Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in...Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.展开更多
It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant e...It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.展开更多
The geostatistical technique of Kriging has extensively been used for the investigation and delineation of soil heavy metal pollution. Kriging is rarely used in practical circumstances, however, because the parameter ...The geostatistical technique of Kriging has extensively been used for the investigation and delineation of soil heavy metal pollution. Kriging is rarely used in practical circumstances, however, because the parameter values are difficult to decide and relatively optimal locations for further sampling are difficult to find. In this study, we used large numbers of assumed actual polluted fields (AAPFs) randomly generated by unconditional simulation (US) to assess the adjusted total fee (ATF), an assessment standard developed for balancing the correct treatment rate (CTR) and total fee (TF), based on a traditional strategy of systematic (or uniform) grid sampling (SGS) and Kriging. We found that a strategy using both SGS and Kriging was more cost-effective than a strategy using only SGS. Next, we used a genetic algorithm (GA) approach to find optimal locations for the additional sampling. We found that the optimized locations for the additional sampling were at the joint districts of polluted areas and unpolluted areas, where abundant SGS data appeared near the threshold value. This strategy was less helpful, however, when the pollution of polluted fields showed no spatial correlation.展开更多
Bioremediation of petroleum hydrocarbons contaminated/polluted soils has been recognized as an efficient, economic, versatile and environmentally good treatment. This method is limited by the microorganisms activity i...Bioremediation of petroleum hydrocarbons contaminated/polluted soils has been recognized as an efficient, economic, versatile and environmentally good treatment. This method is limited by the microorganisms activity in degrading the spills hydrocarbons. Low solubility of the hydrocarbons involves low bioavailability to microorganisms. The main objective of this research is to increase biodegradation of petroleum hydrocarbons by treating the crude oil polluted soil with the natural biodegradable product and bacterial inoculum. Biodegradation was quantified by total petroleum hydrocarbons (TPH) analyses. The paper presents data obtained in biodegradation process of an artificial polluted soil with 5% and 10% crude oil, treated with a natural biodegradable product and bacterial inoculum during two years of experiment. Biodegradation process takes time to rehabilitate and reuse of the soil in agricultural scopes.展开更多
Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange...Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.展开更多
Chlordecone, one of the most persistent organochlorine pesticides, was applied between 1972 and 1993 in banana fields in the French West Indies, which results in long-term pollution of soils and contamination of water...Chlordecone, one of the most persistent organochlorine pesticides, was applied between 1972 and 1993 in banana fields in the French West Indies, which results in long-term pollution of soils and contamination of waters, aquatic biota, and crops. As human exposure to chlordecone is mainly due to food contamination, early research was focused on chlordecone transfer to crops. Field trials were conducted to investigate chlordecone contamination of yam, sweet potato, turnip, and radish grown on a Ferralic Nitisol polluted by chlordecone. We also carried out trials on yam, courgette, and tomato under greenhouse conditions with homogenized Andosol and Nitisol, polluted by chlordecone to various extents. Our results indicated that i) all tubers were contaminated in accordance with the chlordecone content of the soils; ii) the plant contamination capacity of the Nitisol was greater than that of the Andosol; and iii) whatever the soil type, tuber contamination was related to the soil volumetric content of dissolved chlordecone. Nevertheless, no tubers showed sufficient chlordecone uptake for efficient soil decontamination by means of plant extraction. Soil contact accounted for most of the root crop contamination, which was inversely proportional to the tuber size. Internal transfer might also increase root crop contamination when the root central cylinder contained raw sap flow, as in the case of turnip or radish. Courgette fruits showed high contamination without soil contact. Thus, further research is needed to explore the pattern of both below- and aboveground plant chlordecone contamination and assess the hypothesis of its correlation with sap flow. Finally, we used our results to build a decisionmaking tool for farmers, relating soil pollution with the maximal contamination of the harvested organs to predict crop contamination and thus assisting farmers in making crop choices at planting in order to conform with the European Union's regulations.展开更多
Microplastics (MPs) have been an emerging concern due to their harmful effects on the ecosystem and are ubiquitous in various habitats, from marine to terrestrial environments. However, studies on the presence of MPs ...Microplastics (MPs) have been an emerging concern due to their harmful effects on the ecosystem and are ubiquitous in various habitats, from marine to terrestrial environments. However, studies on the presence of MPs in recreational areas are limited. One of the previous works has reported that urban recreational parks are considered “sinks” for plastic debris, including MPs. In this study, low-density MPs (LD-MPs) in soil samples collected from recreational parks of Al Ain, United Arab Emirates (UAE) were isolated by density flotation method. Results showed that these parks have varying levels of LD-MPs caused by various anthropogenic activities, such as sludge use and application of reclaimed water from wastewater treatment facilities in those areas. These plastic particles were isolated in 87% of the soil samples, with an average concentration of 1550 ± 340 MPs/kg. Predominantly, these comprised large LD-MPs (300 - 5000 μm), with red and blue being the most common colors. Fourier transform infrared (FTIR) spectroscopy identified possible synthetic polymers, including polyethylene and polypropylene. Additionally, a negative correlation was observed between LD-MP concentration and soil pH and moisture content, indicating potential adverse effects on soil health. These findings highlight the need for monitoring and managing microplastic pollution in urban recreational areas to mitigate its ecological impacts.展开更多
A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed t...A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.展开更多
There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from s...There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.展开更多
A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and ...A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and Zn polluted acid soil in the southern part of China.The growth of pakchoi was apparently improved by lime and calcium magnesium phosphate application,the uptake of Cd, Pb, Cu and Zn by pakchoi was significantly depressed and the symptom caused byheavy metals pollution was eliminated. Meanwhile, the absorption of N, K and Mn was also inhibitedby these amendments. Soil pH was the main factor controlling the uptake of the heavy metals bypakchoi. This suggests that lime and calcium magnesium phosphate could be used as effectiveamendments for eliminating the toxicity of heavy metals to the vegetable and inhibiting theirabsorption by the crop.展开更多
Soil pollution endangers human health and ecological balance,which is why finding a highly efficient way to deal with pollutants is necessary.Biological method is an environmentally friendly treatment method.Bioelectr...Soil pollution endangers human health and ecological balance,which is why finding a highly efficient way to deal with pollutants is necessary.Biological method is an environmentally friendly treatment method.Bioelectrochemical systems(BESs),which combine electrochemistry with biological methods,have been widely used to remediate polluted environments,including wastewater,sludge,sediment,and soil.In BESs,redox reactions occur on electrodes with electroactive bacteria,which convert pollutants into low-polluting or nonpolluting substances.With BESs being a promising technology in the remediation field,the decontamination mechanisms and applications in soil conducted by BESs have attracted much attention.Therefore,to better understand the research progress of BESs,this paper mainly summarizes the mechanism of different classified BESs.The applications of microbial fuel cells(MFCs)in four pollutants(petroleum,heavy metals,pesticides,antibiotics)and the possible applications of microbial electrolysis cells(MECs)in soil are discussed.The main problems in BESs and possible future development directions are also evaluated.展开更多
The strength deterioration mechanism of soil polluted by heavy metals plays a crucial role in the research of mine site pollution.In this study,an unconfined compressive strength(UCS)test,a pH test,a scanning electron...The strength deterioration mechanism of soil polluted by heavy metals plays a crucial role in the research of mine site pollution.In this study,an unconfined compressive strength(UCS)test,a pH test,a scanning electron microscopy(SEM)test,a low filed nuclear magnetic resonance(NMR)test,and an X-ray diffraction(XRD)test were conducted on Zn^(2+),Cu^(2+) and the combination of Zn^(2+) and Cu^(2+) polluted soil to investigate the strength deterioration mechanism.The results show that both the UCS and pH value of soil decrease with increasing heavy metal concentration.The UCS of Zn^(2+)-Cu^(2+) combined polluted soil is between Zn^(2+) and Cu^(2+) polluted soil at the same total concentration.However,the deterioration rate of combined heavy metal polluted soil is less than the sum of deterioration rate of the two single polluted soils at the same total concentration.In addition,heavy metal cations in polluted soil cause flocculent gels of cosmids to shrink,the micropores to become smaller and the macropores to become larger.The porosity increases slightly with the increase of heavy metal concentration due to decreased pH value.The results from SEM,low field NMR,and pH could explain the dynamic evolution process of soil structure with different heavy metals and concentrations,which provides an experimental basis for mine-site polluted heavy metal treatment technology and the prediction of clayey soil strength deterioration.展开更多
Lead (Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to inves- tigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the i...Lead (Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to inves- tigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the influence of soil properties on Pb toxicity impacts on soil microbial processes is poorly understood. In this study ten soils with different properties were collected in China to investigate the relationships between thresholds of Pb toxicity to soil microbes and soil properties. The effect of soil leaching on Pb toxicity was also investigated to determine the possible influence of added anions on Pb toxicity during dose-response tests. Toxicity was inferred by measuring substrate-induced nitrification in leached and non-leached soils after Pb addition. We found that soil microbe Pb toxicity thresholds (ECx, x=10, 50) differed significantly between the soils; the 10% inhibition ratio values (ECI0) ranged from 86 to 218 mg kg-1 in non-leached soils and from 101 to 313 mg kg in leached soils. The 50% inhibition ratio values (EC50) ranged from 403 to 969 mg kg^-1 in non-leached soils and from 494 to 1 603 mg kg^-1 in leached soils. Soil leaching increased EC50 and EC50 values by an average leaching factor (LF) of 1.46 and 1.33, respectively. Stepwise multiple regression models predicting Pb toxicity to soil microbes were developed based on ECx and soil properties. Based on these models, soil pH and organic carbon are the most important soil properties af- fecting Pb toxicity thresholds (R2〉0.60). The quantitative relationship between Pb toxicity and soil properties will be helpful for developing soil-specific guidance on Pb toxicity thresholds in Chinese field soils.展开更多
Soil potentially hazardous metal(PHM)is continually attracting public attention worldwide,due to its highly toxic properties and potentially huge damage to human being through food chain.Phytoremediation is an effecti...Soil potentially hazardous metal(PHM)is continually attracting public attention worldwide,due to its highly toxic properties and potentially huge damage to human being through food chain.Phytoremediation is an effective and eco-friendly way in remediation technology.A pot experiment was carried out to investigate the effect of different organic materials(biogas residue(BR),mushroom residue(MR),and bamboo-shoot shell(BS))application on phytoremediation of two PHM-contaminated soils(Fuyang soil as‘heavily-polluted soil’and Wenzhou soil as‘moderately-polluted soil’,respectively)by Sedum alfrecdii Hance.The results indicated:1)for moderately-polluted soil,the 5%BR treatment had the strongest activation to Cu and Zn,for heavily-polluted soil,1%BS treatment had the highest activation effect for Cu,Zn,Pb and Cd.2)the above-ground biomass of Sedum alfredii Hance increased with the addition rate of organic materials.3)for Cd uptake of Sedum alfredii Hance in moderately-polluted soil,only 1%BS treatment had a better accumulation effect,compared to the control,for Zn element,MR treatments were weaker than the control,while other treatments were better than the control,of which 5%BR,1%BS and 5%BS accumulated more Zn element by 39.6%,32.6%and 23.8%,respectively;in heavily-polluted soil,the treatments of 5%BS,1%BR and 5%BR accumulated more Cd than the control by 12.9%,12.8%and 6.2%,respectively,the treatments with organic materials addition promoted Zn accumulation in shoots of Sedum alfredii Hance,and the best treatment was 5%BS.Therefore,an appropriate application rate of BS and BR could improve the remediation efficiency for Zn/Cd contaminated soils by Sedum alfredii Hance.展开更多
Phosphorus-containing amendments can reduce the mobility of Pb in soil. Hydroxyapatite (HAP) is one of the most commonly used phosphorus-containing amendments. With the development of nanotechnology, nano-hydroxyapati...Phosphorus-containing amendments can reduce the mobility of Pb in soil. Hydroxyapatite (HAP) is one of the most commonly used phosphorus-containing amendments. With the development of nanotechnology, nano-hydroxyapatie (n-HAP) was gradually applied to remediate soil polluted by heavy metals. Considering the concentrations of HAP/n-HAP were not more than 5% in most studies, soil polluted by Pb was artificially prepared and three different concentrations of n-HAP: 5%, 7% and 10% by weight, were added into the Pb-polluted soil separately. The mixtures of soil and n-HAP were incubated for 180 d and sampled regularly. The bioaccessibility of Pb in soil was determined using simulated gastric juices of two in-vitro digestion tests: USPM (United States Pharmacopeia Methodology) and PBET (Physiologically-Based Extraction Test). The results showed that the immobilizing efficiency of 5% n-HAP to Pb in soil was the highest in PBET. The extractable Pb from soil by USPM was not affected by concentration of n-HAP. So, the least concentration of n-HAP, i.e. 5% n-HAP treatment, was the most cost-effective in USPM. Soil pH increased with concentration of n-HAP. However concentration of n-HAP had little effects on content of soil OM. According to regression analysis, more than 50% differences of the extractable Pb from soil by PBET can be explained by soil pH, while soil pH, organic matter content and incubation time together explained nearly 85% differences of extractable Pb from soil by USPM.展开更多
Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil sampl...Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil samples (0-20 cm) collected using a grid design in a study area of 2 600 kin2. Heavy metal concentrations were grouped into three classes according to the optimum number of classes and fuzziness exponent using the fuzzy comean (FCM) algorithm. Membership values were interpolated using ordinary kriging. The polluted soils of the study area induced by the measured heavy metals were concentrated in the northwest corner and eastern part, especially the southeastern part close to the urban zone, whereas the soils free of pollution were mainly distributed in the southwestern part. The soils with potential risk of heavy metal pollution were located in isolated spots mainly in the northern part and southeastern corner of the study region. The FCM algorithm combined with geostatistical techniques, as compared to conventional single geostatistical kriging methods, could produce a prediction with a quantitative uncertainty evaluation and higher reliability. Successful prediction of soil pollution achieved with FCM algorithm in this study indicated that fuzzy set theory had great potential for use in other areas of soil science.展开更多
Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemi...Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemical species and availability of lead, zinc, cadmium and copper in nine surface(0 to 20 cm) soils from near an abandoned lead/zinc mine tailings located in Shaoxing, Zhejiang, China. Total heavy metal contents ranged from 5271 to 16369 mg/kg for Pb, 387 to 1221 mg/kg for Zn, 3.0 to 9.3 mg/kg for Cd and 65 to 206 mg/kg for Cu. In general, all heavy metals exceeded China National Standards for Soil Environmental Quality of Heavy Metals by a factor of 3-65 times. Comparison of the heavy metal concentrations(Pb, Zn, Cd and Cu) with clay content revealed a strongly significant relationship while significant relationship( P 〈 0.001 ) was also obtained between Cd + Zn and Pb + Cu. Solid phase speciation of the soils using Tessier procedure showed that the heavy metals were distributed in the order: residual 〉〉 organically complexed-Fe-Mn oxides occluded 〉 carbonate bound 〉 exchangeable 〉 water soluble. In the organic matter fraction, the ratio of Pb(29.1% ) to its total concentration in the soils was higher than those of Zn(4.70% ), Cd(3.16% ) and Cu(9.50% ). The percentages of the water soluble and the exchangeable fractions of Pb(1.80% ) and Cd(2.74% ) were markedly greater than those of Zn(0.10% ) and Cu(0.15% ), suggesting that Pb and Cd are relatively more mobile and hence more toxic in the contaminated soils. Strongly significant relationships between H20-Pb, H20-Zn and H20-Cu, strong positive correlations between H20-Pb, H20-Zn, H20-Cu and organic matter in soil were found. The content of H20-Pb, H20-Zn, H20-Cu was negatively correlated with pH values. The similar negative relationships between pH values and exchangeable heavy metals were also recorded. It is suggested that increasing soil pH or liming the soil could decrease bioavailability of heavy metals in the soil.展开更多
Heavy metal pollution in agricultural soils has serious negative influence on human health. Concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in top soils (0-20 cm) of greenhouses and farmlands from four main veg...Heavy metal pollution in agricultural soils has serious negative influence on human health. Concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in top soils (0-20 cm) of greenhouses and farmlands from four main vegetable production areas Shouguang, Laiyang, Jinxiang, and Zhangqiu in Shandong Province, one of the most rapidly developing regions in China, were measured in this study. Shouguang is mainly occupied by greenhouse vegetables and the other three areas are mainly open field culture. Total of 149 soil samples were collected. The average concentrations of the eight heavy metals of the tested 149 soil samples were all below the threshold values according to "Farmland environmental quality evaluation standards for edible agricultural products (HJ332-2006)" of China. However, most of the studied heavy metals were present at higher concentrations than those of the natural background levels in local agricultural soils. Among the total 149 soil samples, 22 samples were contaminated by Cd, Ni, Cu, or Hg. Comparisons showed that the main pollution element in greenhouse vegetable soils was Cd, while that of open field vegetable soils was Cu. The results of principal components analysis (PCA) suggested that concentrations of Cr, As, and Ni were mainly controlled by parent rocks; Hg and Pb were affected by anthropogenic activities such as vehicle and industrial fumes and waste water irrigation. Meanwhile, concentrations of Cd, Cu, and Zn were affected mainly by the use of agrochemicals. Most of the heavy metals were positively correlated with each other in concentration. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.展开更多
Soil cadmium(Cd)contamination resulted from mining and smelting is a major environmental concern,and health risk associated with Cd exposure to multi-media through muti-pathway is increasing.Cd concentrations in soils...Soil cadmium(Cd)contamination resulted from mining and smelting is a major environmental concern,and health risk associated with Cd exposure to multi-media through muti-pathway is increasing.Cd concentrations in soils,vegetables and paddy rice were investigated,and potential non-carcinogenic and carcinogenic health risks exposure to Cd were estimated at six villages around the Dabaoshan Mine,South China.A total of 87 soil samples were found to exceed the China's maximum permission level(MPL)for Cd,while the highest value of 4.42 mg/kg was found near irrigation ditch associated with Hengshi River in Xinyi(XY)Village.Cd contents in vegetables and rice exceeded the maximum permissible concentration by more than five times in every village.Cadmium accumulation in plants is in the order of celery>lactuca sativa L>Chinese cabbage>Romaine lettuce>asparagus lettuce>mustard>cabbage mustard>cabbage.The mean hazard quotient(HQ)of all villages is in the range of [5.29,25.75],and the mean values of cancer risk for investigated areas are more than 10 times greater than the USEPA(2009)threshold limit value of 10-4.Moreover,human non-carcinogenic and carcinogenic risks are mainly attributable to paddy rice intake,followed by vegetables intake,soil ingestion,inhalation,and dermal contact.The results indicate that Cd has a huge potential risk on human health for the local residents.展开更多
Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a...Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10--200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.展开更多
基金Project(1212010741003)supported by the Ministry of Land and Resources of ChinaProject(SJ08-ZT08)supported by the Natural Science Foundation of Shaanxi Province,ChinaProject(NCET-07-0694)supported by Program for University Talents in the NewCentury,China
文摘Soil,crop and residents'hair over Xiaoqinling gold mining region,China,which was selected as a case study,were sampled and analyzed for Hg,Cd,Pb,Cu,Cr,As and Zn concentrations.The concentrations of heavy metals in soil or crop and hair samples were used to assess their potential ecological risks,or to find the responses to these metals as evidences to prove the potential risk was coming down to observed harm,respectively.The results showed that,these metals in soil were ranked by severity of ecological risk as Hg>Cd>Pb>Cu>Cr>As>Zn,based on their single-element indexes.In the view of the potential ecological risk indexes,of all soil samples,about half had significantly high or high potential ecological risk,which covered more than 74%of the studied region.Most of the risks were 97.41%from Hg,Pb and Cd,especially,84.37%from Hg.Both the single-element and potential ecological risk indexes indicated that,the ecological risk grades had a special spatial characteristic,and increased from northwest to southeast generally.This was agreed with the spatial distribution of the strength in gold mining activities over the studied region.The concentrations of Hg and Pb were higher than their relative backgrounds in the corps,and were even 9.48 and 25.09 times higher than their relative backgrounds in residents'hair,respectively.All these showed that the heavy metals in the soil had a high potential ecological risk,especially,had been affecting these crops'growing and yield,and even the residents'health through food strains.Obviously,these metals'potential ecological harm had been coming down to observed harm to the ecology.
基金supported by the National Natural Science Foundation of China (No. 41371092)the Scientific Research Foundation for Returned Overseas Students+1 种基金the Education Department of Henan Province Science and Technology Research projects (No.14B170007)the doctoral foundation of Henan Polytechnic University (No. 648349)
文摘It is generally known that soil pollution poses a terrible hazard to the environment, but the present techniques of contaminated soil remediation cannot control this growing threat. This paper compares the pollutant extraction efficiency of traditional pumping and treating, which is a typical washing technology for the remediation of contaminated soils, with methods that utilize freeze-thaw cycles. In the soil freezing process, water shifts from unfrozen soils to the freezing front, and the permeability of soil will be enhanced under certain temperature gradients and water conditions. Therefore, this paper discusses the purification of contaminated soil through freeze-thaw action. We conducted a cleansing experiment on clay and silica sand infused with NaCl(simulation of heavy metals) and found that the efficiency of purification was enhanced remarkably in the latter by the freeze-thaw action. To assess the effective extraction of DNAPLs in soil, we conducted an experiment on suction by freezing, predicated on the different freezing points of moisture and pollutants. We found that the permeability coefficient was significantly increased by the freezing-thawing action, enabling the DNAPL contaminants to be extracted selectively and effectively.
文摘The geostatistical technique of Kriging has extensively been used for the investigation and delineation of soil heavy metal pollution. Kriging is rarely used in practical circumstances, however, because the parameter values are difficult to decide and relatively optimal locations for further sampling are difficult to find. In this study, we used large numbers of assumed actual polluted fields (AAPFs) randomly generated by unconditional simulation (US) to assess the adjusted total fee (ATF), an assessment standard developed for balancing the correct treatment rate (CTR) and total fee (TF), based on a traditional strategy of systematic (or uniform) grid sampling (SGS) and Kriging. We found that a strategy using both SGS and Kriging was more cost-effective than a strategy using only SGS. Next, we used a genetic algorithm (GA) approach to find optimal locations for the additional sampling. We found that the optimized locations for the additional sampling were at the joint districts of polluted areas and unpolluted areas, where abundant SGS data appeared near the threshold value. This strategy was less helpful, however, when the pollution of polluted fields showed no spatial correlation.
文摘Bioremediation of petroleum hydrocarbons contaminated/polluted soils has been recognized as an efficient, economic, versatile and environmentally good treatment. This method is limited by the microorganisms activity in degrading the spills hydrocarbons. Low solubility of the hydrocarbons involves low bioavailability to microorganisms. The main objective of this research is to increase biodegradation of petroleum hydrocarbons by treating the crude oil polluted soil with the natural biodegradable product and bacterial inoculum. Biodegradation was quantified by total petroleum hydrocarbons (TPH) analyses. The paper presents data obtained in biodegradation process of an artificial polluted soil with 5% and 10% crude oil, treated with a natural biodegradable product and bacterial inoculum during two years of experiment. Biodegradation process takes time to rehabilitate and reuse of the soil in agricultural scopes.
文摘Twenty-four soil samples were collected at three depths from an approximately 2.5 acre contaminated site in southern Piedmont (Italy) and then analyzed. The main soil parameters determined were: pH, Cation Exchange Capacity (CEC), particle size distribution, total organic carbon (TOC) content and retained metal concentration. The mineral phases were identified by X-Ray Powder Diffraction (XRPD). All of the samples contained Zn and Cu resulting from industrial contamination during the last century, and those obtained at depths of 20-40 cm consistently showed the highest levels. To determine which size fraction was most active in the retention process, the samples were separated into four fractions (≤2 mm, ≤63 0m, ≤30 0m and ≤2 μm) and the amount of pollutant measured in each. It was found that metal retention was the highest in the clayey fraction, whose clay minerals were identified by XRPD after K+ and Mg2+ saturation, glycerol treatment and heating to 550℃. The clayey fraction was also the richest in TOC, and a direct correlation between TOC amount and metal retention was observed.
基金Supported by the Ministry of Ecology and Sustainable Development and the Ministry of Agriculture and Food,France,the French National Agency of Research,and the French National Chlordecone Action Plan
文摘Chlordecone, one of the most persistent organochlorine pesticides, was applied between 1972 and 1993 in banana fields in the French West Indies, which results in long-term pollution of soils and contamination of waters, aquatic biota, and crops. As human exposure to chlordecone is mainly due to food contamination, early research was focused on chlordecone transfer to crops. Field trials were conducted to investigate chlordecone contamination of yam, sweet potato, turnip, and radish grown on a Ferralic Nitisol polluted by chlordecone. We also carried out trials on yam, courgette, and tomato under greenhouse conditions with homogenized Andosol and Nitisol, polluted by chlordecone to various extents. Our results indicated that i) all tubers were contaminated in accordance with the chlordecone content of the soils; ii) the plant contamination capacity of the Nitisol was greater than that of the Andosol; and iii) whatever the soil type, tuber contamination was related to the soil volumetric content of dissolved chlordecone. Nevertheless, no tubers showed sufficient chlordecone uptake for efficient soil decontamination by means of plant extraction. Soil contact accounted for most of the root crop contamination, which was inversely proportional to the tuber size. Internal transfer might also increase root crop contamination when the root central cylinder contained raw sap flow, as in the case of turnip or radish. Courgette fruits showed high contamination without soil contact. Thus, further research is needed to explore the pattern of both below- and aboveground plant chlordecone contamination and assess the hypothesis of its correlation with sap flow. Finally, we used our results to build a decisionmaking tool for farmers, relating soil pollution with the maximal contamination of the harvested organs to predict crop contamination and thus assisting farmers in making crop choices at planting in order to conform with the European Union's regulations.
文摘Microplastics (MPs) have been an emerging concern due to their harmful effects on the ecosystem and are ubiquitous in various habitats, from marine to terrestrial environments. However, studies on the presence of MPs in recreational areas are limited. One of the previous works has reported that urban recreational parks are considered “sinks” for plastic debris, including MPs. In this study, low-density MPs (LD-MPs) in soil samples collected from recreational parks of Al Ain, United Arab Emirates (UAE) were isolated by density flotation method. Results showed that these parks have varying levels of LD-MPs caused by various anthropogenic activities, such as sludge use and application of reclaimed water from wastewater treatment facilities in those areas. These plastic particles were isolated in 87% of the soil samples, with an average concentration of 1550 ± 340 MPs/kg. Predominantly, these comprised large LD-MPs (300 - 5000 μm), with red and blue being the most common colors. Fourier transform infrared (FTIR) spectroscopy identified possible synthetic polymers, including polyethylene and polypropylene. Additionally, a negative correlation was observed between LD-MP concentration and soil pH and moisture content, indicating potential adverse effects on soil health. These findings highlight the need for monitoring and managing microplastic pollution in urban recreational areas to mitigate its ecological impacts.
基金Project(41201492)supported by the National Natural Science Foundation of China
文摘A field investigation was performed to study the content, speciation and mobility of vanadium, as well as microbial response in soil from a stone coal smelting district in Hunan province of China. The results showed that the contents of soil V ranged from 168 to 1538 mg/kg, which exceeded the maximum permissible value of Canadian soil quality for V. The mean soil V content from wasteland area reached 1421 mg/kg, and those from the areas related with slag heap, ore pile and smelting center were 380, 260 and 225 mg/kg, respectively. Based on the results of the modified BCR sequential extraction procedure, V contents in the mobile fractions varied from 19.2 to 637 mg/kg accounting for 7.4%-42.3% of total V, and those of V(+5) species were between 21.9 and 534.0 mg/kg. Soil enzyme activity and microbial basal respiration were adversely affected by high level of soil V. More attention should be paid to soil V pollution and potential hazardous surrounding the stone coal smelting district.
基金Project supported by the National Key Basic Research Support Foundation of China (No. 2002CB410804) and the National Natural Science Foundation (No. 40201026).
文摘There is limited information on the release behavior of heavy metals fromnatural soils by organic acids. Thus, cadmium release, due to two organic acids (tartrate andcitrate) that are common in the rhizosphere, from soils polluted by metal smeltersor tailings andsoils artificially contaminated by adding Cd were analyzed. The presence of tartrate or citrate at alow concentration (<= 6 mmol L^(-1) for tartrate and <= 0.5 mmol L^(-1) for citrate) inhibited Cdrelease, whereas the presence of organic acids in high concentrations (>= 2 mmol L^(-1) for citrateand >= 15 mmol L^(-1) for tartrate) apparently promoted Cd release. Under the same conditions, theCd release in naturally polluted soils was less than that of artificially contaminatedsoils.Additionally, as the initial pH rose from 2 to 8 in the presence of citrate, a sequentialvalley and then peak appeared in the Cd release curve, while in the presence of tartrate the Cdrelease steadily decreased. In addition, Cd release was clearly enhanced as the electrolyteconcentration of KNO_3 or KC1 increased in the presence of 2 mmol L^(-1) tartrate. Moreover, ahigher desorption of Cd was shown with the KCl electrolyte compared to KNO_3 for the sameconcentration levels. This implied that the bioavailability of heavy metals could be promoted withthe addition of suitable types and concentrations of organic acids as well as reasonable fieldconditions.
基金the National Natural Science Foundation of China(No.49671048) the Education Department of Fujian Province,China(No.K98025).
文摘A pot experiment was carried out to study the effects of two amendments, limeand calcium magnesium phosphate, on the growth and Cd, Pb, Zn, Cu, Mu, Fe, N, P and K uptake ofpakchoi (Brassica chinensis) in a Cd, Pb and Zn polluted acid soil in the southern part of China.The growth of pakchoi was apparently improved by lime and calcium magnesium phosphate application,the uptake of Cd, Pb, Cu and Zn by pakchoi was significantly depressed and the symptom caused byheavy metals pollution was eliminated. Meanwhile, the absorption of N, K and Mn was also inhibitedby these amendments. Soil pH was the main factor controlling the uptake of the heavy metals bypakchoi. This suggests that lime and calcium magnesium phosphate could be used as effectiveamendments for eliminating the toxicity of heavy metals to the vegetable and inhibiting theirabsorption by the crop.
基金the National Natural Science Foundation of China(21876090)the Tianjin Research Program of Application Foundation and Advanced Technology(18JCZDJC39400 and 19YFZCSF00920)+1 种基金National Key R&D Program of China(2019YFC1804104)the Postdoctoral Science Foundation of China(2019M660985).
文摘Soil pollution endangers human health and ecological balance,which is why finding a highly efficient way to deal with pollutants is necessary.Biological method is an environmentally friendly treatment method.Bioelectrochemical systems(BESs),which combine electrochemistry with biological methods,have been widely used to remediate polluted environments,including wastewater,sludge,sediment,and soil.In BESs,redox reactions occur on electrodes with electroactive bacteria,which convert pollutants into low-polluting or nonpolluting substances.With BESs being a promising technology in the remediation field,the decontamination mechanisms and applications in soil conducted by BESs have attracted much attention.Therefore,to better understand the research progress of BESs,this paper mainly summarizes the mechanism of different classified BESs.The applications of microbial fuel cells(MFCs)in four pollutants(petroleum,heavy metals,pesticides,antibiotics)and the possible applications of microbial electrolysis cells(MECs)in soil are discussed.The main problems in BESs and possible future development directions are also evaluated.
基金the financial support of the National Natural Science Foundation of China(No.52078194)the National Young Topnotch Talent of Ten Thousand Talents Program+1 种基金the Young Top-notch Talent Cultivation Program of Hubei Provincefunding from the Innovation Demonstration Base of Ecological Environment Geotechnical and Ecological Restoration of Rivers and Lakes(2020EJB004)。
文摘The strength deterioration mechanism of soil polluted by heavy metals plays a crucial role in the research of mine site pollution.In this study,an unconfined compressive strength(UCS)test,a pH test,a scanning electron microscopy(SEM)test,a low filed nuclear magnetic resonance(NMR)test,and an X-ray diffraction(XRD)test were conducted on Zn^(2+),Cu^(2+) and the combination of Zn^(2+) and Cu^(2+) polluted soil to investigate the strength deterioration mechanism.The results show that both the UCS and pH value of soil decrease with increasing heavy metal concentration.The UCS of Zn^(2+)-Cu^(2+) combined polluted soil is between Zn^(2+) and Cu^(2+) polluted soil at the same total concentration.However,the deterioration rate of combined heavy metal polluted soil is less than the sum of deterioration rate of the two single polluted soils at the same total concentration.In addition,heavy metal cations in polluted soil cause flocculent gels of cosmids to shrink,the micropores to become smaller and the macropores to become larger.The porosity increases slightly with the increase of heavy metal concentration due to decreased pH value.The results from SEM,low field NMR,and pH could explain the dynamic evolution process of soil structure with different heavy metals and concentrations,which provides an experimental basis for mine-site polluted heavy metal treatment technology and the prediction of clayey soil strength deterioration.
基金financially supported by the National Key Research and Development Program of China (2016YDF0800707)the National Key Technology R&D Program of China (2015BAD05B03)the National Natural Science Foundation of China (41271490)
文摘Lead (Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to inves- tigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the influence of soil properties on Pb toxicity impacts on soil microbial processes is poorly understood. In this study ten soils with different properties were collected in China to investigate the relationships between thresholds of Pb toxicity to soil microbes and soil properties. The effect of soil leaching on Pb toxicity was also investigated to determine the possible influence of added anions on Pb toxicity during dose-response tests. Toxicity was inferred by measuring substrate-induced nitrification in leached and non-leached soils after Pb addition. We found that soil microbe Pb toxicity thresholds (ECx, x=10, 50) differed significantly between the soils; the 10% inhibition ratio values (ECI0) ranged from 86 to 218 mg kg-1 in non-leached soils and from 101 to 313 mg kg in leached soils. The 50% inhibition ratio values (EC50) ranged from 403 to 969 mg kg^-1 in non-leached soils and from 494 to 1 603 mg kg^-1 in leached soils. Soil leaching increased EC50 and EC50 values by an average leaching factor (LF) of 1.46 and 1.33, respectively. Stepwise multiple regression models predicting Pb toxicity to soil microbes were developed based on ECx and soil properties. Based on these models, soil pH and organic carbon are the most important soil properties af- fecting Pb toxicity thresholds (R2〉0.60). The quantitative relationship between Pb toxicity and soil properties will be helpful for developing soil-specific guidance on Pb toxicity thresholds in Chinese field soils.
基金the National College Students’Innovation and Entrepreneurship Training Program(202110341014).
文摘Soil potentially hazardous metal(PHM)is continually attracting public attention worldwide,due to its highly toxic properties and potentially huge damage to human being through food chain.Phytoremediation is an effective and eco-friendly way in remediation technology.A pot experiment was carried out to investigate the effect of different organic materials(biogas residue(BR),mushroom residue(MR),and bamboo-shoot shell(BS))application on phytoremediation of two PHM-contaminated soils(Fuyang soil as‘heavily-polluted soil’and Wenzhou soil as‘moderately-polluted soil’,respectively)by Sedum alfrecdii Hance.The results indicated:1)for moderately-polluted soil,the 5%BR treatment had the strongest activation to Cu and Zn,for heavily-polluted soil,1%BS treatment had the highest activation effect for Cu,Zn,Pb and Cd.2)the above-ground biomass of Sedum alfredii Hance increased with the addition rate of organic materials.3)for Cd uptake of Sedum alfredii Hance in moderately-polluted soil,only 1%BS treatment had a better accumulation effect,compared to the control,for Zn element,MR treatments were weaker than the control,while other treatments were better than the control,of which 5%BR,1%BS and 5%BS accumulated more Zn element by 39.6%,32.6%and 23.8%,respectively;in heavily-polluted soil,the treatments of 5%BS,1%BR and 5%BR accumulated more Cd than the control by 12.9%,12.8%and 6.2%,respectively,the treatments with organic materials addition promoted Zn accumulation in shoots of Sedum alfredii Hance,and the best treatment was 5%BS.Therefore,an appropriate application rate of BS and BR could improve the remediation efficiency for Zn/Cd contaminated soils by Sedum alfredii Hance.
文摘Phosphorus-containing amendments can reduce the mobility of Pb in soil. Hydroxyapatite (HAP) is one of the most commonly used phosphorus-containing amendments. With the development of nanotechnology, nano-hydroxyapatie (n-HAP) was gradually applied to remediate soil polluted by heavy metals. Considering the concentrations of HAP/n-HAP were not more than 5% in most studies, soil polluted by Pb was artificially prepared and three different concentrations of n-HAP: 5%, 7% and 10% by weight, were added into the Pb-polluted soil separately. The mixtures of soil and n-HAP were incubated for 180 d and sampled regularly. The bioaccessibility of Pb in soil was determined using simulated gastric juices of two in-vitro digestion tests: USPM (United States Pharmacopeia Methodology) and PBET (Physiologically-Based Extraction Test). The results showed that the immobilizing efficiency of 5% n-HAP to Pb in soil was the highest in PBET. The extractable Pb from soil by USPM was not affected by concentration of n-HAP. So, the least concentration of n-HAP, i.e. 5% n-HAP treatment, was the most cost-effective in USPM. Soil pH increased with concentration of n-HAP. However concentration of n-HAP had little effects on content of soil OM. According to regression analysis, more than 50% differences of the extractable Pb from soil by PBET can be explained by soil pH, while soil pH, organic matter content and incubation time together explained nearly 85% differences of extractable Pb from soil by USPM.
基金Project supported by the National Natural Science Foundation of China (Nos. 40571065 and 40235054)the National Key Basic Research Support Foundation of China (No. G1999045707).
文摘Fuzzy classification combined with spatial prediction was used to assess the state of soil pollution in the peri-urban Beijing area. Total concentrations of As, Cr, Cd, Hg, and Pb were determined in 220 topsoil samples (0-20 cm) collected using a grid design in a study area of 2 600 kin2. Heavy metal concentrations were grouped into three classes according to the optimum number of classes and fuzziness exponent using the fuzzy comean (FCM) algorithm. Membership values were interpolated using ordinary kriging. The polluted soils of the study area induced by the measured heavy metals were concentrated in the northwest corner and eastern part, especially the southeastern part close to the urban zone, whereas the soils free of pollution were mainly distributed in the southwestern part. The soils with potential risk of heavy metal pollution were located in isolated spots mainly in the northern part and southeastern corner of the study region. The FCM algorithm combined with geostatistical techniques, as compared to conventional single geostatistical kriging methods, could produce a prediction with a quantitative uncertainty evaluation and higher reliability. Successful prediction of soil pollution achieved with FCM algorithm in this study indicated that fuzzy set theory had great potential for use in other areas of soil science.
文摘Heavy metal contamination of soils through anthropogenic activities is a widespread and serious problem confronting scientists and regulators throughout the world. In this study we investigated the distribution, chemical species and availability of lead, zinc, cadmium and copper in nine surface(0 to 20 cm) soils from near an abandoned lead/zinc mine tailings located in Shaoxing, Zhejiang, China. Total heavy metal contents ranged from 5271 to 16369 mg/kg for Pb, 387 to 1221 mg/kg for Zn, 3.0 to 9.3 mg/kg for Cd and 65 to 206 mg/kg for Cu. In general, all heavy metals exceeded China National Standards for Soil Environmental Quality of Heavy Metals by a factor of 3-65 times. Comparison of the heavy metal concentrations(Pb, Zn, Cd and Cu) with clay content revealed a strongly significant relationship while significant relationship( P 〈 0.001 ) was also obtained between Cd + Zn and Pb + Cu. Solid phase speciation of the soils using Tessier procedure showed that the heavy metals were distributed in the order: residual 〉〉 organically complexed-Fe-Mn oxides occluded 〉 carbonate bound 〉 exchangeable 〉 water soluble. In the organic matter fraction, the ratio of Pb(29.1% ) to its total concentration in the soils was higher than those of Zn(4.70% ), Cd(3.16% ) and Cu(9.50% ). The percentages of the water soluble and the exchangeable fractions of Pb(1.80% ) and Cd(2.74% ) were markedly greater than those of Zn(0.10% ) and Cu(0.15% ), suggesting that Pb and Cd are relatively more mobile and hence more toxic in the contaminated soils. Strongly significant relationships between H20-Pb, H20-Zn and H20-Cu, strong positive correlations between H20-Pb, H20-Zn, H20-Cu and organic matter in soil were found. The content of H20-Pb, H20-Zn, H20-Cu was negatively correlated with pH values. The similar negative relationships between pH values and exchangeable heavy metals were also recorded. It is suggested that increasing soil pH or liming the soil could decrease bioavailability of heavy metals in the soil.
基金supported by the National Key Tech-nology R&D Program of China (2006BAD17B07,2006BDA07A13-1-2) the Staring Fund for Doc-tors of Shandong Academy of Agricultural Sciences,China (2006YBS015)
文摘Heavy metal pollution in agricultural soils has serious negative influence on human health. Concentrations of Cd, Hg, As, Pb, Cr, Cu, Zn, and Ni in top soils (0-20 cm) of greenhouses and farmlands from four main vegetable production areas Shouguang, Laiyang, Jinxiang, and Zhangqiu in Shandong Province, one of the most rapidly developing regions in China, were measured in this study. Shouguang is mainly occupied by greenhouse vegetables and the other three areas are mainly open field culture. Total of 149 soil samples were collected. The average concentrations of the eight heavy metals of the tested 149 soil samples were all below the threshold values according to "Farmland environmental quality evaluation standards for edible agricultural products (HJ332-2006)" of China. However, most of the studied heavy metals were present at higher concentrations than those of the natural background levels in local agricultural soils. Among the total 149 soil samples, 22 samples were contaminated by Cd, Ni, Cu, or Hg. Comparisons showed that the main pollution element in greenhouse vegetable soils was Cd, while that of open field vegetable soils was Cu. The results of principal components analysis (PCA) suggested that concentrations of Cr, As, and Ni were mainly controlled by parent rocks; Hg and Pb were affected by anthropogenic activities such as vehicle and industrial fumes and waste water irrigation. Meanwhile, concentrations of Cd, Cu, and Zn were affected mainly by the use of agrochemicals. Most of the heavy metals were positively correlated with each other in concentration. Appropriate measures should be taken to effectively control heavy metal levels in vegetable soils and thus protect human health.
基金Project(51204074)supported by the National Natural Science Foundation of ChinaProjects(2010009017,201209048,ZX021-201106-031)supported by the National Environmental Protection Public Welfare Industry Targeted Research Fund,China
文摘Soil cadmium(Cd)contamination resulted from mining and smelting is a major environmental concern,and health risk associated with Cd exposure to multi-media through muti-pathway is increasing.Cd concentrations in soils,vegetables and paddy rice were investigated,and potential non-carcinogenic and carcinogenic health risks exposure to Cd were estimated at six villages around the Dabaoshan Mine,South China.A total of 87 soil samples were found to exceed the China's maximum permission level(MPL)for Cd,while the highest value of 4.42 mg/kg was found near irrigation ditch associated with Hengshi River in Xinyi(XY)Village.Cd contents in vegetables and rice exceeded the maximum permissible concentration by more than five times in every village.Cadmium accumulation in plants is in the order of celery>lactuca sativa L>Chinese cabbage>Romaine lettuce>asparagus lettuce>mustard>cabbage mustard>cabbage.The mean hazard quotient(HQ)of all villages is in the range of [5.29,25.75],and the mean values of cancer risk for investigated areas are more than 10 times greater than the USEPA(2009)threshold limit value of 10-4.Moreover,human non-carcinogenic and carcinogenic risks are mainly attributable to paddy rice intake,followed by vegetables intake,soil ingestion,inhalation,and dermal contact.The results indicate that Cd has a huge potential risk on human health for the local residents.
基金The National Basic Research Program (973) of China (No. 2004CB418506)the National Natural Science Foundation of China (No.20337010) the Hi-Tech Research and Development Program (863) of China (No. 2004AA649060)
文摘Two indigenous microorganisms, Bacillus sp. SB02 and Mucor sp. SF06, capable of degrading polycyclic aromatic hydrocarbons (PAHs) were co-immobilized on vermiculite by physical adsorption and used to degrade benzo[a] pyrene (BaP). The characteristics of BaP degradation by both free and co-immobilized microorganism were then investigated and compared. The removal rate using the immobilized bacterial-fungal mixed consortium was higher than that of the freely mobile mixed consortium. 95.3% of BaP was degraded using the co-immobilized system within 42 d, which was remarkably higher than the removal rate of that by the free strains. The optimal amount of inoculated co-immobilized system for BaP degradation was 2%. The immobilized bacterial-fungal mixed consortium also showed better water stability than the free strains. Kinetics of BaP biodegradation by co-immobilized SF06 and SB02 were also studied. The results demonstrated that BaP degradation could be well described by a zero-order reaction rate equation when the initial BaP concentration was in the range of 10--200 mg/kg. The scanning electronic microscope (SEM) analysis showed that the co-immobilized microstructure was suitable for the growth of SF06 and SB02. The mass transmission process of co-immobilized system in soil is discussed. The results demonstrate the potential for employing the bacterial-fungal mixed consortium, co-immobilized on vermiculite, for in situ bioremediation of BaP.