock resistance of pure ceramic coatings, Cu-Al2O3 gradient coatings were fabricated by plasma spraying. The microstructure and distribut...In order to overcome the limitations of low adhesion strength and poor thermal-shock resistance of pure ceramic coatings, Cu-Al2O3 gradient coatings were fabricated by plasma spraying. The microstructure and distribution of Cu-Al2O3 gradient coatings were analyzed. The adhesion strength, thermal-shock resistance and porosity of the coatings were tested. The results show that the composition of the gradient coatings has a gradient distribution along the thickness of coatings. As copper has a relatively low melting point and the molten copper has good wettability on the surface of Al2O3, it can be melted sufficiently and could fill the interstices and pores among the spraying particles effectively, thus improves the adhesion strength, thermal shock resistance and reduces the porosity. The adhesion strength of the gradient coating is 15.2 MPa which is two times of that of the double-layer structure coating.展开更多
Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,m...Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating.展开更多
<div style="text-align:justify;"> Environmental barrier coatings (EBCs) play a critical role in mitigating the degradation of SiC<sub>f</sub>/SiC ceramic matrix composites (CMCs) in complex...<div style="text-align:justify;"> Environmental barrier coatings (EBCs) play a critical role in mitigating the degradation of SiC<sub>f</sub>/SiC ceramic matrix composites (CMCs) in complex combustion environment, and improve the service life of thermal engine components. In this paper, by adjusting the parameters of atmospheric plasma spraying (APS), the spraying process of ytterbium disilicate (Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) under a lower power has been optimized. A two-layer EBC system consisting of ytterbium disilicate and silicon is prepared on the SiC<sub>f</sub>/SiC composite substrate by using optimized technological parameters. The thermal resistance and water oxygen corrosion resistance of such two-layer EBC system are investigated. The results indicate that the current ytterbium disilicate/silicon EBC system exhibits good phase stability, excellent water vapor and oxygen corrosion resistance. However, the exposed silicon bonding layer tends to generate an excessive thermal growth oxide (TGO) layer known as SiO<sub>2</sub>, leading to an early spallation of the coating. </div>展开更多
Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical, mechanical and electrical properties were measured. The results showed that high microhardness, modulus and low porosity o...Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical, mechanical and electrical properties were measured. The results showed that high microhardness, modulus and low porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young's modulus, comparing with that of the bulk materials, is explained by porosity . The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.展开更多
In order to prepare heatresistant inner layer of hot-forging die, plasma spraying, plasma re- melting and plasma spray welding were adopted. Cr3C2 coatings of Ni-Based were prepared respectively with 10%, 20% and 30% ...In order to prepare heatresistant inner layer of hot-forging die, plasma spraying, plasma re- melting and plasma spray welding were adopted. Cr3C2 coatings of Ni-Based were prepared respectively with 10%, 20% and 30% Cr3C2 powder and W6Mo5Cr4V2 substrate. The coating microstructure analysis, the micro-hardness test, and the measurement of thermal parameters of coating were conducted. The experimental results show that the coating has the better thermo-physical property by using plasma spray welding method with the powder ratio of 90% Ni60 and 10% Cr3C2, and by this way the micro-hardness of coating can achieve 1100 HV.展开更多
A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are work...A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.展开更多
The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , faciliti...The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , facilities and application. The state of the plasma spraying technology in China is also introduced in the paper.展开更多
A kind of plasma spraying torch with a hollow cathode is described in this paper. The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with vacu...A kind of plasma spraying torch with a hollow cathode is described in this paper. The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with vacuous gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.展开更多
Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface a...Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface area,porosity,and dual-scale structure,it has recently attracted special attention.The typical fabrication processes of micro-nano structured coatings include sol-gel,hydrothermal synthesis,chemical vapor deposition,etc.This paper presents the main features of a recent deposition and synthesis technique,liquid plasma spraying(LPS).LPS is an important technical improvement of atmospheric plasma spraying.Compared with atmospheric plasma spraying,LPS is more suitable for preparing functional coatings with micro-nano structure.Micro-nano structured coatings are mainly classified into hierarchical-structure and binary-structure.The present study reviews the preparation technology,structural characteristics,functional properties,and potential applications of LPS coatings with a micro-nano structure.The micro-nano structured coatings obtained through tailoring the structure will present excellent performances.展开更多
The NiCrAlY-Mo-Ag composite coatings were prepared by atmospheric plasma spraying. The tribological properties of the composite coatings were investigated from 25 to 900 ℃ in details. The tribo-layer formed on the wo...The NiCrAlY-Mo-Ag composite coatings were prepared by atmospheric plasma spraying. The tribological properties of the composite coatings were investigated from 25 to 900 ℃ in details. The tribo-layer formed on the worn surface of the composite coatings and influenced the tribological properties at different temperatures. The addition of silver could effectively decrease the friction coefficient and wear rate of the coatings at the wide range of temperature. The rubbing process could form the nickel molybdate and promote the formation of silver molybdate within the worn surfaces at high temperature. The synergistic lubricating effects of nickel molybdate and silver molybdate are attributed to the improvement of the tribological properties of coatings at high temperature.展开更多
To improve the oxidation resistance of carbon/carbon (C/C) composites, mullite coating was prepared on the surface of SiC-coated C/C composites by supersonic plasma spraying. Phases and microstructures of mullite co...To improve the oxidation resistance of carbon/carbon (C/C) composites, mullite coating was prepared on the surface of SiC-coated C/C composites by supersonic plasma spraying. Phases and microstructures of mullite coating were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The coating primarily consists of a single phase of mullite (3AI203-2SIO2). The SEM results show that mullite coating was continuous and well bonded with the SiC inner layer without penetrating crack. Mullite coating exhibited good oxidation resistance, After 98.5 h oxidation at 1773 K and 9 thermal shock cycles between 1773 K and room temperature, the weight loss of the coated C/C composites was only 2.57%.展开更多
基金financially supported by the Special Fund for Basic Scientific Research of Central Colleges, Chang’an University (No.CHD2011JC126)the Special Fund for Basic Research Support Plan of Chang’an Universitythe Open Fund of the Engineering Research Center of Transportation Materials, Ministry of Education of China
文摘Fe/Mo composite coatings were prepared by air plasma spraying (APS) using Fe-based and Mo-based amorphous and nanocrys- talline mixed powders. Microstructural studies show that the composite coatings present a layered structure with low porosity due to adding the self-bonded Mo-based alloy. Corrosion behaviors of the composite coatings, the Fe-based coatings and the Mo-based coatings were in- vestigated by electrochemical measurements and salt spray tests. Electrochemical results show that the composite coatings exhibit a lower polarization current density and higher corrosion potentials than the Fe-based coating when tested in 3.5wt% NaC1 solutions, indicating supe- rior corrosion resistance compared with the Fe-based coating. Also with the increase in addition of the Mo-based alloy, a raised corrosion re- sistance, inferred by an increase in corrosion potential and a decrease in polarization current density, can be found. The results of salt spray tests again show that the corrosion resistance is enhanced by adding the Mo-based alloy, which helps to reduce the porosity of the composite coatings and enhance the stability of the passive films.
文摘A nanostructured thermal barrier coating is prepared by air plasma spraying using the 8wt% Y_2O_3 partially stabilized zirconia nano-powder with an average grain size of 40 nm. The microstructure and phase composition of feedstock nano-powder and coating are investigated using SEM, TEM and XRD. It is found that the as-sprayed zirconia coating has an average grain size of 67 nm and mainly consistes of metastable tetragonal phase, together with some monoclinic phase and tetragonal phase. Thermal treatment results show that the grains of the nanostructured coating grow slightly below 900℃, whereas over 1000℃ the gains grow rapidly and monoclinic phase noticeably appeares.
基金Funded by the National Natural Science Foundation of China(No.50675165)the National Key Technology R&D Program(No.2006BAF02A29)
文摘In order to produce the hear-resistant inner layer of hot-forging die, the plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% tungsten carbide (WC) ceramic powder used as coating material to obtain different Nickel-based WC alloys coating. Micro-structure and micro-hardness analysis of the coating layer are conducted, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70%Ni60, 30%WC powder has the best properties with plasma spray welding, in which the micro-hardness can achieve 900HV, meanwhile it can improve the thermal property of hot-forging die dramatically.
基金supported by the National Natural Science Foundation of China (Nos. 59975046 and 50305010)the Key Natural Science Foundation of Ji-angsu Province, China (No. BK2004005)
文摘Nanostructured and conventional Al2O3-13wt.%TiO2 ceramic coatings were prepared by plasma spraying with nanostructured agglomerated and conventional powders, respectively. The microstructure and microhardness of the coatings were investigated using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and microhardness measurement. Meanwhile, the friction and wear behaviors were analyzed and compared using a ball-on-disk tribometer. The results show that the conventional coating has lamellar stacking characteristic and has some pores. However, the nanostructured coating shows a bimodal microstructure, which is composed of both fully melted regions and partially melted regions. According to the microstructural difference, the partially melted regions can be divided into liquid-phase sintered regions (a three-dimensional net or skeleton-like structure: Al2O3-rich submicron particles embedded in the TiO2-rich matrix) and solid-phase sintered regions (remained nanoparticles). The microstructural characteristics of the liquid-phase sintered region are formed due to the selective melting of TiO2 nanoparticles during plasma spraying. On the other hand, the TiO2 and Al2O3 nanoparticles of the solid-phase sintered regions are all unmelted during plasma spraying. Due to the existence of nanostructured microstructures, the nanostructured coating has a higher microhardness, a lower friction coefficient, and a better wear resistance than the conventional coating.
基金financially supported by the National High-tech Research and Development Program of China(No.2012AA03A513)the Fundamental Research Funds for the Central Universities(No.N140204001)the National Natural Science Foundation of China(Nos.51371044 and 51301037)
文摘Al2O3-r2O03/NiCoCrAIYTa coatings were prepared via atmosphere plasma spraying (APS). The microstructure and phase com- position of the coatings were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), laser confocal scanning microsco- py (LSCM), and transmission electron microscopy (TEM). The dry frictional wear behavior of the coatings at 500℃ in static air was inves- tigated and compared with that of 0Cr25Ni20 steel. The results show that the coatings comprise the slatted layers of oxide phases, unmelted particles, and pores. The hot abrasive resistance of the coatings is enhanced compared to that of 0Cr25Ni20, and their mass loss is approxi- mately one-fifteenth that of 0Cr25Ni20 steel. The main wear failure mechanisms of the coatings are abrasive wear, fatigue wear, and adhe- sive wear.
基金Funded by the National Natural Science Foundation of China (No. 50675165)
文摘In order to produce the hear-resistant inner layer of hot-forging die, plasma spraying and plasma re-melting and plasma spray welding were adopted. Substrate material was W6Mo5Cr4V2, including 10%, 20%, 30% SiC ceramic powder used as coating material to obtain different Ni-based SiC alloys coating. Micro-structure and micro-hardness analysis of the coating layer were followed, as well as thermophysical properties for the coating layer were measured. The experimental results show that the coating prepared with 70% Ni60, 30% SiC powder has best properties with plasma spray welding, in which the micro-hardness can achieve 1100 HV, meanwhile can improve the thermal property of hot-forging die dramatically.
文摘In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al_2O_3-TiO_2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0.2. Within the measuring range, top speed of in-flight particles reached 800m/s. Particle acceleration was accomplished within 4cm down stream of the nozzle. Average particle velocity (about 450m/s) exceeded local sound speed (340m/s) even at a mean standoff distance of 17cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately. Image diagnosis showed that the result of in-flight particle velocity measurement is credible.
文摘Air plasma spraying (APS) was used to produce high emissivity coatings with a NiCr204 spinel structure. The relationship between the emissivity and the crystal structure was investigated. X-ray diffraction (XRD) analyses show that NiCr204 spinel has been fabri- cated with the space group Fd3m. Scanning electron microscope (SEM) photographs show that the coating consists of a laminated structure with homogeneous grains and high porosity because of the unique feature of plasma spraying. The emissivity measurement and Fourier transformation infrared radiation (FT-IR) spectra show that NiCr204 has a high emissivity of about 0.91 because of its special spinel structure APS is a suitable method to produce high emissivity coatings.
文摘The present study characterized NbSi2-Al2O3 nanocomposite powders plasma-sprayed on Ti-6Al-4Vsubstrates. The powders were agglomerated to obtain suitable particle sizes for spraying. The agglomerated powders were then plasma-sprayed using atmospheric plasma spraying. The structural transformations of the powders along with the morphological and mechanical changes of the coatings were examined by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, and hard- ness testing. The results showed that after plasma spraying, the grain size increased, and the lattice strain decreased. However, the grain size of this compound after spraying was still in the nanometer range. The coating was uniform and exhibited good adhesion to the substrate. The microhardness and fracture toughness of the nanocomposite coating were higher than those of a nanostructured NbSi2 coating.
文摘In order to overcome the limitations of low adhesion strength and poor thermal-shock resistance of pure ceramic coatings, Cu-Al2O3 gradient coatings were fabricated by plasma spraying. The microstructure and distribution of Cu-Al2O3 gradient coatings were analyzed. The adhesion strength, thermal-shock resistance and porosity of the coatings were tested. The results show that the composition of the gradient coatings has a gradient distribution along the thickness of coatings. As copper has a relatively low melting point and the molten copper has good wettability on the surface of Al2O3, it can be melted sufficiently and could fill the interstices and pores among the spraying particles effectively, thus improves the adhesion strength, thermal shock resistance and reduces the porosity. The adhesion strength of the gradient coating is 15.2 MPa which is two times of that of the double-layer structure coating.
基金supported by the National Natural Science Foundation of China(Nos.52076212,U1933107)the Training Fund For Blue Sky Young Scholars of Civil Aviation University of ChinaNatural Science Foundation of Ningbo(No.2019A610173).
文摘Based on the three-cathode plasma spraying system,tantalum(Ta)coatings were pre-pared on the substrate of CuCrZr alloy.The effects of different auxiliary gas(helium)flow rates on the microstructure,phase composition,mechanical and wear resistance properties of Ta coatings were studied.The results showed that the oxidation degree of the coatings decreases first and then increases with the increase of the auxiliary gas flow.When the auxiliary gas flow rate is 70 L·min-1,the oxidation degree of the coating is the lowest,minimum value of the porosity is 0.21%,and the bonding strength reaches the maximum,59.3 MPa.At this time,the coating wear rate is 0.0012 mm^(3)·N^(-1)·m^(-1)with the best wear resistance.This indicates that the auxiliary gas flow has an important influence on the quality and surface mechanical properties of tantalum coating.
文摘<div style="text-align:justify;"> Environmental barrier coatings (EBCs) play a critical role in mitigating the degradation of SiC<sub>f</sub>/SiC ceramic matrix composites (CMCs) in complex combustion environment, and improve the service life of thermal engine components. In this paper, by adjusting the parameters of atmospheric plasma spraying (APS), the spraying process of ytterbium disilicate (Yb<sub>2</sub>Si<sub>2</sub>O<sub>7</sub>) under a lower power has been optimized. A two-layer EBC system consisting of ytterbium disilicate and silicon is prepared on the SiC<sub>f</sub>/SiC composite substrate by using optimized technological parameters. The thermal resistance and water oxygen corrosion resistance of such two-layer EBC system are investigated. The results indicate that the current ytterbium disilicate/silicon EBC system exhibits good phase stability, excellent water vapor and oxygen corrosion resistance. However, the exposed silicon bonding layer tends to generate an excessive thermal growth oxide (TGO) layer known as SiO<sub>2</sub>, leading to an early spallation of the coating. </div>
文摘Microstructure of plasma spray boron carbide coating was studied by SEM and TEM. Its physical, mechanical and electrical properties were measured. The results showed that high microhardness, modulus and low porosity of B4C coating were manufactured by plasma spray. It was lamellar packing and dense. The B4C coating examined here contained two principal structures and two impurity phase besides major phase. The relatively small value of Young's modulus, comparing with that of the bulk materials, is explained by porosity . The Fe impurity phase could account for the relatively high electrical conductivity of boron carbide coating by comparing with the general boron carbide materials.
文摘In order to prepare heatresistant inner layer of hot-forging die, plasma spraying, plasma re- melting and plasma spray welding were adopted. Cr3C2 coatings of Ni-Based were prepared respectively with 10%, 20% and 30% Cr3C2 powder and W6Mo5Cr4V2 substrate. The coating microstructure analysis, the micro-hardness test, and the measurement of thermal parameters of coating were conducted. The experimental results show that the coating has the better thermo-physical property by using plasma spray welding method with the powder ratio of 90% Ni60 and 10% Cr3C2, and by this way the micro-hardness of coating can achieve 1100 HV.
文摘A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.
文摘The development of plasma spraying technology since the ITSC' 95 conference is briefly summarized. Emphasis is placed on the new achievements of plasma spraying materials, processing, coating properties , facilities and application. The state of the plasma spraying technology in China is also introduced in the paper.
文摘A kind of plasma spraying torch with a hollow cathode is described in this paper. The plasma torch can be used for axial powder injection in plasma spray studies. The arc characteristics of the plasma torch with vacuous gas flowrates, different gas media, are presented. The mathematical modeling and computational method are developed for predicting the temperature and velocity field inside the plasma torch.
基金supported by the National Key R&D Program of China(Grant No.2017YFE0115900)the National Natural Science Foundation of China(Grant No.51872254)the Yangzhou City-Yangzhou University Cooperation Foundation(Grant No.YZU201801).
文摘Inspired by the micro-nano structure on the surface of biological materials or living organisms,micro-nano structure has been widely investigated in the field of functional coatings.Due to its large specific surface area,porosity,and dual-scale structure,it has recently attracted special attention.The typical fabrication processes of micro-nano structured coatings include sol-gel,hydrothermal synthesis,chemical vapor deposition,etc.This paper presents the main features of a recent deposition and synthesis technique,liquid plasma spraying(LPS).LPS is an important technical improvement of atmospheric plasma spraying.Compared with atmospheric plasma spraying,LPS is more suitable for preparing functional coatings with micro-nano structure.Micro-nano structured coatings are mainly classified into hierarchical-structure and binary-structure.The present study reviews the preparation technology,structural characteristics,functional properties,and potential applications of LPS coatings with a micro-nano structure.The micro-nano structured coatings obtained through tailoring the structure will present excellent performances.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51272207, 51471181 and 51575505)
文摘The NiCrAlY-Mo-Ag composite coatings were prepared by atmospheric plasma spraying. The tribological properties of the composite coatings were investigated from 25 to 900 ℃ in details. The tribo-layer formed on the worn surface of the composite coatings and influenced the tribological properties at different temperatures. The addition of silver could effectively decrease the friction coefficient and wear rate of the coatings at the wide range of temperature. The rubbing process could form the nickel molybdate and promote the formation of silver molybdate within the worn surfaces at high temperature. The synergistic lubricating effects of nickel molybdate and silver molybdate are attributed to the improvement of the tribological properties of coatings at high temperature.
基金supported by the National Natural Science Foundation of China under Grant No. 51072166 and No.50902111the "111" Project under Grant No.D08040NPU Foundation for Fundamental Research and the Research Fund of the State Key Laboratory of Solidification Processing(NWPU), China (Grant No.73-QP-2010)
文摘To improve the oxidation resistance of carbon/carbon (C/C) composites, mullite coating was prepared on the surface of SiC-coated C/C composites by supersonic plasma spraying. Phases and microstructures of mullite coating were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The coating primarily consists of a single phase of mullite (3AI203-2SIO2). The SEM results show that mullite coating was continuous and well bonded with the SiC inner layer without penetrating crack. Mullite coating exhibited good oxidation resistance, After 98.5 h oxidation at 1773 K and 9 thermal shock cycles between 1773 K and room temperature, the weight loss of the coated C/C composites was only 2.57%.