期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
High-performance and robust high-temperature polymer electrolyte membranes with moderate microphase separation by implementation of terphenyl-based polymers
1
作者 Jinyuan Li Congrong Yang +3 位作者 Haojiang Lin Jicai Huang Suli Wang Gongquan Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期572-578,共7页
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te... Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs. 展开更多
关键词 Fuel cell High-temperature polymer electrolyte membranes Microphase separation Poly(terphenyl piperidinium)s Phosphoric acid
下载PDF
Multi-objective optimization of the cathode catalyst layer micro-composition of polymer electrolyte membrane fuel cells using a multi-scale,two-phase fuel cell model and data-driven surrogates
2
作者 Neil Vaz Jaeyoo Choi +3 位作者 Yohan Cha Jihoon Kong Yooseong Park Hyunchul Ju 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期28-41,I0003,共15页
Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectivenes... Polymer electrolyte membrane fuel cells(PEMFCs)are considered a promising alternative to internal combustion engines in the automotive sector.Their commercialization is mainly hindered due to the cost and effectiveness of using platinum(Pt)in them.The cathode catalyst layer(CL)is considered a core component in PEMFCs,and its composition often considerably affects the cell performance(V_(cell))also PEMFC fabrication and production(C_(stack))costs.In this study,a data-driven multi-objective optimization analysis is conducted to effectively evaluate the effects of various cathode CL compositions on Vcelland Cstack.Four essential cathode CL parameters,i.e.,platinum loading(L_(Pt)),weight ratio of ionomer to carbon(wt_(I/C)),weight ratio of Pt to carbon(wt_(Pt/c)),and porosity of cathode CL(ε_(cCL)),are considered as the design variables.The simulation results of a three-dimensional,multi-scale,two-phase comprehensive PEMFC model are used to train and test two famous surrogates:multi-layer perceptron(MLP)and response surface analysis(RSA).Their accuracies are verified using root mean square error and adjusted R^(2).MLP which outperforms RSA in terms of prediction capability is then linked to a multi-objective non-dominated sorting genetic algorithmⅡ.Compared to a typical PEMFC stack,the results of the optimal study show that the single-cell voltage,Vcellis improved by 28 m V for the same stack price and the stack cost evaluated through the U.S department of energy cost model is reduced by$5.86/k W for the same stack performance. 展开更多
关键词 polymer electrolyte membrane fuel cell Surrogate modeling Multi-layer perceptron(MLP) Response surface analysis(RSA) Non-dominated sorting genetic algorithmⅡ(NSGAⅡ)
下载PDF
Recent developments in electrocatalysts and future prospects for oxygen reduction reaction in polymer electrolyte membrane fuel cells 被引量:7
3
作者 Maryam Kiani Jie Zhang +5 位作者 Yan Luo Chunping Jiang Jinlong Fan Gang Wang Jinwei Chen Ruilin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1124-1139,共16页
The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxyg... The main difficulty in the extensive commercial use of polymer electrolyte membrane fuel cells (PEMFCs) is the use of noble metals such as Pt-based electrocatalyst at the cathode, which is essential to ease the oxygen reduction reaction (ORR) in fuel cells (FCs). To eliminate the high loading of Pt-based electrocatalysts to minimize the cost, extensive study has been carried out over the previous decades on the non-noble metal catalysts. Development in enhancing the ORR performance of FCs is mainly due to the doped carbon materials, Fe and Co-based electrocatalysts, these materials could be considered as probable substitutes for Pt-based catalysts. But the stability of these non-noble metal electrocatalysts is low and the durability of these metals remains unclear. The three basic reasons of instability are: (i) oxidative occurrence by H2O2, (ii) leakage of the metal site and (iii) protonation by probable anion adsorption of the active site. Whereas leakage of the metal site has been almost solved, more work is required to understand and avoid losses from oxidative attack and protonation. The ORR performance such as stability tests are usually run at low current densities and the lifetime is much shorter than desired need. Therefore, improvement in the ORR activity and stability afe the key issues of the non-noble metal electrocatalyst. Based on the consequences obtained in this area, numerous future research directions are projected and discussed in this paper. Hence, this review is focused on improvement of stability and durability of the non-noble metal electrocatalyst. 展开更多
关键词 Non-noble metal electrocatalysts polymer electrolyte membrane fuel cells(PEMFCs) Oxygen reduction reaction(ORR) ELECTROCATALYSIS Stability
下载PDF
PVDF-Based Micro Inorganic Fillers-Containing Polymer Electrolyte Membranes 被引量:2
4
作者 白莹 吴锋 吴川 《Journal of Beijing Institute of Technology》 EI CAS 2006年第3期344-347,共4页
Polymer electrolyte membranes based on poly (vinylidene fluoride-co-hexafluoropropylene) (PVDFHFP) with and without different types of micro inorganic fillers were prepared by phase-inversion process. Morphologies... Polymer electrolyte membranes based on poly (vinylidene fluoride-co-hexafluoropropylene) (PVDFHFP) with and without different types of micro inorganic fillers were prepared by phase-inversion process. Morphologies, porosities and electrochemical properties 'of the as-prepared membranes were investigated by means of scanning electronic microscopy (SEM), PC (propylene carbonate) uptake and alternating current (AC) impedance technique. Compared with other membranes, the membrane with micro SiO2 filler shows a dense morphology so that its PC uptake is the highest, namely, 339 %. The membrane filled with micro TiO2 exhibits good electrochemical performances: the ion conductivity is as high as 1.1 × 10^-3 S/cm at 18 ℃, which can meet the demand of lithium ion batteries. Moreover, its initial charge-discharge efficiency exceeds 89 %. The composite membranes with micro SiO2, TiO2 and Al2O3 are more suitable for the utilization in lithium ion batteries due to better cycle.ability, whereas the battery assembled with the blank membrane containing no inorganic fillers encounters a short circuit after the 5th cycle. 展开更多
关键词 polymer electrolyte membranes micro inorganic fillers lithium ion batteries
下载PDF
Study on durability of Pt supported on graphitized carbon under simulated start-up/shut-down conditions for polymer electrolyte membrane fuel cells 被引量:2
5
作者 Won Suk Jung 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期326-334,共9页
The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitize... The primary issue for the commercialization of proton exchange membrane fuel cell(PEMFC) is the carbon corrosion of support under start-up/shut-down conditions. In this study, we employ the nanostructured graphitized carbon induced by heat-treatment. The degree of graphitization starts to increase between 900 and 1300 ℃ as evidenced by the change of specific surface area, interlayer spacing, and ID/IG value. Pt nanoparticles are deposited on fresh carbon black(Pt/CB) and carbon heat-treated at 1700 ℃(Pt/HCB17) with similar particle size and distribution. Electrochemical characterization demonstrates that the Pt/HCB17 shows higher activity than the Pt/CB due to the inefficient microporous structure of amorphous carbon for the oxygen reduction reaction. An accelerating potential cycle between 1.0 and 1.5 V for the carbon corrosion is applied to examine durability at a single cell under the practical start-up/shutdown conditions. The Pt/HCB17 catalyst shows remarkable durability after 3000 potential cycles. The Pt/HCB17 catalyst exhibits a peak power density gain of 3%, while the Pt/CB catalyst shows 65% loss of the initial peak power density. As well, electrochemical surface area and mass activity of Pt/HCB17 catalyst are even more stable than those of the Pt/CB catalyst. Consequently, the high degree of graphitization is essential for the durability of fuel cells in practical start-up/shut-down conditions due to enhancing the strong interaction of Pt and π-bonds in graphitized carbon. 展开更多
关键词 polymer electrolyte membrane fuel ceils membrane electrolyte assembly Carbon corrosion Start-up/shut-down Durability
下载PDF
PREPARATION AND ELECTROCHEMICAL CHARACTERISTICS OF POLYMER ELECTROLYTE MEMBRANES BASED ON SAN/PVDF-HFP BLENDS
6
作者 其鲁 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第2期213-220,共8页
A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method. Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropyl... A copolymer of poly(acrylonitrile-co-styrene) (SAN) was synthesized via an emulsion polymerization method. Novel polymer electrolyte membranes cast from the blends of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF- HFP), SAN and fumed silica (SIO2) are microporous and can be used in polymer lithium-ion batteries. The membrane shows excellent characteristics such as high ionic conductivity and good mechanical strength when the mass ratio between SAN and PVDF-HFP and SiO2 is 3.5/31.5/5. The ionic conductivity of the membrane soaked in a liquid electrolyte of 1 mol/L LiPF6/EC/DMC/DEC is 4.9 × 10^-3 S cm^-1 at 25℃. The membrane is electrochemical stable up to 5.5 V versus Li^+/Li in the liquid electrolyte. The influences of SiO2 content on the porosity and mechanical strength of the membranes were studied. Polymer lithium-ion batteries based on the membranes were assembled and their performances were also studied. 展开更多
关键词 polymer electrolyte membrane BLENDS Poly(acrylonitrile-co-styrene) polymer lithium-ion battery
下载PDF
Phosphorus induced activity-enhancement of Fe-N-C catalysts for high temperature polymer electrolyte membrane fuel cells
7
作者 Xiangrong Jin Yajie Li +5 位作者 Hao Sun Xiangxiang Gao Jiazhan Li Zhi Lü Wen Liu Xiaoming Sun 《Nano Research》 SCIE EI CSCD 2023年第5期6531-6536,共6页
Fe-N-C materials with atomically dispersed Fe–N_(4) sites could tolerate the poisoning of phosphate,is regarded as the most promising alternative to costly Pt-based catalysts for the oxygen reduction in high temperat... Fe-N-C materials with atomically dispersed Fe–N_(4) sites could tolerate the poisoning of phosphate,is regarded as the most promising alternative to costly Pt-based catalysts for the oxygen reduction in high temperature polymer electrolyte membrane fuel cells(HT-PEMFCs).However,they still face the critical issue of insufficient activity in phosphoric acid.Herein,we demonstrate a P-doping strategy to increase the activity of Fe-N-C catalyst via a feasible one-pot method.X-ray absorption spectroscopy and electron microscopy with atomic resolution indicated that the P atom is bonded with the N in Fe–N_(4) site through C atoms.The as prepared Fe-NCP catalyst shows a half-wave potential of 0.75 V(vs.reversible hydrogen electrode(RHE),0.1 M H_(3)PO_(4)),which is 60 and 40 mV higher than that of Fe-NC and commercial Pt/C catalysts,respectively.More importantly,the Fe-NCP catalyst could deliver a peak power density of 357 mW·cm^(−2)in a high temperature fuel cell(160℃),exceeding the non-noble-metal catalysts ever reported.The enhancement of activity is attributed to the increasing charge density and poisoning tolerance of Fe–N_(4) caused by neighboring P.This work not only promotes the practical application of Fe-N-C materials in HT-PEMFCs,but also provides a feasible P-doping method for regulating the structure of single atom site. 展开更多
关键词 iron nitrogen carbon heteroatomic doping phosphorous tolerance high temperature polymer electrolyte membrane fuel cells
原文传递
Water spatial distribution in polymer electrolyte membrane fuel cell: Convolutional neural network analysis of neutron radiography
8
作者 Yiheng Pang Yun Wang 《Energy and AI》 2023年第4期130-140,共11页
Polymer electrolyte membrane(PEM)fuel cells produce water as byproduct,which may cause electrode“flooding”and reduce cell performance.In operation,water usually builds up downstream in the gas flow channel due to th... Polymer electrolyte membrane(PEM)fuel cells produce water as byproduct,which may cause electrode“flooding”and reduce cell performance.In operation,water usually builds up downstream in the gas flow channel due to the water production by the oxygen reduction reaction(ORR),leading to a water spatial dis-tribution.In this study,a convolutional neural network(CNN)is presented to analyze neutron radiography images to obtain water spatial variation under various operating conditions.5 and 10 segments of a fuel cell are analyzed for spatial variations.Image pre-processing treatments are carried out to improve the convolutional neural network accuracy to 96.6%.The results show that liquid water emerges at a position around 55%downstream for 50%relative humidity while the entire cell is subject to two-phase flow for 100%relative hu-midity under a co-flow configuration.Large water content is present in most of the segments and the near-outlet segment for the counter-flow and co-flow configurations,respectively.In addition,the quad-serpentine cell exhibits more water accumulation than the single serpentine one in most downstream segments.The convolu-tional neural network results agree well with the data obtained from a pixelation image processing method with an accuracy of 91.8%.Compared with conventional pixelation methods,the convolutional neural network method performs better in speed for high-resolution images.It also shows that the current CNN tool fails to predict local water for small spatial scales,such as 10 segments,which leads to a large error(>27%)in prediction. 展开更多
关键词 polymer electrolyte membrane fuel cell Convolutional neural network Machine learning Radiography image Water distribution
原文传递
Single-atom Catalysts for Polymer Electrolyte Membrane Fuel Cells 被引量:1
9
作者 ZHU Mengzhao WANG Jing WU Yuen 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2020年第3期320-328,共9页
Searching for high-activity,stabilily and highly casbellective electrocalalysts for acid oxygen reaction rolutioo(ORR)has always been a urgent problem in polymer ectrolyte menbrane fuel ells(PEMFC).Nonetheless,the ele... Searching for high-activity,stabilily and highly casbellective electrocalalysts for acid oxygen reaction rolutioo(ORR)has always been a urgent problem in polymer ectrolyte menbrane fuel ells(PEMFC).Nonetheless,the electrochemical poperties of various systems have their intrinsic limits and tremendous eforts have been paid oul to search for highly eficient electocatalysts by more raional control over the size,morphology,compoition,and structure.In particular,single-atom catalysts(SACs)have atrascted extensive intenest due to theirs cxcellant activity,stability,slctivity and the highest metal tiliztion In rceat yeurs,the number of papers in the field of SACs has incressed rapidly,indicating that SACs have made great progress.This review foouses on SACs electo-echemical applications in the acid ORR and introduces immovative syntheses,fiuel cell performance and long-time durabilily. 展开更多
关键词 Singe-aton catalyst Oxygen reactio reduction polymer electrolyte membrane fuel cell
原文传递
Water Transport Analysis in Polymer Electrolyte Membrane Fuel Cells by Magnetic Resonance Imaging
10
作者 S.Tsushima S.Hirai 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期697-,共1页
1 Results Polymer electrolyte fuel cells (PEFCs) have beenintensively developedfor future vehicle applications andon-site power generation owing to its high energy efficiency and high power density.In PEFCs ,appropria... 1 Results Polymer electrolyte fuel cells (PEFCs) have beenintensively developedfor future vehicle applications andon-site power generation owing to its high energy efficiency and high power density.In PEFCs ,appropriatewater management to maintain polymer electrolyte membrane (PEM) hydratedis of great i mportance ,becausethe ion conductivity of membraneislower at lower water content .Consequently,it is of great interest to watercontent and water transport process in PEMs during fuel cell operation. 展开更多
关键词 polymer electrolyte membrane fuel cell magnetic resonance imaging water transport in-situ technique
原文传递
Multifunctional Ir–Ru alloy catalysts for reversal-tolerant anodes of polymer electrolyte membrane fuel cells
11
作者 Seung Woo Lee Bongho Lee +2 位作者 Chaekyung Baik Tae-Yang Kim Chanho Pak 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期105-112,共8页
To address the problem of fuel starvation in fuel-cell electric vehicles,which causes cell voltage reversal and results in cell failure when repeated continuously,we developed a reversal-tolerant anode(RTA) to promote... To address the problem of fuel starvation in fuel-cell electric vehicles,which causes cell voltage reversal and results in cell failure when repeated continuously,we developed a reversal-tolerant anode(RTA) to promote water oxidation in preference to carbon corrosion.Graphitized carbon-supported Ir-Ru alloys with different compositions are employed as RTA catalysts in an acidic polyol solution and are shown to exhibit composition-dependent average crystallite sizes of <5.33 nm.The adopted approach allows the generation of relatively well-dispersed Ir-Ru alloy nanoparticles on the carbon support without severe agglomeration.The activity of IrRu_(2)/C for the hydrogen oxidation reaction is 1.10 times that of the stateof-the-art Pt/C catalyst.Cell reversal testing by simulation of fuel starvation reveals that the durability of IrRu_(2)/C(~7 h) significantly exceeds that of the conventional Pt/C catalyst(~10 min) and is the highest value reported so far.Thus,the developed Ir-Ru alloy catalyst can be used to fabricate practical RTAs and replace Pt catalysts in the anodes of polymer electrolyte membrane fuel cells. 展开更多
关键词 polymer electrolyte membrane fuel cell Polyol process Reversal-tolerant anode Oxygen evolution reaction Hydrogen oxidation reaction
原文传递
Anode Catalytic Dependency Behavior on Ionomer Content in Direct CO Polymer Electrolyte Membrane Fuel Cell
12
作者 LI Yang WANG Xian +4 位作者 LIU Jie JIN Zhao LIU Changpeng GE Junjie XING Wei 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2022年第5期1251-1257,共7页
In this work,the effect of Nafion ionomer content on the structure and catalytic performance of direct CO polymer electrolyte membrane fuel cell(CO-PEMFC)by using Rh-N-C single-atom catalyst as the anode catalyst laye... In this work,the effect of Nafion ionomer content on the structure and catalytic performance of direct CO polymer electrolyte membrane fuel cell(CO-PEMFC)by using Rh-N-C single-atom catalyst as the anode catalyst layers was studied.The ionic plaque and roughness of the anode catalyst layers increase with the increase of Nafion ionomer content.Furthermore,the contact angle measurement results show that the hydrophilicity of the anode catalyst layers also increases with the increase of Nafion ionomer content.However,when the Nafion ionomer content is too low,the binding between microporous layers,catalyst layers and membrane cannot meet the requirement for either electric conductivity or mass transfer.While Nafion ionomer content increased above 30%,the content of water in anode is difficult to control.Therefore,it was found that AN 30(30%Nafion ionomer content of anode)is the best level to effectively extend the three-phase boundary and improve CO-PEMFCs performance. 展开更多
关键词 Anode catalyst Carbon monoxide polymer electrolyte membrane fuel cell(PEMFC) Nafion ionomer content
原文传递
Development of Polymer Electrolyte Membranes for High Temperature PEFCs
13
作者 A.Carbone R.Pedicini +2 位作者 A.Saccà I.Gatto E.Passalacqua 《复旦学报(自然科学版)》 CAS CSCD 北大核心 2007年第5期676-677,共2页
1 Introduction During the last decades the research has been devoted to the development of non-perfluorinated polymers[1,2], as an alternative to commercial perfluorosulphonic membranes. There are several non-perfluor... 1 Introduction During the last decades the research has been devoted to the development of non-perfluorinated polymers[1,2], as an alternative to commercial perfluorosulphonic membranes. There are several non-perfluorinated materials suitable for these systems that should have as a fundamental requirement a good thermal stability of the original polymer. The studied polymers consist of polyaromatic or polyetherocyclic repeat units like polyetheretherketone (PEEK). Many papers have been published about t... 展开更多
关键词 polymer electrolyte membranes high temperature PEFCs
原文传递
A Review of physics-based and data-driven models for real-time control of polymer electrolyte membrane fuel cells
14
作者 Jian Zhao Xianguo Li +1 位作者 Chris Shum John McPhee 《Energy and AI》 2021年第4期97-129,共33页
The real-time model-based control of polymer electrolyte membrane(PEM)fuel cells requires a computationally efficient and sufficiently accurate model to predict the transient and long-term performance under various op... The real-time model-based control of polymer electrolyte membrane(PEM)fuel cells requires a computationally efficient and sufficiently accurate model to predict the transient and long-term performance under various operational conditions,involving the pressure,temperature,humidity,and stoichiometry ratio.In this article,recent progress on the development of PEM fuel cell models that can be used for real-time control is reviewed.The major operational principles of PEM fuel cells and the associated mathematical description of the transport and electrochemical phenomena are described.The reduced-dimensional physics-based models(pseudo-twodimensional,one-dimensional numerical and zero dimensional analytical models)and the non-physics-based models(zero-dimensional empirical and data-driven models)have been systematically examined,and the comparison of these models has been performed.It is found that the current trends for the real-time control models are(i)to couple the single cell model with balance of plants to investigate the system performance,(ii)to incorporate aging effects to enable long-term performance prediction,(iii)to increase the computational speed(especially for one-dimensional numerical models),and(iv)to develop data-driven models with artificial intelligence/machine learning algorithms.This review will be beneficial for the development of physics or nonphysics based models with sufficient accuracy and computational speed to ensure the real-time control of PEM fuel cells. 展开更多
关键词 polymer electrolyte membrane fuel cell Physics-based model Real-time control Reduced dimensionality Empirical model Data-driven model Artificial intelligence
原文传递
SYNTHESIS AND CHARACTERIZATION OF HYBRID PROTON CONDUCTING MEMBRANES OF POLY(VINYL ALCOHOL) AND PHOSPHOMOLYBDIC ACID 被引量:1
15
作者 Arfat Anis A.K. Banthia +1 位作者 S. Mondal A.K. Thakur 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2006年第5期449-456,共8页
Hybrid proton conducting membranes of poly(vinyl alcohol) (PVA) and phosphomolybdic acid (PMA) were prepared by solution casting method. The effect of PMA doping and PVA crosslinking density on the membrane prop... Hybrid proton conducting membranes of poly(vinyl alcohol) (PVA) and phosphomolybdic acid (PMA) were prepared by solution casting method. The effect of PMA doping and PVA crosslinking density on the membrane properties and proton conductivity were investigated. The crosslinking reaction between the hydroxyl group of PVA and the aldehyde group of glutaraldehyde (GA) was characterized by IR spectroscopy. Proton conductivity of the membranes increases with an increase in concentration of the doped PMA and also with an increase in crosslinking density of the membranes. Proton conductivity results indicate that a significant amount of PMA was maintained in the membranes even after several hours of immersion in water. A maximum conductivity of 0.0101 S cm^-1 was obtained for the membrane with 33.3 wt% PMA and crosslinking density of 5.825 mol%. X-ray diffraction studies were carried out to investigate the influence of PMA doping and crosslinking density on the nature of the membranes. These properties make them very good candidates for polymer electrolyte membranes for direct methanol fuel cell application. 展开更多
关键词 polymer electrolyte membranes Proton conductor Phosphomolybdic acid Crosslinked PVA membranes.
下载PDF
CO_(2)electrolysis:Advances and challenges in electrocatalyst engineering and reactor design
16
作者 Jiayi Lin Yixiao Zhang +1 位作者 Pengtao Xu Liwei Chen 《Materials Reports(Energy)》 2023年第2期82-102,I0003,共22页
Electrochemical reduction of CO_(2)(CO_(2)RR)coupled with renewable electrical energy is an attractive way of upgrading CO_(2)to value-added chemicals and closing the carbon cycle.However,CO_(2)RR electrocatalysts sti... Electrochemical reduction of CO_(2)(CO_(2)RR)coupled with renewable electrical energy is an attractive way of upgrading CO_(2)to value-added chemicals and closing the carbon cycle.However,CO_(2)RR electrocatalysts still suffer from high overpotential,and the complex reaction pathways of CO_(2)RR often lead to mixed products.Early research focuses on tuning the binding of reaction intermediates on electrocatalysts,and recent efforts have revealed that the design of electrolysis reactors is equally important for efficient and selective CO_(2)RR.In this review,we present an overview of recent advances and challenges toward achieving high activity and high selectivity in CO_(2)RR at ambient conditions,with a particular focus on the progress of CO_(2)RR electrocatalyst engineering and reactor design.Our discussion begins with three types of electrocatalysts for CO_(2)RR(noble metalbased,none-noble metal-based,and metal-free electrocatalysts),and then we examine systems-level strategies toward engineering specific components of the electrolyzer,including gas diffusion electrodes,electrolytes,and polymer electrolyte membranes.We close with future perspectives on catalyst development,in-situ/operando characterization,and electrolyzer performance evaluation in CO_(2)RR studies. 展开更多
关键词 Carbon dioxide utilization Carbon dioxide electrochemical reduction Electrocatalyst design Electrolyzer design Gas diffusion electrodes electrolyte effects polymer electrolyte membranes
下载PDF
Carbon matrix effects on the micro-structure and performance of Pt nanowire cathode prepared by decal transfer method 被引量:3
17
作者 Zhaoxu Wei An He +1 位作者 Kaihua Su Sheng Sui 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第2期213-218,共6页
High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode... High performance cathode for polymer electrolyte membrane fuel cell was prepared by depositing Pt nanowires in a carbon matrix coated on a substrate, and using decal transfer method to fabricate the membrane electrode assembly. The effects of carbon and ionomer contents on the electrode micro-structure and fuel cell performance are investigated by physical characterization and single cell testing. The Pt nanowires are gradient distributed across the cathode thickness, and more Pt exists near the membrane. Both the carbon and ionomer contents can affect the Pt nanowires distribution and aggregation. In addition, the carbon loading dominates the transport distance of gas and proton, and the ionomer content affects the triple phase boundaries and porosity in the cathode. The optimal structure of Pt nanowire cathode is obtained at 0.10 mg·cm^-2 carbon loading and 10 wt% ionomer. 展开更多
关键词 Pt nanowire carbon matrix IONOMER decal transfer method polymer electrolyte membrane fuel cell
下载PDF
Two-step pyrolysis of ZIF-8 functionalized with ammonium ferric citrate for efficient oxygen reduction reaction 被引量:2
18
作者 Yifan Ye Fan Cai +3 位作者 Chengcheng Yan Yanshuo Li Guoxiong Wang Xinhe Bao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1174-1180,共7页
Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly effi... Zeolitic imidazolate frameworks(ZIFs) are widely employed in catalyst synthesis as parental materials for electrochemical energy storage and conversion. Herein, we have demonstrated a facile synthesis of highly efficient catalyst for oxygen reduction reaction in both alkaline and acidic medium, which is derived from ZIF-8 functionalized with ammonium ferric citrate via two-step pyrolysis in Ar and NHatmosphere.The results reveal that the catalytic activity improvement after NH3 pyrolysis benefits from mesoporedominated morphology and high utilization of Fe-containing active sites. The optimum catalyst shows excellent performance in zinc-air battery and polymer electrolyte membrane fuel cell tests. 展开更多
关键词 Zeolitic imidazolate frameworks Two-step pyrolysis Oxygen reduction reaction Zinc-air battery polymer electrolyte membrane fuel cell
下载PDF
UV RADIATION INDUCED GRAFT COPOLYMERIZATION OF ALLYL ACETATE ONTO POLY(ETHYLENE TEREPHTHALATE)(PET) FILMS FOR FUEL CELL MEMBRANES 被引量:1
19
作者 Mostak Ahmed Mubarak A.Khan +1 位作者 Nazia Rahman M.Anwar H.Khan 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2012年第2期227-234,共8页
Ultraviolet (UV)-induced graft copolymerization of allyl acetate (AA) monomer onto poly(ethylene terephthalate) (PET) films and the subsequent sulfonation on the monomer units in the grafting chain using chlor... Ultraviolet (UV)-induced graft copolymerization of allyl acetate (AA) monomer onto poly(ethylene terephthalate) (PET) films and the subsequent sulfonation on the monomer units in the grafting chain using chlorosulfonic acid (C1SO3H) were carried out to prepare proton exchange membranes (PEMs) for fuel cells. A maximum grafting value of 12.8% was found for 35 vol% allyl acetate after 3 h radiation time. Optimum concentration of C1SO3H was selected for the sulfonation reaction to be 0.05 mol/L based on the degree of sulfonation and the tensile strength studies of the membrane. The degree of sulfonation increased as the sulfonation reaction temperature and sulfonation time were increasing. The radiation grafting and the sulfonation have been confirmed by titrimetric and gravimetric analyses as well as FTIR spectroscopy. The maximum ion exchange capacity (IEC) of 0.04125 mmol g-1 was found at 12.1% degree of sulfonation and the maximum proton conductivity was found to be 0.035 S cm-1 at 30℃ and a relative humidity of 60%. The various physical and chemical properties of the PEMs such as water uptake, mechanical strength, thermal durability and oxidative stability were also studied. To investigate the suitability of the prepared membrane for fuel cell applications, its properties were compared with those ofNafion 117. 展开更多
关键词 polymer electrolyte membrane Allyl acetate Fuel cell UV radiation GRAFTING Sulfonation.
原文传递
Single-layer graphene as a highly selective barrier for vanadium crossover with high proton selectivity 被引量:1
20
作者 Saheed Bukola Zhaodong Li +5 位作者 Jason Zack Christopher Antunes Carol Korzeniewski Glenn Teeter Jeffrey Blackburn Bryan Pivovar 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期419-430,I0009,共13页
We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton ... We report near-zero crossover for vanadium cross-permeation through single-layer graphene immobilized at the interface of two Nafion?polymer electrolyte membranes.Vanadium ion diffusion and migration,including proton mobility through membrane composites,were studied with and without graphene under diffusion and migration conditions.Single-layer graphene was found to effectively inhibit vanadium ion diffusion and migration under specific conditions.The single-layer graphene composites also enabled remarkable ion transmission selectivity improvements over pure Nafion membranes,with proton transport being four orders of magnitude faster than vanadium ion transport.Resistivity values of 0.02±0.005Ωcm^(2) for proton and 223±4Ωcm^(2) for vanadium ion through single atomic layer graphene are reported.This high selectivity may have significant impact on flow battery applications or for other electrochemical devices where proton conductivity is required,and transport of other species is detrimental.Our results emphasize that crossover may be essentially completely eliminated in some cases,enabling for greatly improved operational viability. 展开更多
关键词 Ion selectivity polymer electrolyte membrane Redox flow battery Single-layer graphene Vanadium crossover 2D nanomaterial
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部