By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-...By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet)plateau since Miocenc. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by amaximum principal compression which was coming from the collision of india Plate continued to the boundaryof the plateau. and was basically of reverse faulting type. Since the late period of early Pleistocene, Pleistocene continuedto push northward and the compressional deformation of the plateau interior increased continuously, meanwhile,N W-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block offoe plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust tostrike-slip. -The contemporary tectonic stress field was formed from the late period of early Pleistocene and continuedto present. The direction of maximum principal compressional stress rotated clockwise with respect to the previoustectonic stress held. the stress field was mainly of strike-slip type.展开更多
We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the northeastern Qinghai-Xizang (Tibetan) Plateau since 1920. Lithospheric stress/strain evolution is assumed to be d...We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the northeastern Qinghai-Xizang (Tibetan) Plateau since 1920. Lithospheric stress/strain evolution is assumed to be driven by dislocations of large earthquakes (M≥7.0) and secular tectonic loading. The earthquake rupture parameters such as the fault rupture length, width, and slip are either adopted from field investigations or estimated from their statistic relationships with the earthquake magnitudes and seismic moments. Our study shows that among 20 large earthquakes (M≥7.0) investigated, 17 occurred in areas where the Coulomb failure stress change is positive, with a triggering rate of 85%. This study provides essential data for the intermediate to long-term likelihood estimation of large earthquakes in the northeastern Tibetan Plateau.展开更多
[ Objective ] The study aimed to screen rational seedling raising date and seedling raising mode for plateau japonica rice, in order to reduce the effect of low temperature on seedlings. [ Method ] The seedlings of co...[ Objective ] The study aimed to screen rational seedling raising date and seedling raising mode for plateau japonica rice, in order to reduce the effect of low temperature on seedlings. [ Method ] The seedlings of conventional japonica rice Hexi 22-2 and giant embryo No. 1 japonica rice were treated at day tempera- ture 12℃/night temperature 8℃ and day temperature 14 ℃/night temperature 10 ℃, and the indicators including chlorophyll content, soluble sugar content, sol- uble protein content, survival rate, plant height, number of ≥ 1 cm roots, leaf wilting degree and aboveground dry matter weight were determined after treated for 0, 3 and 6 d, respectively. [ Result] Chlorophyll content of seedlings decreased when treated by low temperature for a certain period; with the prolongation of treat- ment time, contents of soluble sugar and soluble protein in some low temperature treatments increased, while plant height, number of ≥ 1 cm roots and aboveground dry matter weight increased slowly, but the growth rate was significantly lower than that at room temperature; with the decrease of temperature and the prolongation of treatment time, leaf wilting degree increased. The comprehensive experimental results showed that with the increasing duration of low temperature, when two japonica rice varieties grew under the same low temperature, seedlings grew more and more slowly, probably because the lower the treatment temperature, the greater the damage on plants. Giant Embryo No. 1 had weaker cold tolerance than Hexi 22-2. [ Conclusion] The study provides a theoretical basis for formula- tion of seedling raising technique of plateau japonica rice.展开更多
AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging(MRI).METHODS A retrospective review of patients with a diagn...AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging(MRI).METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years(range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI.RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially(AM type), six posteromedially(PM type), and five posteriorly(P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI.CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.展开更多
Tsinghai-Tibet Plateau becomes an important research topic ofglobal tectonics, because of its marvelous thickness and rapiduplifting since Quaternary. By using finite element method, thenumerical simulation is carried...Tsinghai-Tibet Plateau becomes an important research topic ofglobal tectonics, because of its marvelous thickness and rapiduplifting since Quaternary. By using finite element method, thenumerical simulation is carried out for the movement of structurallithosphere. The deformable elements are employed to simulatestructural zones, and the frictional mechanism is introduced toillustrate the characteristic of a zone with a contact crack surface.The boundary conditions are prescribed by the displacements aroundthe pla- teau.展开更多
Ex-situ cultivation of biological soil crusts (biocrusts) is a promising technology to produce materials that can induce the recovery of biocrusts in the field for the purposes of preventing soil erosion and improvi...Ex-situ cultivation of biological soil crusts (biocrusts) is a promising technology to produce materials that can induce the recovery of biocrusts in the field for the purposes of preventing soil erosion and improving hydrological function in degraded ecosystems. However, the ability of artificially cultivated biocrusts to survive under adverse field conditions, including drought and heat stresses, is still relatively unknown. Mosses can bolster biocrust resistance to the stresses (e.g., drought and heat) and the resistance may be introduced prior to field cultivation. In this study, we subjected the well-developed artificial moss biocrusts (dominant species of Didjmodon vinealis (Brid.) Zand.) that we cultivated in the phytotron to a dehydration-rehydration experiment and also a heat stress experiment and measured the activities of protective enzymes (including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT)) and the contents of osmoregulatory substances (including soluble proteins and soluble sugars) and malondialdehyde (MDA, an indicator of oxidative stress) in the stem and leaf fragments of mosses. The results showed that, during the dehydration process, the activities of protective enzymes and the contents of osmoregulatory substances and MDA gradually increased with increasing duration of drought stress (over 13 days). During the rehydration process, values of these parameters decreased rapidly after 1 d of rehydration. The values then showed a gradual decrease for 5 days, approaching to the control levels. Under heat stress (45℃), the activities of protective enzymes and the content of soluble proteins increased rapidly within 2 h of heat exposure and then decreased gradually with increasing duration of heat exposure. In contrast, the contents of soluble sugars and MDA always increased gradually with increasing duration of heat exposure. This study indicates that artificial moss biocrusts possess a strong drought resistance and this resistance can be enhanced after a gradual dehydration treatment. This study also indicates that artificial moss biocrusts can only resist short-term heat stress (not long-term heat stress). These findings suggest that short-term heat stress or prolonged drought stress could be used to elevate the resistance of artificial moss biocrusts to adverse conditions prior to field reintroduction.展开更多
The Tianshui Basin,located inside the western Qinling orogenic belt and northeastern margin of the Tibetan Plateau (Fig.1),is a NE-trending Late Cenozoic basin,which documents the neotectonic response of the northea...The Tianshui Basin,located inside the western Qinling orogenic belt and northeastern margin of the Tibetan Plateau (Fig.1),is a NE-trending Late Cenozoic basin,which documents the neotectonic response of the northeastward growth of Tibetan Plateau.展开更多
Earthquake prediction thus far has proven to be a very difficult task, but changes in situ stress appear to offer a viable approach for forecasting large earthquakes in Tibet and perhaps other continental regions. Hig...Earthquake prediction thus far has proven to be a very difficult task, but changes in situ stress appear to offer a viable approach for forecasting large earthquakes in Tibet and perhaps other continental regions. High stress anomalies formed along active faults before large earthquakes and disappeared soon after the earthquakes occurred in the Tibetan Plateau. Principle stress increased up to ~2 -?5 times higher than background stress to form high stress anomalies along causative faults before the Ms 8.1 West Kunlun Pass earthquake in November 2001, Ms 8.0 Wenchuan earthquake in May 2008, Ms 6.6 Nimu earthquake in October 2009, Ms 7.1 Yushu earthquake in April 2010 and the Ms 7.0 Lushan earthquake in April 2013. Stress near the epicenters rapidly increased 0.10 - 0.12 MPa over 45 days, ~8 months before the Ms 6.6 Nimu earthquake occurred. The high principle stress anomalies decreased quickly to the normal stress state in ~8 -?12 months after the Ms 8.1 West Kunlun Pass and the Ms 8.0 Wenchuan earthquakes. These high stress anomalies and their demise appear directly related to the immediate stress rise along a fault prior to the earthquakes and the release during the event. Thus, the stress rise appears to be a viable precursor in prediction of large continental earthquakes as in the Tibetan Plateau.展开更多
This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region...This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.展开更多
Based on the discovery of the SSW stress field of the Earth and Mars, the authors proposed that each of the celestial bodies in the Solar System possesses a consistent stress field along the revolution axis relative t...Based on the discovery of the SSW stress field of the Earth and Mars, the authors proposed that each of the celestial bodies in the Solar System possesses a consistent stress field along the revolution axis relative to their own obliquity of the ecliptic ( ε ).This paper describes a deep going study on the control role of the stress field on the formation of the Tibet plateau.1\ Discovery of the stress filed along the revolution axis of the Earth and Mars (1)Discovery of the four tridimensional tectonic systems in the global SSW stress field [1] :In West China, under the action of this stress field, the alternative WNW\|trending belts of fault uplifts and fault depressions intersect the alternative belts of ENE\|trending sinistral and NNW\|trending dextral conjugate shear\|compressive uplifts and depressions,and then combine with the NNE\|trending tensile fault belt, to form the “uplift on uplift" ,the “third\|order overlapped uplift" ,the“depression in depression” ,the “third\|order sunk depression", and also the composite fault uplifts and fault depressions composed of four or more fault groups. They are produced simultaneously and form the rivers, lakes, basins, mountains and plateaus and show the mirror symmetry in section. This tectonic framework can be observed not only in the Qinghai—Tibet plateau but also in all over China and even on the entire Earth. Therefore, the SSW principal compressive stress is the unified global stress field and its model has already been constructed [1] .展开更多
The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation ...The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. Based on the subcrustal mantle convectiongenerated stress field inversed by gravity anomalies, together with its relationship to the Cenozoic volcanism in the plateau, and the mechanism of crustal fracture formation, as well as the numerical results of the evolution of mantle convection beneath the plateau, this paper investigates the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. There are two significant extensional convection-generated stress zones beneath the plateau, in which the volcanic rocks in the central and northern parts of the plateau are distributed. The Linzizong volcanism in southern Tibet correlates the upwelling mantle flow prior to the India-Asia collision or during the early stage of the collision. The magnitude of the stress is - 100 MPa, which is the same order of force that causes crustal fractures. The evidence implies that the mantle convection-generated stress is one of the principle causes of crustal fractures, and furthermore, the formation of the magma transportation channel in the Tibetan plateau.展开更多
文摘By inversion of fault slip data for Quaternary tectonic stress field and the analysis of crustal deformation after lateTeriary. we explaincd the evolution of crustal dynamic about the north and east margin of Qinghai-Xizang (Tibet)plateau since Miocenc. From middle or late Miocene to early Pleistocene, the tectonic stress field was featured by amaximum principal compression which was coming from the collision of india Plate continued to the boundaryof the plateau. and was basically of reverse faulting type. Since the late period of early Pleistocene, Pleistocene continuedto push northward and the compressional deformation of the plateau interior increased continuously, meanwhile,N W-SE extension appeared on the east side of the plateau. This formed a favorable condition for the interior block offoe plateau to slide towards east and southeast, causing the faults surrounding the plateau to change from thrust tostrike-slip. -The contemporary tectonic stress field was formed from the late period of early Pleistocene and continuedto present. The direction of maximum principal compressional stress rotated clockwise with respect to the previoustectonic stress held. the stress field was mainly of strike-slip type.
基金National Natural Science Foundation of China(40374012 and 40334042)State Key Fundamental Research De-velopment Plan Project(2001CB711005)
文摘We simulate accumulative Coulomb failure stress change in a layered Maxwell viscoelastic media in the northeastern Qinghai-Xizang (Tibetan) Plateau since 1920. Lithospheric stress/strain evolution is assumed to be driven by dislocations of large earthquakes (M≥7.0) and secular tectonic loading. The earthquake rupture parameters such as the fault rupture length, width, and slip are either adopted from field investigations or estimated from their statistic relationships with the earthquake magnitudes and seismic moments. Our study shows that among 20 large earthquakes (M≥7.0) investigated, 17 occurred in areas where the Coulomb failure stress change is positive, with a triggering rate of 85%. This study provides essential data for the intermediate to long-term likelihood estimation of large earthquakes in the northeastern Tibetan Plateau.
基金Supported by Key Scientific Research Project of Sichuan Provincial Department of Education "Cultivation Physiology and Technique of Plateau Japonica Rice"(10ZA067)
文摘[ Objective ] The study aimed to screen rational seedling raising date and seedling raising mode for plateau japonica rice, in order to reduce the effect of low temperature on seedlings. [ Method ] The seedlings of conventional japonica rice Hexi 22-2 and giant embryo No. 1 japonica rice were treated at day tempera- ture 12℃/night temperature 8℃ and day temperature 14 ℃/night temperature 10 ℃, and the indicators including chlorophyll content, soluble sugar content, sol- uble protein content, survival rate, plant height, number of ≥ 1 cm roots, leaf wilting degree and aboveground dry matter weight were determined after treated for 0, 3 and 6 d, respectively. [ Result] Chlorophyll content of seedlings decreased when treated by low temperature for a certain period; with the prolongation of treat- ment time, contents of soluble sugar and soluble protein in some low temperature treatments increased, while plant height, number of ≥ 1 cm roots and aboveground dry matter weight increased slowly, but the growth rate was significantly lower than that at room temperature; with the decrease of temperature and the prolongation of treatment time, leaf wilting degree increased. The comprehensive experimental results showed that with the increasing duration of low temperature, when two japonica rice varieties grew under the same low temperature, seedlings grew more and more slowly, probably because the lower the treatment temperature, the greater the damage on plants. Giant Embryo No. 1 had weaker cold tolerance than Hexi 22-2. [ Conclusion] The study provides a theoretical basis for formula- tion of seedling raising technique of plateau japonica rice.
文摘AIM To determine the location of medial tibial plateau stress fractures and its relationship with tibial plateau morphology using magnetic resonance imaging(MRI).METHODS A retrospective review of patients with a diagnosis of stress fracture of the medial tibial plateau was performed for a 5-year period. Fourteen patients [three female and 11 male, with an average age of 36.4 years(range, 15-50 years)], who underwent knee MRI, were included. The appearance of the tibial plateau stress fracture and the geometry of the tibial plateau were reviewed and measured on MRI.RESULTS Thirteen of 14 stress fractures were linear, and one of them stellated on MRI images. The location of fractures was classified into three types. Three fractures were located anteromedially(AM type), six posteromedially(PM type), and five posteriorly(P type) at the medial tibial plateau. In addition, tibial posterior slope at the medial tibial plateau tended to be larger when the fracture was located more posteriorly on MRI.CONCLUSION We found that MRI showed three different localizations of medial tibial plateau stress fractures, which were associated with tibial posterior slope at the medial tibial plateau.
文摘Tsinghai-Tibet Plateau becomes an important research topic ofglobal tectonics, because of its marvelous thickness and rapiduplifting since Quaternary. By using finite element method, thenumerical simulation is carried out for the movement of structurallithosphere. The deformable elements are employed to simulatestructural zones, and the frictional mechanism is introduced toillustrate the characteristic of a zone with a contact crack surface.The boundary conditions are prescribed by the displacements aroundthe pla- teau.
基金supported by the National Natural Science Foundation of China(41541008,41671276)the Chinese Universities Scientific Fund(2014YQ006)+1 种基金the West Light Foundation of the Chinese Academy of Sciences(2014-91)the Natural Science Foundation of Qinghai Province(2016-ZJ-943Q)
文摘Ex-situ cultivation of biological soil crusts (biocrusts) is a promising technology to produce materials that can induce the recovery of biocrusts in the field for the purposes of preventing soil erosion and improving hydrological function in degraded ecosystems. However, the ability of artificially cultivated biocrusts to survive under adverse field conditions, including drought and heat stresses, is still relatively unknown. Mosses can bolster biocrust resistance to the stresses (e.g., drought and heat) and the resistance may be introduced prior to field cultivation. In this study, we subjected the well-developed artificial moss biocrusts (dominant species of Didjmodon vinealis (Brid.) Zand.) that we cultivated in the phytotron to a dehydration-rehydration experiment and also a heat stress experiment and measured the activities of protective enzymes (including peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT)) and the contents of osmoregulatory substances (including soluble proteins and soluble sugars) and malondialdehyde (MDA, an indicator of oxidative stress) in the stem and leaf fragments of mosses. The results showed that, during the dehydration process, the activities of protective enzymes and the contents of osmoregulatory substances and MDA gradually increased with increasing duration of drought stress (over 13 days). During the rehydration process, values of these parameters decreased rapidly after 1 d of rehydration. The values then showed a gradual decrease for 5 days, approaching to the control levels. Under heat stress (45℃), the activities of protective enzymes and the content of soluble proteins increased rapidly within 2 h of heat exposure and then decreased gradually with increasing duration of heat exposure. In contrast, the contents of soluble sugars and MDA always increased gradually with increasing duration of heat exposure. This study indicates that artificial moss biocrusts possess a strong drought resistance and this resistance can be enhanced after a gradual dehydration treatment. This study also indicates that artificial moss biocrusts can only resist short-term heat stress (not long-term heat stress). These findings suggest that short-term heat stress or prolonged drought stress could be used to elevate the resistance of artificial moss biocrusts to adverse conditions prior to field reintroduction.
基金supported by the study grants from China Geological Survey (No.1212011120100,1212011120099 and 1212011220259)
文摘The Tianshui Basin,located inside the western Qinling orogenic belt and northeastern margin of the Tibetan Plateau (Fig.1),is a NE-trending Late Cenozoic basin,which documents the neotectonic response of the northeastward growth of Tibetan Plateau.
文摘Earthquake prediction thus far has proven to be a very difficult task, but changes in situ stress appear to offer a viable approach for forecasting large earthquakes in Tibet and perhaps other continental regions. High stress anomalies formed along active faults before large earthquakes and disappeared soon after the earthquakes occurred in the Tibetan Plateau. Principle stress increased up to ~2 -?5 times higher than background stress to form high stress anomalies along causative faults before the Ms 8.1 West Kunlun Pass earthquake in November 2001, Ms 8.0 Wenchuan earthquake in May 2008, Ms 6.6 Nimu earthquake in October 2009, Ms 7.1 Yushu earthquake in April 2010 and the Ms 7.0 Lushan earthquake in April 2013. Stress near the epicenters rapidly increased 0.10 - 0.12 MPa over 45 days, ~8 months before the Ms 6.6 Nimu earthquake occurred. The high principle stress anomalies decreased quickly to the normal stress state in ~8 -?12 months after the Ms 8.1 West Kunlun Pass and the Ms 8.0 Wenchuan earthquakes. These high stress anomalies and their demise appear directly related to the immediate stress rise along a fault prior to the earthquakes and the release during the event. Thus, the stress rise appears to be a viable precursor in prediction of large continental earthquakes as in the Tibetan Plateau.
基金the auspice of National Key Basic Project(973)(granted number 2008CB425702)National Science and Technology Project(granted Number SinoProbe-08)China Geological Survey project(granted number1212010670104)
文摘This paper examines major active faults and the present-day tectonic stress field in the East Tibetan Plateau by integrating available data from published literature and proposes a block kinematics model of the region. It shows that the East Tibetan Plateau is dominated by strike-slip and reverse faulting stress regimes and that the maximum horizontal stress is roughly consistent with the contemporary velocity field, except for the west Qinling range where it parallels the striking of the major strike-slip faults. Active tectonics in the East Tibetan Plateau is characterized by three faulting systems. The left-slip Kunlun-Qinling faulting system combines the east Kunlun fault zone, sinistral oblique reverse faults along the Minshan range and two major NEE-striking faults cutting the west Qinling range, which accommodates eastward motion, at 10--14 mm/a, of the Chuan-Qing block. The left-slip Xianshuihe faulting system accommodated clockwise rotation of the Chuan-Dian block. The Longmenshan thrust faulting system forms the eastern margin of the East Tibetan Plateau and has been propagated to the SW of the Sichuan basin. Crustal shortening across the Longmenshan range seems low (2-4 mm/a) and absorbed only a small part of the eastward motion of the Chuan-Qing block. Most of this eastward motion has been transmitted to South China, which is moving SEE-ward at 7-9 mm/a. It is suggested from geophysical data interpretation that the crust and lithosphere of the East Tibetan Plateau is considerably thickened and theologically layered. The upper crust seems to be decoupled from the lower crust through a decollement zone at a depth of 15-20 kin, which involved the Longmenshan fault belt and propagated eastward to the SW of the Sichuan basin. The Wenchuan earthquake was just formed at the bifurcated point of this decollement system. A rheological boundary should exist beneath the Longmenshan fault belt where the lower crust of the East Tibetan Plateau and the lithospheric mantle of the Yangze block are juxtaposed.
文摘Based on the discovery of the SSW stress field of the Earth and Mars, the authors proposed that each of the celestial bodies in the Solar System possesses a consistent stress field along the revolution axis relative to their own obliquity of the ecliptic ( ε ).This paper describes a deep going study on the control role of the stress field on the formation of the Tibet plateau.1\ Discovery of the stress filed along the revolution axis of the Earth and Mars (1)Discovery of the four tridimensional tectonic systems in the global SSW stress field [1] :In West China, under the action of this stress field, the alternative WNW\|trending belts of fault uplifts and fault depressions intersect the alternative belts of ENE\|trending sinistral and NNW\|trending dextral conjugate shear\|compressive uplifts and depressions,and then combine with the NNE\|trending tensile fault belt, to form the “uplift on uplift" ,the “third\|order overlapped uplift" ,the“depression in depression” ,the “third\|order sunk depression", and also the composite fault uplifts and fault depressions composed of four or more fault groups. They are produced simultaneously and form the rivers, lakes, basins, mountains and plateaus and show the mirror symmetry in section. This tectonic framework can be observed not only in the Qinghai—Tibet plateau but also in all over China and even on the entire Earth. Therefore, the SSW principal compressive stress is the unified global stress field and its model has already been constructed [1] .
文摘The principle prerequisite for the formation of a volcano is the generation of a channel for magma transportation. There is little research on the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. Based on the subcrustal mantle convectiongenerated stress field inversed by gravity anomalies, together with its relationship to the Cenozoic volcanism in the plateau, and the mechanism of crustal fracture formation, as well as the numerical results of the evolution of mantle convection beneath the plateau, this paper investigates the deep mechanical mechanism for the formation of a magma transportation channel in the Tibetan plateau. There are two significant extensional convection-generated stress zones beneath the plateau, in which the volcanic rocks in the central and northern parts of the plateau are distributed. The Linzizong volcanism in southern Tibet correlates the upwelling mantle flow prior to the India-Asia collision or during the early stage of the collision. The magnitude of the stress is - 100 MPa, which is the same order of force that causes crustal fractures. The evidence implies that the mantle convection-generated stress is one of the principle causes of crustal fractures, and furthermore, the formation of the magma transportation channel in the Tibetan plateau.