The key problem of the energy dissipation scheme of the arch dam body flood discharge and plunge pool below the dam is the stability problem of the plunge pool slab.As the protection structure of the underwater bed,th...The key problem of the energy dissipation scheme of the arch dam body flood discharge and plunge pool below the dam is the stability problem of the plunge pool slab.As the protection structure of the underwater bed,the plunge pool slab bears the continuous impact of high-speed water flow.The hourly average dynamic water pressure on the slab is one of the main loads directly affecting the stability of the slab and is the main factor causing its erosion destruction.After the impoundment of the Xiluodu Hydropower Station,the measuring line of valley width in the plunge pool area has been continuously shrinking.By 2020,the cumulative shrinking value is about 80 mm.In light of the general background condition of valley shrinkage,daily inspection,annual detailed inspection,underwater inspection and drainage inspection of the plunge pool found that the plunge pool has experienced different degrees of damage,which greatly influences the long-term safety stability of the plunge pool.In this paper,the prototype observation data of flood discharge is used as the input load of pulsatingpressure,and the stress and displacement distribution of the plunge pool structure under the vibration load of flood discharge is analyzed under the condition that the stress and strain state of the plunge pool is changed under the influence of valley displacement.The results show that the stress,strain,and displacement distribution of the plunge pool are mainly caused by valley deformation,the vibration caused by flood discharge is little in influence,and the impact effect of deep hole flood discharge tongue on the plunge pool slab is weak.展开更多
A detailed experimental research on characteristics of the hydrodynamicpressure spreading in the base gap of the arch inverted plunge pool was carried out. The features ofthe distributon of its ampitudes and spectral ...A detailed experimental research on characteristics of the hydrodynamicpressure spreading in the base gap of the arch inverted plunge pool was carried out. The features ofthe distributon of its ampitudes and spectral density and its characteristics in time domain fortwo conditions, i. e. , (1) a through gap and (2) a blind gap were given. The influence of the dampat the joint opening upon the hydrodynamic pressure inside the gap was also investigated.Accordingly, the stabilization mechanism of the arch invert plunge pool was worked out.展开更多
A 3-D numerical model for simulating the complicated turbulent flows was developed and the code was made. A numerical calculation of the plunge pool of Laxiwa project in China was carried on. Those 3-D distributions o...A 3-D numerical model for simulating the complicated turbulent flows was developed and the code was made. A numerical calculation of the plunge pool of Laxiwa project in China was carried on. Those 3-D distributions of velocity,pressure on bottom wall,turbulence kinetic energy and turbulence energy dissipation rate are revealed in detail and the detailed flow patterns of plunge pool were shown. By studying on the characteristics of turbulent diffusion and energy dissipation,the calculated results show that the major turbulence and energy dissipation are taken place near the axis of water jet. The calculated results also indicated that the calculated maximum impact pressures on the bottom wall of the plunge pool have a good agreement with those obtained by physical hydraulic model test.展开更多
Anadromous alosines are widespread throughout the Northern Hemisphere.Juveniles of this clade are notoriously fragile animals that are at high risk of injury and death associated with passage at hydroelectric faciliti...Anadromous alosines are widespread throughout the Northern Hemisphere.Juveniles of this clade are notoriously fragile animals that are at high risk of injury and death associated with passage at hydroelectric facilities.Although turbine mortality is a common concern,conditions encountered when bypassed around these routes may also be hazardous.Downstream bypass structures typically discharge into plunge pools,which are highly turbulent and may cause mechanical injury.We subjected live,actively migrating juvenile blueback herring to a suite of realistic plunge pool conditions(3 m drop,pool depth of 60-180 cm,and discharge of 0.28-1.70 m^(3)/s)and monitored them for≥96 h.Survival was generally higher than expected(>80%in all cases).However,both plunge pool volume and total discharge affected survival with elevated discharge and shallow conditions associated with increased mortality.Mortality was often delayed:rates remained elevated throughout the monitoring period,indicating that survival studies based on shorter periods underestimate total mortality.展开更多
The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, includi...The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, including different jet arrangements and structures located in the stilling basin. It has been found that multiple jets can cause less scouring than single plunging jets. Based on this evidence, this study aimed to investigate the equilibrium morphology caused by multiple non-crossing jets. A dedicated laboratory model was built and experimental tests were carried out under different combinations of jet inclination angles, by varying the tailwater level and the virtual crossing point location, which was set below the original channel bed level. It was experimentally shown that the equilibrium scour morphology depends on the jet discharge, the differences in non-crossing jet inclination angles, the downstream water level, and the distance of the virtual crossing point from the original channel bed level. In particular, the last parameter was found to be one of the most influential parameters, because of the resulting flow patterns inside the water body. Furthermore, the analysis of experimental evidence allowed for a complete and detailed classification of the scour hole typologies. Three different scour typologies were distinguished and classified. Finally, based on previous studies, two novel re-lationships have been proposed to predict both the maximum scour depth and length within a large range of hydraulic and geometric parameters.展开更多
基金supported by the National Institute of Natural Hazards,Ministry of Emergency Management of China(No.ZDJ202008)。
文摘The key problem of the energy dissipation scheme of the arch dam body flood discharge and plunge pool below the dam is the stability problem of the plunge pool slab.As the protection structure of the underwater bed,the plunge pool slab bears the continuous impact of high-speed water flow.The hourly average dynamic water pressure on the slab is one of the main loads directly affecting the stability of the slab and is the main factor causing its erosion destruction.After the impoundment of the Xiluodu Hydropower Station,the measuring line of valley width in the plunge pool area has been continuously shrinking.By 2020,the cumulative shrinking value is about 80 mm.In light of the general background condition of valley shrinkage,daily inspection,annual detailed inspection,underwater inspection and drainage inspection of the plunge pool found that the plunge pool has experienced different degrees of damage,which greatly influences the long-term safety stability of the plunge pool.In this paper,the prototype observation data of flood discharge is used as the input load of pulsatingpressure,and the stress and displacement distribution of the plunge pool structure under the vibration load of flood discharge is analyzed under the condition that the stress and strain state of the plunge pool is changed under the influence of valley displacement.The results show that the stress,strain,and displacement distribution of the plunge pool are mainly caused by valley deformation,the vibration caused by flood discharge is little in influence,and the impact effect of deep hole flood discharge tongue on the plunge pool slab is weak.
文摘A detailed experimental research on characteristics of the hydrodynamicpressure spreading in the base gap of the arch inverted plunge pool was carried out. The features ofthe distributon of its ampitudes and spectral density and its characteristics in time domain fortwo conditions, i. e. , (1) a through gap and (2) a blind gap were given. The influence of the dampat the joint opening upon the hydrodynamic pressure inside the gap was also investigated.Accordingly, the stabilization mechanism of the arch invert plunge pool was worked out.
基金the National Natural hlence Foundation of China.
文摘A 3-D numerical model for simulating the complicated turbulent flows was developed and the code was made. A numerical calculation of the plunge pool of Laxiwa project in China was carried on. Those 3-D distributions of velocity,pressure on bottom wall,turbulence kinetic energy and turbulence energy dissipation rate are revealed in detail and the detailed flow patterns of plunge pool were shown. By studying on the characteristics of turbulent diffusion and energy dissipation,the calculated results show that the major turbulence and energy dissipation are taken place near the axis of water jet. The calculated results also indicated that the calculated maximum impact pressures on the bottom wall of the plunge pool have a good agreement with those obtained by physical hydraulic model test.
基金This work was funded through a collaborative agreement between USGS and Albany Engineering Corporation.,Albany,NY(AE)(agreement#18ENLB500001).
文摘Anadromous alosines are widespread throughout the Northern Hemisphere.Juveniles of this clade are notoriously fragile animals that are at high risk of injury and death associated with passage at hydroelectric facilities.Although turbine mortality is a common concern,conditions encountered when bypassed around these routes may also be hazardous.Downstream bypass structures typically discharge into plunge pools,which are highly turbulent and may cause mechanical injury.We subjected live,actively migrating juvenile blueback herring to a suite of realistic plunge pool conditions(3 m drop,pool depth of 60-180 cm,and discharge of 0.28-1.70 m^(3)/s)and monitored them for≥96 h.Survival was generally higher than expected(>80%in all cases).However,both plunge pool volume and total discharge affected survival with elevated discharge and shallow conditions associated with increased mortality.Mortality was often delayed:rates remained elevated throughout the monitoring period,indicating that survival studies based on shorter periods underestimate total mortality.
文摘The scour process induced by plunging jets is an important topic for hydraulic engineers. In recent decades, several researchers have developed new strategies and methodologies to control the scour morphology, including different jet arrangements and structures located in the stilling basin. It has been found that multiple jets can cause less scouring than single plunging jets. Based on this evidence, this study aimed to investigate the equilibrium morphology caused by multiple non-crossing jets. A dedicated laboratory model was built and experimental tests were carried out under different combinations of jet inclination angles, by varying the tailwater level and the virtual crossing point location, which was set below the original channel bed level. It was experimentally shown that the equilibrium scour morphology depends on the jet discharge, the differences in non-crossing jet inclination angles, the downstream water level, and the distance of the virtual crossing point from the original channel bed level. In particular, the last parameter was found to be one of the most influential parameters, because of the resulting flow patterns inside the water body. Furthermore, the analysis of experimental evidence allowed for a complete and detailed classification of the scour hole typologies. Three different scour typologies were distinguished and classified. Finally, based on previous studies, two novel re-lationships have been proposed to predict both the maximum scour depth and length within a large range of hydraulic and geometric parameters.