1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to severa...1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to several hundred meters along the river’s terraces to those geomorphologic plateaus. In geology, "China Loess" has become a geologic term, because the loess in China has evolved with the widest distribution and greatest thickness in the world, and is also a typical and significant deposit in Quaternary Period.展开更多
Shi Dazhen, Minister of the Power Industry, has announced that China’s power Construction had developed to a new level, exceeding 200 GW. He said that China’s power generating capacity reached 100 GW in 1987 and 199...Shi Dazhen, Minister of the Power Industry, has announced that China’s power Construction had developed to a new level, exceeding 200 GW. He said that China’s power generating capacity reached 100 GW in 1987 and 199.9 GW at the end of last year. As another two 60,000 kilowatts of power generation units went into operation in March, this year, power generating capacity reaches 200 GW in only seven years. Such a construction scale and展开更多
The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC'...The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation展开更多
The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectr...The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectric disk in cylindrical box type window is given. Meanwhile,a typical cylindrical box type window is calculated and used as an example to discuss the power capacity, the special harmfulness and elimination of ghost mode resonance when the window is used to transmit high power Continuous Wave(CW).展开更多
For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the ch...For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.展开更多
Home power outlets can be connected in various topologies: derivation, star, cascade. This paper firstly describes the intrinsic behavior of the transfer function of these basic topologies. Secondly, the channel capa...Home power outlets can be connected in various topologies: derivation, star, cascade. This paper firstly describes the intrinsic behavior of the transfer function of these basic topologies. Secondly, the channel capacities of the three topologies are compared to check if there is a more favorable topology. Many deterministic modeling methods have been developed to compute the transfer function of power line networks but the given examples in the studies correspond only to the derivation topology with branches connected to the direct path between transceivers. Thirdly, this paper evaluates the ability of common modeling methods (multipath and chain matrices) to compute accurately the transfer function of any topology. Modeling the derivation topology with "secondary" branches and the star topology is shown to be inappropriate with chain matrices based method. Indeed, this method is very sensitive to the uncertainty of the second parameters of the power cables and this induces considerable fading shifts for those topologies. Multipath modeling method produces results agreeing with measurements for any topology.展开更多
Economic issue is the very focus of China's wind power development.Although all the security problems can be dealt with through technical measures,the compensation for supportive thermal power units and the subsid...Economic issue is the very focus of China's wind power development.Although all the security problems can be dealt with through technical measures,the compensation for supportive thermal power units and the subsidy from economically developed regions to resource-outputting regions would require a higher level of strategic considerations.The core purpose of developing wind energy is to reduce pollutant emissions,so planners should take into account the overall cost of all sides,without touching the bottom of social affordability.展开更多
The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6)...The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6). Fresh cassava roots harvested from the Department of Agricultural Engineering were peeled, washed and grated before fermentation and starch extraction. Fermentation was carried out under separate aerobic and anaerobic conditions for a period of Seven days. Physicochemical analyses were conducted at the Postharvest Food and Bioprocess Engineering Laboratory of the Department of Agricultural and Bio-System Engineering, Njala University to determine the solubility, water absorption capacity and swelling power of starch extracts obtained from various experimental treatments. Fermentation method and duration had significant effects on the solubility, water absorption capacity (WAC) and swelling power (SP) of starch extracts. Maximum solubility and WAC were recorded on the fifth day, for both cassava varieties tested, with apparent significant difference resulting from the two gratering bands (i.e., with 1.5-inch nail hole and 4-inch nail hole sizes, respectively). While swelling power increased consistently with temperature for starch obtained from SLICASS-11 variety, an irregular pattern was observed for SLICASS-6 variety. A multiple correlation analysis proposes a significant and weak correlation between temperature, WAC (+0.150) and swelling power (+0.048). Also multiple correlation analyses suggest a significant correlation between fermentation period, the functional properties of starch extracts obtained from both fermentation methods and cassava varieties (i.e., solubility (−0.226), water absorption capacity (+0.301) and swelling power (+0.329)).展开更多
As wind power penetration has been gaining in the power grid for decades,a large number of the doubly fed induction generator(DFIG)based wind farms are being established around the globe.The power capacities of these ...As wind power penetration has been gaining in the power grid for decades,a large number of the doubly fed induction generator(DFIG)based wind farms are being established around the globe.The power capacities of these wind farms may vary around hundreds of MW,and most of the wind farms are connected to long transmission cables whose impedances can not be ignored and require careful attention.Several works have investigated the impedance interaction between the DFIG based wind farm and long transmission cables which may unfortunately cause high frequency resonance(HFR).The main contribution of this paper is to investigate the influence of the variable wind farm capacity on the behavior of the HFR when certain transmission cables are provided.It is found out that the potential HFR may happen in certain wind farms,and the larger wind farm capacity causes more severe HFR due to the relatively weaker grid transmission capability.Simulation results based on Matlab/Simulink are given to validate the analysis of HFR.展开更多
The energy access challenge remains a significant barrier to sustainable development,with millions of people still needing access to modern energy services.Fossil fuels have played a crucial role in meeting electricit...The energy access challenge remains a significant barrier to sustainable development,with millions of people still needing access to modern energy services.Fossil fuels have played a crucial role in meeting electricity demand,but they face challenges and drawbacks in terms of environmental sustainability,energy security,and climate change.This study examines how renewable and non-renewable energy generation capacity impacted the environment in 53 upper-middle-income countries from 1990 to 2020,using energy access and alternative energy sources as mediating variables.The findings of this study provide valuable insights into the complex relationship between renewable energy generation capacity,energy access,alternative energy sources,and environmental conditions in upper-middleincome countries.The positive relationship between renewable energy generation capacity and environmental conditions emphasizes the importance and potential of renewable energy sources in mitigating environmental degradation.Additionally,the findings indicate that energy access also plays a crucial role in shaping energy generation patterns,with higher levels of access being associated with increased renewable energy generation and decreased reliance on non-renewable energy sources.These findings highlight the urgent need for policies and measures to promote renewable energy adoption and prioritize energy access to mitigate environmental degradation and achieve sustainable development goals.展开更多
In order to reduce the gain of a receiving antenna in HPM power measurement,especially in lower frequency, a low gain dipole antenna of L band is designed.By theoretical analysis and numerical simulation,the optimized...In order to reduce the gain of a receiving antenna in HPM power measurement,especially in lower frequency, a low gain dipole antenna of L band is designed.By theoretical analysis and numerical simulation,the optimized results of the antenn are obtained:its central frequency is 1.75GHz,the variety of gain is less than 1.1dB in frequency band 1.70—1.80GHz,the estimated value of the power capacity of the antenna is 0.1MW,which can satisfy the demand of corresponding measurement.展开更多
The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the ...The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the uncertainty change and maintain the dynamic balance of power system flexibility.In this paper,first,the flexibility characteristics of source,net,load and power and load community(PLC)are analyzed.The dynamic equilibrium relationship among them is briefly introduced.Secondly,taking into full consideration the complex output characteristics of different energy sources and combining their respective flexibility characteristics,a quantitative model of the power source flexibility margin for thermal power,hydro-power,gas power and concentrating solar power is established.A quantitative model for a power source flexibility margin in PV and wind power based on blind number theory is estab-lished.Furthermore,the calculation method of theoretical power generation capacity,which can reflect different characteristics of output power of various energy sources,is presented.The actual output power of each power source in each period is predicted.Finally,a case study shows that the model and method can consider the operating characteristics of different types of power sources,and quickly and accurately quantify the adjustable range of flexibility margins of each power source at different periods of time,which can provide an important basis for evaluating the capacity of renewable energy consumption and the optimal operation of multi-energy power systems(MEPSs).展开更多
文摘1 Preface In the northern and northwestern parts of China, quite a large portion of area, approximately 630,000 km^2, is covered by loess and loess-liked soils. The loess thickness ranges from several meters to several hundred meters along the river’s terraces to those geomorphologic plateaus. In geology, "China Loess" has become a geologic term, because the loess in China has evolved with the widest distribution and greatest thickness in the world, and is also a typical and significant deposit in Quaternary Period.
文摘Shi Dazhen, Minister of the Power Industry, has announced that China’s power Construction had developed to a new level, exceeding 200 GW. He said that China’s power generating capacity reached 100 GW in 1987 and 199.9 GW at the end of last year. As another two 60,000 kilowatts of power generation units went into operation in March, this year, power generating capacity reaches 200 GW in only seven years. Such a construction scale and
文摘The journalist learned from the "National Gas Security Working Conference" held recently that the coal seam gas power generation has been rapidly developed in recent years.As of July 2009,within the SGCC's business area,the power generation
文摘The formula for calculating the threshold of average transmitting power of cylindrical TE11 mode window is revised by accurate deduction and a practical method for calculating the temperature increment of the dielectric disk in cylindrical box type window is given. Meanwhile,a typical cylindrical box type window is calculated and used as an example to discuss the power capacity, the special harmfulness and elimination of ghost mode resonance when the window is used to transmit high power Continuous Wave(CW).
基金financial supports provided by the National Natural Science Foundation of China (No.51274202)the Fundamental Research Funds for the Central Universities (No.2013RC11)+3 种基金the Science and Technology Achievements Transformation Project of Jiangsu Province (No.BA2012068)the Natural Science Foundation of Jiangsu Province (Nos.BK20130199 and BK20131124)Ceeusro Prospective Joint Research Project of Jiangsu Province (No.BY2014028-01)Great Cultivating Special Project at China University of Mining and Technology (No.2014ZDPY16)
文摘For the multipath fading on electromagnetic waves of wireless communication in the confined areas,the rectangular tunnel cooperative communication system was established based on the multimode channel model and the channel capacity formula derivation was obtained.On the optimal criterion of the channel capacity,the power allocation methods of both amplifying and forwarding(AF) and decoding and forwarding(DF) cooperative communication systems were proposed in the limitation of the total power to maximize the channel capacity.The mode selection methods of single input single output(SISO) and single input multiple output(SIMO) models in the rectangular tunnel,through which the higher channel capacity can be obtained,were put forward as well.The theoretical analysis and simulation comparison show that,channel capacity of the wireless communication system in the rectangular tunnel can be effectively enhanced through the cooperative technology;channel capacity of the rectangular tunnel under complicated conditions is maximized through the proposed power allocation methods,and the optimal cooperative mode of the channel capacity can be chosen according to the cooperative mode selection methods given in the paper.
文摘Home power outlets can be connected in various topologies: derivation, star, cascade. This paper firstly describes the intrinsic behavior of the transfer function of these basic topologies. Secondly, the channel capacities of the three topologies are compared to check if there is a more favorable topology. Many deterministic modeling methods have been developed to compute the transfer function of power line networks but the given examples in the studies correspond only to the derivation topology with branches connected to the direct path between transceivers. Thirdly, this paper evaluates the ability of common modeling methods (multipath and chain matrices) to compute accurately the transfer function of any topology. Modeling the derivation topology with "secondary" branches and the star topology is shown to be inappropriate with chain matrices based method. Indeed, this method is very sensitive to the uncertainty of the second parameters of the power cables and this induces considerable fading shifts for those topologies. Multipath modeling method produces results agreeing with measurements for any topology.
文摘Economic issue is the very focus of China's wind power development.Although all the security problems can be dealt with through technical measures,the compensation for supportive thermal power units and the subsidy from economically developed regions to resource-outputting regions would require a higher level of strategic considerations.The core purpose of developing wind energy is to reduce pollutant emissions,so planners should take into account the overall cost of all sides,without touching the bottom of social affordability.
文摘The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6). Fresh cassava roots harvested from the Department of Agricultural Engineering were peeled, washed and grated before fermentation and starch extraction. Fermentation was carried out under separate aerobic and anaerobic conditions for a period of Seven days. Physicochemical analyses were conducted at the Postharvest Food and Bioprocess Engineering Laboratory of the Department of Agricultural and Bio-System Engineering, Njala University to determine the solubility, water absorption capacity and swelling power of starch extracts obtained from various experimental treatments. Fermentation method and duration had significant effects on the solubility, water absorption capacity (WAC) and swelling power (SP) of starch extracts. Maximum solubility and WAC were recorded on the fifth day, for both cassava varieties tested, with apparent significant difference resulting from the two gratering bands (i.e., with 1.5-inch nail hole and 4-inch nail hole sizes, respectively). While swelling power increased consistently with temperature for starch obtained from SLICASS-11 variety, an irregular pattern was observed for SLICASS-6 variety. A multiple correlation analysis proposes a significant and weak correlation between temperature, WAC (+0.150) and swelling power (+0.048). Also multiple correlation analyses suggest a significant correlation between fermentation period, the functional properties of starch extracts obtained from both fermentation methods and cassava varieties (i.e., solubility (−0.226), water absorption capacity (+0.301) and swelling power (+0.329)).
文摘As wind power penetration has been gaining in the power grid for decades,a large number of the doubly fed induction generator(DFIG)based wind farms are being established around the globe.The power capacities of these wind farms may vary around hundreds of MW,and most of the wind farms are connected to long transmission cables whose impedances can not be ignored and require careful attention.Several works have investigated the impedance interaction between the DFIG based wind farm and long transmission cables which may unfortunately cause high frequency resonance(HFR).The main contribution of this paper is to investigate the influence of the variable wind farm capacity on the behavior of the HFR when certain transmission cables are provided.It is found out that the potential HFR may happen in certain wind farms,and the larger wind farm capacity causes more severe HFR due to the relatively weaker grid transmission capability.Simulation results based on Matlab/Simulink are given to validate the analysis of HFR.
文摘The energy access challenge remains a significant barrier to sustainable development,with millions of people still needing access to modern energy services.Fossil fuels have played a crucial role in meeting electricity demand,but they face challenges and drawbacks in terms of environmental sustainability,energy security,and climate change.This study examines how renewable and non-renewable energy generation capacity impacted the environment in 53 upper-middle-income countries from 1990 to 2020,using energy access and alternative energy sources as mediating variables.The findings of this study provide valuable insights into the complex relationship between renewable energy generation capacity,energy access,alternative energy sources,and environmental conditions in upper-middleincome countries.The positive relationship between renewable energy generation capacity and environmental conditions emphasizes the importance and potential of renewable energy sources in mitigating environmental degradation.Additionally,the findings indicate that energy access also plays a crucial role in shaping energy generation patterns,with higher levels of access being associated with increased renewable energy generation and decreased reliance on non-renewable energy sources.These findings highlight the urgent need for policies and measures to promote renewable energy adoption and prioritize energy access to mitigate environmental degradation and achieve sustainable development goals.
文摘In order to reduce the gain of a receiving antenna in HPM power measurement,especially in lower frequency, a low gain dipole antenna of L band is designed.By theoretical analysis and numerical simulation,the optimized results of the antenn are obtained:its central frequency is 1.75GHz,the variety of gain is less than 1.1dB in frequency band 1.70—1.80GHz,the estimated value of the power capacity of the antenna is 0.1MW,which can satisfy the demand of corresponding measurement.
基金the National Key Research and Development Program of China(2017YFB0902200)Science and Technology Project of State Grid Corporation of China(5228001700CW)。
文摘The grid connection of a high proportion of re-newable energy generation increases the uncertainty in power systems.Therefore,the flexibility margin of different energy sources needs to be quantified to cope with the uncertainty change and maintain the dynamic balance of power system flexibility.In this paper,first,the flexibility characteristics of source,net,load and power and load community(PLC)are analyzed.The dynamic equilibrium relationship among them is briefly introduced.Secondly,taking into full consideration the complex output characteristics of different energy sources and combining their respective flexibility characteristics,a quantitative model of the power source flexibility margin for thermal power,hydro-power,gas power and concentrating solar power is established.A quantitative model for a power source flexibility margin in PV and wind power based on blind number theory is estab-lished.Furthermore,the calculation method of theoretical power generation capacity,which can reflect different characteristics of output power of various energy sources,is presented.The actual output power of each power source in each period is predicted.Finally,a case study shows that the model and method can consider the operating characteristics of different types of power sources,and quickly and accurately quantify the adjustable range of flexibility margins of each power source at different periods of time,which can provide an important basis for evaluating the capacity of renewable energy consumption and the optimal operation of multi-energy power systems(MEPSs).