Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telesc...Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telescope(TMRT)as an example object,the pointing errors caused by wind loads are investigated using an accelerometer system.First,the resonant frequency range of the antenna structure is used for reference to acquire useful signals through the bandpass filtering method.Then,the direct current(DC)component of these signals is filtered out using the fast discrete Fourier transform method,and the baseline of the acceleration is corrected using the least-squares method.Finally,the acceleration integral is solved approximately using the discrete trapezoidal area method,and the structural vibration displacement of the antenna is determined using a double integral of acceleration.The pointing errors are then obtained based on the displacement relationship between the primary and subreflector surfaces.When the wind speed is 3.2 m/s,the antenna pitch angle is 61.7°and the wind direction angle is 80°,the generated pitch pointing error is 3.05'',and the azimuth pointing error is 1.14''.These results are consistent with those obtained via inclinometer measurements,thus validating the signal processing method and the pointing error calculation method proposed in this paper.The research methods and data analysis results reported here provide a basis for further wind-induced pointing error correction studies.展开更多
Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been ...Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.展开更多
Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consider...Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consideration. In fact, own?ing to errors from machining and assembly, thermal deformation and so forth, practically, axial clearance is inevitable in the joint. In this study, an error equivalent model(EEM) of revolute joints is proposed with considering both radial and axial clearances. Compared to the planar model of revolute joints only considering radial clearance, the journal motion inside the bearing is more abundant and matches the reality better in the EEM. The model is also extended for analyzing the error distribution of a spatial dual?axis("X–Y" type) antenna pointing mechanism of Spot?beam antennas which especially demand a high pointing accuracy. Three case studies are performed which illustrates the internal relation between radial clearance and axial clearance. It is found that when the axial clearance is big enough, the physical journal can freely realize both translational motion and rotational motion. While if the axial clearance is limited, the motion of the physical journal will be restricted. Analysis results indicate that the consideration of both radial and axial clearances in the revolute joint describes the journal motion inside the bearing more precise. To further validate the proposed model, a model of the EEM is designed and fabricated. Some suggestions on the design of revolute joints are also provided.展开更多
A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, cir-...A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, cir- cular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is imple- mented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broy- den-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001~ of electromagnetic performance is achieved.展开更多
A new calibration model of a radio telescope that includes pointing error is presented, which considers nonlinear errors in the azimuth axis. For a large radio telescope, in particular for a telescope with a turntable...A new calibration model of a radio telescope that includes pointing error is presented, which considers nonlinear errors in the azimuth axis. For a large radio telescope, in particular for a telescope with a turntable, it is difficult to correct pointing errors using a traditional linear calibration model, because errors produced by the wheel-on-rail or center bearing structures are generally nonlinear. Fourier expansion is made for the oblique error and parameters describing the inclination direction along the azimuth axis based on the linear calibration model, and a new calibration model for pointing is derived. The new pointing model is applied to the 40 m radio telescope administered by Yunnan Observatories, which is a telescope that uses a turntable. The results show that this model can significantly reduce the residual systematic errors due to nonlinearity in the azimuth axis compared with the linear model.展开更多
The alidade’s non-uniform temperature field of a large radio telescope is very obvious under solar radiation.Estimating a radio telescope’s pointing errors,caused by the alidade deformation under solar radiation,is ...The alidade’s non-uniform temperature field of a large radio telescope is very obvious under solar radiation.Estimating a radio telescope’s pointing errors,caused by the alidade deformation under solar radiation,is significant to improve the telescope’s pointing accuracy.To study the effect of the alidade thermal behavior on the pointing accuracy of a large radio telescope,a temperature experiment is first carried out in a 70-m radio telescope on a sunny day.According to the measured results,the temperature distribution rule of the alidade is summarized initially.In addition,the alidade’s temperature field is calculated by finite element thermal analysis.The simulated results are proved to be in good agreement with the experimental results.Finally,the alidade deformation under solar radiation is computed by finite element thermalstructure coupling analysis.The telescope’s pointing errors caused by alidade deformation are estimated via the alidade’s node displacements.The final results show that the effect of alidade thermal behavior on the telescope’s elevation pointing errorsΔε2+Δεr is much more than the effect on the telescope’s crosselevation pointing errorsΔε1.The maximum ofΔε2+Δεr is more than 45″,while the maximum ofΔε1 is less than 6″.This study can provide valuable references for improving the pointing accuracy of large radio telescopes.展开更多
Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative powe...Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative power consumption, smaller size and weight when compared to the microwave equivalent. However optical communication does have a formidable challenge that needs to be overcome before the advantages of the technology can be fully utilized. In order for the communication to be successful the transmitter and receiver terminals need to be pointed with a high accuracy (generally in the order of ≤10 μradians) for the duration of communication. In this paper we present a new concept for the precise pointing of optical communications terminals (termed the Precise Pointing Mechanism). In this new concept we combine the separate pointing mechanisms of a conventional optical terminal into a single mechanism, reducing the complexity and cost of the optical bench. This is achieved by electromagnetically actuating the whole telescope assembly in 6 degrees-of-freedom with an angular resolution of less than ±3 μradians within a 10 (Az. El.) field of view and linear resolution of ±2 μm. This paper presents the new pointing mechanism and discusses the modelling, simulation and experimental work undertaken using the bespoke engineering model developed.展开更多
With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise en...With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.展开更多
This paper describes the establishment and verification of an accurate pointing model for a1.2 m aperture slant-axis terahertz antenna.A new analytical pointing model for the slant-axis antenna is presented based on a...This paper describes the establishment and verification of an accurate pointing model for a1.2 m aperture slant-axis terahertz antenna.A new analytical pointing model for the slant-axis antenna is presented based on an analogy to that of the alt-azimuth antennas.Furthermore,extra error terms are added to the pointing model based on the structure and mechanical analysis of the slant-axis antenna.To verify the pointing model experimentally,a pointing error measurement method based on photogrammetric techniques is proposed.Using this method,pointing behaviors of the antenna are accurately measured without the aid of astronomical observations,and major sources of the pointing errors are measured individually by photogrammetry and their respective coefficients are compared with those in the analytical pointing model.The results show that an extended pointing model consisting 21 error terms can significantly reduce the residual systematic errors compared with the traditional model,more details are given in the following sections.展开更多
The Qi Tai Telescope(QTT),which has a 110 m aperture,is planned to be the largest scale steerable tele-scope in the world.Ideally,the telescope’s repeated pointing accuracy error should be less than 2.5 arc seconds(a...The Qi Tai Telescope(QTT),which has a 110 m aperture,is planned to be the largest scale steerable tele-scope in the world.Ideally,the telescope’s repeated pointing accuracy error should be less than 2.5 arc seconds(arcsec);thus,the telescope structure must satisfy ultra-high precision requirements.In this pur-suit,the present research envisages a reverse-design method for the track surface to reduce the difficulty of the telescope’s design and manufacture.First,the distribution characteristics of the test data for the track error were verified using the skewness coefficient and kurtosis coefficient methods.According to the distribution characteristics,the azimuth track error was simulated by a two-scale model.The error of the long period and short amplitude was characterized as large-scale and described by a trigonometric function,while the short period and high amplitude error was characterized as small-scale and simulated by a fractal function.Based on the two-scale model,effect of the error on the pointing accuracy was deduced.Subsequently,the relationship between the root mean square(RMS)of the track error and the RMS of the pointing accuracy error of the telescope was deduced.Finally,the allowable RMS value of the track error was derived from the allowable pointing accuracy errors.To validate the effectiveness of the new design method,two typical radio telescopes(the Green Bank Telescope(GBT)and the Large Millimeter Telescope(LMT))were selected as experimental examples.Through comparison,the theoretical calculated values of the pointing accuracy of the telescope were consistent with the measured values,with a maximum error of less than 10%.展开更多
The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors. Based on the moving geometry configuration of aero bistatic SAR, a mode...The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors. Based on the moving geometry configuration of aero bistatic SAR, a model of beam pointing errors is built. Based on this, the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied, and then the imaging result of different errors are analyzed. The computer's simulations are provided to prove the validity of the above analysis.展开更多
A space laser communication acquisition,pointing and tracking(APT)system based on the beacon laser is designed without prior information.And then,a new target scanning method and a pointing and tracking algorithm are ...A space laser communication acquisition,pointing and tracking(APT)system based on the beacon laser is designed without prior information.And then,a new target scanning method and a pointing and tracking algorithm are proposed.The target scanning mode is the round-trip triangular wave scanning,and it means that scanning track of the PAN-TILT platform follows the triangular wave repeatedly.For the pointing and tracking algorithm,the beacon laser is used as the auxiliary aiming light source.The position of the beacon laser in the viewfield of the complementary metal oxide semiconductor(CMOS)camera is calculated by the centroid algorithm.In order to realize the target tracking,the joint control method of the angle control and the angular velocity control is used.The simulation and experimental results show that the APT system can achieve full coverage scanning in the scanning area and capture the target in one scanning cycle successfully.After capturing the PAN-TILT platform,the pointing and tracking algorithm can track the PAN-TILT platform quickly and accurately,and the tracking accuracy is up to 0.22 mrad.展开更多
THE Central Economic Work Conference (CEWC), a much-watched annual economic meeting in China, was held in Beijing on December 9-11, 2014, to focus on lowering the risks of a downturn and speeding up reforms in key a...THE Central Economic Work Conference (CEWC), a much-watched annual economic meeting in China, was held in Beijing on December 9-11, 2014, to focus on lowering the risks of a downturn and speeding up reforms in key areas to adjust to the "new normal" in 2015, China's central authorities decided at the meeting that the country will stick to its prudent monetary policy and proactive fiscal policy, Fiscal policy will be more forceful in 2015 and monetary policy will strike a balance between tight and loose, Emphasis was put on economic progress while maintaining stability: great significance was attached to structural rebalancing and improving the quality and efficiency of growth,展开更多
Pointing estimation for spacecraft using Inverse Synthetic Aperture Radar(ISAR)images plays a significant role in space situational awareness and surveillance.However,feature extraction and cross-range scaling of ISAR...Pointing estimation for spacecraft using Inverse Synthetic Aperture Radar(ISAR)images plays a significant role in space situational awareness and surveillance.However,feature extraction and cross-range scaling of ISAR images create bottlenecks that limit performances of current estimation methods.Especially,the emergence of staring imaging satellites,characterized by complex kinematic behaviors,presents a novel challenge to this task.To address these issues,this article proposes a pointing estimation method based on Convolutional Neural Networks(CNNs)and a numerical optimization algorithm.A satellite’s main axis,which is extracted from ISAR images by a proposed Semantic Axis Region Regression Net(SARRN),is chosen for investigation in this article due to its unique structure.Specifically,considering the kinematic characteristic of the staring satellite,an ISAR imaging model is established to bridge the target pointing and the extracted axes.Based on the imaging model,pointing estimation and cross-range scaling can be described as a maximum likelihood estimation problem,and an iterative optimization algorithm modified by using the strategy of random sampling-consistency check and weighted least squares is proposed to solve this problem.Finally,the pointing of targets and the cross-range scaling factors of ISAR images are obtained.Simulation experiments based on actual satellite orbital parameters verify the effectiveness of the proposed method.This work can improve the performance of satellite reconnaissance warning,while accurate cross-range scaling can provide a basis for subsequent data processes such as 3D reconstruction and attitude estimation.展开更多
There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,th...There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,the influence of spacecraft micro-vibration on a 0.1″Space Pointing Measuring Instrument(SPMI)is studied.A Quasi-Zero Stiffness Device(QZSD)with adaptive adjustment and variable stroke was proposed.Then,a series of micro-vibration experiments of the SPMI were carried out.The influence of the micro-vibration generated by Guidance Navigation Control(GNC)attitude control components under different attitudes on the SPMI was analyzed.Point spread function of image motion in micro-vibration was also derived.Further,the changes of image motion under the micro-vibration environment were evaluated by extracting the gray centroid of the images,and the experiment processes and results are deeply discussed.The results show that the firstorder frequency of the QZSD system is 0.114 Hz,and it is induced by a double pendulum system;the image motion of single flywheel spinning reached 0.015 pixels;whilst the image motion reached 0.03 pixels when three flywheels are combined spinning.These latest findings provide a beneficial theoretical and technical support for the development of spacecraft with 0·1″pointing accuracy.展开更多
This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 inn...This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.展开更多
The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
In laser-pointing-related applications,when only the centroid of a laser spot is considered,then the position and angular errors of the laser beam are often coupled together.In this study,the decoupling of the positio...In laser-pointing-related applications,when only the centroid of a laser spot is considered,then the position and angular errors of the laser beam are often coupled together.In this study,the decoupling of the position and angular errors is achieved from one single spot image by utilizing a neural network technique.In particular,the successful application of the neural network technique relies on novel experimental procedures,including using an appropriate small-focal-length lens and tilting the detector,to physically enlarge the contrast of different spots.This technique,with the corresponding new system design,may prove to be instructive in the future design of laser-pointing-related systems.展开更多
Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
基金provided by the TMRT operators during the observations.This work was supported by the National Key Basic Research and Development Program(2018YFA0404702)the National Natural Science Foundation of China(U1631114,11873015,and 11203062)+2 种基金the CAS Key Technology Talent Program,the Knowledge Innovation Program of CAS(KJCX1-YW-18)the Scientific Program of Shanghai Municipality(08DZ1160100)the Key Laboratory for Radio Astronomy of CAS,the Key Laboratory of Planetary Sciences of CAS,and the CAS Scholarship.
文摘Wind loads have instantaneity and turbulence characteristics that will lead to pointing errors in antenna structures,and these errors cannot be ignored in high-frequency observations.Using the Tianma 65 m radio telescope(TMRT)as an example object,the pointing errors caused by wind loads are investigated using an accelerometer system.First,the resonant frequency range of the antenna structure is used for reference to acquire useful signals through the bandpass filtering method.Then,the direct current(DC)component of these signals is filtered out using the fast discrete Fourier transform method,and the baseline of the acceleration is corrected using the least-squares method.Finally,the acceleration integral is solved approximately using the discrete trapezoidal area method,and the structural vibration displacement of the antenna is determined using a double integral of acceleration.The pointing errors are then obtained based on the displacement relationship between the primary and subreflector surfaces.When the wind speed is 3.2 m/s,the antenna pitch angle is 61.7°and the wind direction angle is 80°,the generated pitch pointing error is 3.05'',and the azimuth pointing error is 1.14''.These results are consistent with those obtained via inclinometer measurements,thus validating the signal processing method and the pointing error calculation method proposed in this paper.The research methods and data analysis results reported here provide a basis for further wind-induced pointing error correction studies.
基金supported by Aeronautical Science Foundation of China(2017ZC52021)the Fundamental Research Funds for the Central Universities(NS2017066)+1 种基金the Foundation of Graduate Innovation Center in NUAA(kfjj20171501)China Postdoctoral Science Foundation Funded Project(2015M581791)
文摘Millimeter wave(mmWave) communications of unmanned aerial vehicles(UAVs) have drawn dramatic attentions for its flexibility on a variety of applications.Recently,channel tracking base on the spatial features has been proposed to solve the problem of beam misalignments due to the UAV navigation.However,unstable beam pointing caused by the non-ideal beam tracking environment may impact the performance of mmWave systems significantly.In this paper,an improved beamforming method is presented to overcome this shortcoming.Firstly,the effect of the beam deviation is analyzed through the establishment of the equivalent data rate.Then,combining the quantification of spatial angle and the improved orthogonal matching pursuit(OMP) algorithm,an optimized beam corresponding to the beam deviation is obtained.Simulation results show that the optimized beam of the proposed approach can effectively improve the spectral efficiency without improving the complexity when the beam pointing is unstable.
基金Supported by National Natural Science Foundation of China(Grant Nos.51635002(Key Program),51605011,51275015)
文摘Joint clearances in antenna pointing mechanisms lead to uncertainty in function deviation. Current studies mainly focus on radial clearance of revolute joints, while axial clearance has rarely been taken into consideration. In fact, own?ing to errors from machining and assembly, thermal deformation and so forth, practically, axial clearance is inevitable in the joint. In this study, an error equivalent model(EEM) of revolute joints is proposed with considering both radial and axial clearances. Compared to the planar model of revolute joints only considering radial clearance, the journal motion inside the bearing is more abundant and matches the reality better in the EEM. The model is also extended for analyzing the error distribution of a spatial dual?axis("X–Y" type) antenna pointing mechanism of Spot?beam antennas which especially demand a high pointing accuracy. Three case studies are performed which illustrates the internal relation between radial clearance and axial clearance. It is found that when the axial clearance is big enough, the physical journal can freely realize both translational motion and rotational motion. While if the axial clearance is limited, the motion of the physical journal will be restricted. Analysis results indicate that the consideration of both radial and axial clearances in the revolute joint describes the journal motion inside the bearing more precise. To further validate the proposed model, a model of the EEM is designed and fabricated. Some suggestions on the design of revolute joints are also provided.
文摘A well-designed reflector surface with high beam pointing accuracy in electromagnetic performance is of practical significance to the space application of cable mesh reflector antennas. As for space requirements, cir- cular polarizations are widely used in spaceborne antennas, which usually lead to a beam shift for offset reflectors and influence the beam pointing accuracy. A two-step structural design procedure is proposed to overcome the beam squint phenomenon for high beam pointing accuracy design of circularly polarized offset cable mesh reflectors. A simple structural optimal design and an integrated structural electromagnetic optimization are combined to alleviate the beam squint effect of circular polarizations. It is imple- mented by cable pretension design and adjustment to shape the offset cable mesh surface. Besides, in order to increase the efficiency of integrated optimization, an update Broy- den-Fletcher-Goldfarb-Shanno (BFGS) Hessian matrix is employed in the optimization iteration with sequential quadratic programming. A circularly polarized offset cable mesh reflector is utilized to show the feasibility and effectiveness of the proposed procedure. A high beam pointing accuracy in order of 0.0001~ of electromagnetic performance is achieved.
基金Supported by the National Natural Science Foundation of China
文摘A new calibration model of a radio telescope that includes pointing error is presented, which considers nonlinear errors in the azimuth axis. For a large radio telescope, in particular for a telescope with a turntable, it is difficult to correct pointing errors using a traditional linear calibration model, because errors produced by the wheel-on-rail or center bearing structures are generally nonlinear. Fourier expansion is made for the oblique error and parameters describing the inclination direction along the azimuth axis based on the linear calibration model, and a new calibration model for pointing is derived. The new pointing model is applied to the 40 m radio telescope administered by Yunnan Observatories, which is a telescope that uses a turntable. The results show that this model can significantly reduce the residual systematic errors due to nonlinearity in the azimuth axis compared with the linear model.
基金funded by the Astronomical Joint Fund of National Natural Science Foundation of China and Chinese Academy of Sciences(U1831114)the National Natural Science Foundation of China(11673040 and 11803053)。
文摘The alidade’s non-uniform temperature field of a large radio telescope is very obvious under solar radiation.Estimating a radio telescope’s pointing errors,caused by the alidade deformation under solar radiation,is significant to improve the telescope’s pointing accuracy.To study the effect of the alidade thermal behavior on the pointing accuracy of a large radio telescope,a temperature experiment is first carried out in a 70-m radio telescope on a sunny day.According to the measured results,the temperature distribution rule of the alidade is summarized initially.In addition,the alidade’s temperature field is calculated by finite element thermal analysis.The simulated results are proved to be in good agreement with the experimental results.Finally,the alidade deformation under solar radiation is computed by finite element thermalstructure coupling analysis.The telescope’s pointing errors caused by alidade deformation are estimated via the alidade’s node displacements.The final results show that the effect of alidade thermal behavior on the telescope’s elevation pointing errorsΔε2+Δεr is much more than the effect on the telescope’s crosselevation pointing errorsΔε1.The maximum ofΔε2+Δεr is more than 45″,while the maximum ofΔε1 is less than 6″.This study can provide valuable references for improving the pointing accuracy of large radio telescopes.
文摘Increasing data bandwidth requirements from spacecraft systems is beginning to pressure existing microwave communications systems. Free-Space optical communications allows for larger bandwidths for lower relative power consumption, smaller size and weight when compared to the microwave equivalent. However optical communication does have a formidable challenge that needs to be overcome before the advantages of the technology can be fully utilized. In order for the communication to be successful the transmitter and receiver terminals need to be pointed with a high accuracy (generally in the order of ≤10 μradians) for the duration of communication. In this paper we present a new concept for the precise pointing of optical communications terminals (termed the Precise Pointing Mechanism). In this new concept we combine the separate pointing mechanisms of a conventional optical terminal into a single mechanism, reducing the complexity and cost of the optical bench. This is achieved by electromagnetically actuating the whole telescope assembly in 6 degrees-of-freedom with an angular resolution of less than ±3 μradians within a 10 (Az. El.) field of view and linear resolution of ±2 μm. This paper presents the new pointing mechanism and discusses the modelling, simulation and experimental work undertaken using the bespoke engineering model developed.
文摘With regard to the inferior techniques and low accuracy of phase center calibration of an antenna array, this paper proposes a new calibration method considering the actual antenna pointing by introducing a precise engineering surveying technique to measure the real state of antennas. First, an industrial photogrammetric system is utilized to obtain the coordinates of points on antenna panels in different postures, and the actual pointing of the mechanical axis is obtained via least-squares fitting. Then, based on this, the coordinates of antenna rotation center are obtained by seeking the intersection of mechanical axes via using the matrix method. Finally, the mechanical axis in arbitrary postures is estimated based on the inverse-angle weighting interpolation method, and the reliable phase center is obtained by moving a fixed length from the projective center along the mechanical axis. An uplink antenna array including three ? 3 m antennas is taken as experimental object, and all photogrammetric coordinate systems are unified by the engineering control network, with each antenna phase center precisely calibrated via the proposed method. The results of electrical signal synthesis indicate that this method can effectively overcome the influence of gravity deformation and mechanical installation error, and enhance the synthetic signal magnitude of the uplink antenna array.
基金supported in part by the National Key Basic Research and Development Program(Grant No.2018YFA0404702)National Natural Science Foundation of China(Grant Nos.11673074 and 11773084)。
文摘This paper describes the establishment and verification of an accurate pointing model for a1.2 m aperture slant-axis terahertz antenna.A new analytical pointing model for the slant-axis antenna is presented based on an analogy to that of the alt-azimuth antennas.Furthermore,extra error terms are added to the pointing model based on the structure and mechanical analysis of the slant-axis antenna.To verify the pointing model experimentally,a pointing error measurement method based on photogrammetric techniques is proposed.Using this method,pointing behaviors of the antenna are accurately measured without the aid of astronomical observations,and major sources of the pointing errors are measured individually by photogrammetry and their respective coefficients are compared with those in the analytical pointing model.The results show that an extended pointing model consisting 21 error terms can significantly reduce the residual systematic errors compared with the traditional model,more details are given in the following sections.
基金financial support from the National Natural Science Foundation of China (51775402 and U1931139)
文摘The Qi Tai Telescope(QTT),which has a 110 m aperture,is planned to be the largest scale steerable tele-scope in the world.Ideally,the telescope’s repeated pointing accuracy error should be less than 2.5 arc seconds(arcsec);thus,the telescope structure must satisfy ultra-high precision requirements.In this pur-suit,the present research envisages a reverse-design method for the track surface to reduce the difficulty of the telescope’s design and manufacture.First,the distribution characteristics of the test data for the track error were verified using the skewness coefficient and kurtosis coefficient methods.According to the distribution characteristics,the azimuth track error was simulated by a two-scale model.The error of the long period and short amplitude was characterized as large-scale and described by a trigonometric function,while the short period and high amplitude error was characterized as small-scale and simulated by a fractal function.Based on the two-scale model,effect of the error on the pointing accuracy was deduced.Subsequently,the relationship between the root mean square(RMS)of the track error and the RMS of the pointing accuracy error of the telescope was deduced.Finally,the allowable RMS value of the track error was derived from the allowable pointing accuracy errors.To validate the effectiveness of the new design method,two typical radio telescopes(the Green Bank Telescope(GBT)and the Large Millimeter Telescope(LMT))were selected as experimental examples.Through comparison,the theoretical calculated values of the pointing accuracy of the telescope were consistent with the measured values,with a maximum error of less than 10%.
文摘The purpose is to conduct a research in the energy variation of echo wave and the imaging effect caused by the aero bistatic SAR pointing errors. Based on the moving geometry configuration of aero bistatic SAR, a model of beam pointing errors is built. Based on this, the azimuth Doppler frequency center estimation caused by these errors and the limitation to the beam pointing synchronization error are studied, and then the imaging result of different errors are analyzed. The computer's simulations are provided to prove the validity of the above analysis.
基金National Natural Science Foundation of China(No.52173219)。
文摘A space laser communication acquisition,pointing and tracking(APT)system based on the beacon laser is designed without prior information.And then,a new target scanning method and a pointing and tracking algorithm are proposed.The target scanning mode is the round-trip triangular wave scanning,and it means that scanning track of the PAN-TILT platform follows the triangular wave repeatedly.For the pointing and tracking algorithm,the beacon laser is used as the auxiliary aiming light source.The position of the beacon laser in the viewfield of the complementary metal oxide semiconductor(CMOS)camera is calculated by the centroid algorithm.In order to realize the target tracking,the joint control method of the angle control and the angular velocity control is used.The simulation and experimental results show that the APT system can achieve full coverage scanning in the scanning area and capture the target in one scanning cycle successfully.After capturing the PAN-TILT platform,the pointing and tracking algorithm can track the PAN-TILT platform quickly and accurately,and the tracking accuracy is up to 0.22 mrad.
文摘THE Central Economic Work Conference (CEWC), a much-watched annual economic meeting in China, was held in Beijing on December 9-11, 2014, to focus on lowering the risks of a downturn and speeding up reforms in key areas to adjust to the "new normal" in 2015, China's central authorities decided at the meeting that the country will stick to its prudent monetary policy and proactive fiscal policy, Fiscal policy will be more forceful in 2015 and monetary policy will strike a balance between tight and loose, Emphasis was put on economic progress while maintaining stability: great significance was attached to structural rebalancing and improving the quality and efficiency of growth,
文摘Pointing estimation for spacecraft using Inverse Synthetic Aperture Radar(ISAR)images plays a significant role in space situational awareness and surveillance.However,feature extraction and cross-range scaling of ISAR images create bottlenecks that limit performances of current estimation methods.Especially,the emergence of staring imaging satellites,characterized by complex kinematic behaviors,presents a novel challenge to this task.To address these issues,this article proposes a pointing estimation method based on Convolutional Neural Networks(CNNs)and a numerical optimization algorithm.A satellite’s main axis,which is extracted from ISAR images by a proposed Semantic Axis Region Regression Net(SARRN),is chosen for investigation in this article due to its unique structure.Specifically,considering the kinematic characteristic of the staring satellite,an ISAR imaging model is established to bridge the target pointing and the extracted axes.Based on the imaging model,pointing estimation and cross-range scaling can be described as a maximum likelihood estimation problem,and an iterative optimization algorithm modified by using the strategy of random sampling-consistency check and weighted least squares is proposed to solve this problem.Finally,the pointing of targets and the cross-range scaling factors of ISAR images are obtained.Simulation experiments based on actual satellite orbital parameters verify the effectiveness of the proposed method.This work can improve the performance of satellite reconnaissance warning,while accurate cross-range scaling can provide a basis for subsequent data processes such as 3D reconstruction and attitude estimation.
基金the support from the National Natural Science Foundation of China(No.51905034,52275083)。
文摘There exists an increasing need for Milli-Arc-Seconds(MAS)accuracy pointing measurement for current and future space systems.To meet the 0.1″space pointing measurement accuracy requirements of spacecraft in future,the influence of spacecraft micro-vibration on a 0.1″Space Pointing Measuring Instrument(SPMI)is studied.A Quasi-Zero Stiffness Device(QZSD)with adaptive adjustment and variable stroke was proposed.Then,a series of micro-vibration experiments of the SPMI were carried out.The influence of the micro-vibration generated by Guidance Navigation Control(GNC)attitude control components under different attitudes on the SPMI was analyzed.Point spread function of image motion in micro-vibration was also derived.Further,the changes of image motion under the micro-vibration environment were evaluated by extracting the gray centroid of the images,and the experiment processes and results are deeply discussed.The results show that the firstorder frequency of the QZSD system is 0.114 Hz,and it is induced by a double pendulum system;the image motion of single flywheel spinning reached 0.015 pixels;whilst the image motion reached 0.03 pixels when three flywheels are combined spinning.These latest findings provide a beneficial theoretical and technical support for the development of spacecraft with 0·1″pointing accuracy.
文摘This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
文摘In laser-pointing-related applications,when only the centroid of a laser spot is considered,then the position and angular errors of the laser beam are often coupled together.In this study,the decoupling of the position and angular errors is achieved from one single spot image by utilizing a neural network technique.In particular,the successful application of the neural network technique relies on novel experimental procedures,including using an appropriate small-focal-length lens and tilting the detector,to physically enlarge the contrast of different spots.This technique,with the corresponding new system design,may prove to be instructive in the future design of laser-pointing-related systems.
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.