Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-...High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.展开更多
Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatica...Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.展开更多
Out of many renewable energy resources, solar energy is one of the conspicuous sources of energy which can supply the increasing demand of energy. As of May 2014, India has an installed PV capacity of 2.5 GW. The sola...Out of many renewable energy resources, solar energy is one of the conspicuous sources of energy which can supply the increasing demand of energy. As of May 2014, India has an installed PV capacity of 2.5 GW. The solar photovoltaic project includes power electronics with high quality performance devices, incorporated with smart energy management principles. Power electronics is used to improve the energy efficiency of apparatus, and help the generation of environmentally clean energy. In this article the explanation of role of power electronics and the discussion about similar and future concepts in solar photovoltaic systems related to reliability and advancement of each technology in India has been presented.展开更多
Power electronics is a new technology of power transmission and control.Compared with the traditional power transmission,non-contact power transmission has the advantages of low wear rate,safety,reliability,convenienc...Power electronics is a new technology of power transmission and control.Compared with the traditional power transmission,non-contact power transmission has the advantages of low wear rate,safety,reliability,convenience and flexibility.In this way,it avoids the problems of friction,wear,aging and so on in the traditional power supply mode,saves a lot of wires,makes up for the shortcomings of the traditional power transmission mode,and has a wider application range.Therefore,it is of great practical significance to study the key technology of power electronic information transmission for promoting the intelligent development of power transmission in China.展开更多
A new structure of integrated low-pass LC filter of DC-DC power converter is proposed in this paper. This filter consists in a circular planar coil enclosed between two ferrites substrates. Mn-Zn ferrite has been chos...A new structure of integrated low-pass LC filter of DC-DC power converter is proposed in this paper. This filter consists in a circular planar coil enclosed between two ferrites substrates. Mn-Zn ferrite has been chosen because of its high permeability and permittivity. In this filter Mn-Zn substrates act not only as a magnetic core but also as a capacitor. In order to reduce the conduction losses in the part of the ferrite used as a capacitor, a particular topology using a blocking layer is proposed. A modelling of the dielectric behaviour of the materials has been performed and injected in a simulation in order to find the resulting LC filter performances and its power range of use. In order to increase the filter efficiency, different solutions have been explored. In particular the inter-turn gap evolution has been optimized to reduce the inter-turn losses. Regarding the bulk losses, BaTiO3?blocking layers have?been added, either upon the ground or the conductor. In this last case a co-firing ferrite tape has been inserted between turns to increase the LC product. Finally the use of low losses Mn-Zn and BaTiO3?has been proposed and the final characteristics (both electrical and dimensional) of our filter have been compared toconventional ones.展开更多
In this paper power electronics used in PV power generation systems have been reviewed and modelled. PV systems need converters for maximum power point tracking, power conditioning, voltage step-up/down as necessary, ...In this paper power electronics used in PV power generation systems have been reviewed and modelled. PV systems need converters for maximum power point tracking, power conditioning, voltage step-up/down as necessary, and for storage charge-controlling. Inverters are needed for AC loads and for utility grid interfacing. The four basic DC-DC converters commonly used with PV systems have been reviewed and modelled. Different DC-AC inverter types and operational architectures have also been reviewed with the two-stage DC-AC inverter, with the point of common coupling (PCC) at the inverter input, suggested as the most cost-effective and efficient architecture for PV-based communal grids. This is because only one inverter is used for the entire system as opposed to an inverter for every module string, resulting in higher efficiencies, low cost, and low harmonic distortions when compared to systems with PCC at AC terminal. The aim of power conversion/inversion is to extract maximum power possible from the PV system and where necessary, to invert it at close to 100% as possible. Highlight: 1) DC-DC converters are necessary for power conditioning in PV systems;2) DC-AC inverters are necessary for AC loads and for utility grid interfacing;3) DC-AC inverters are also used to control the PV systems when grid connected;4) Best inverter configuration cost-effectively and efficiently allows easy system modifications.展开更多
Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic comp...Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.展开更多
In the analysis of power electronics system,it is necessary to simulate ordinary differential equations(ODEs)with discontinuities and stiffness.However,there are many difficulties in using traditional discrete-time al...In the analysis of power electronics system,it is necessary to simulate ordinary differential equations(ODEs)with discontinuities and stiffness.However,there are many difficulties in using traditional discrete-time algorithms to solve such equations.Kofman and others presented the quantized state systems(QSS)algorithm in the discrete event system specification(DEVS)formalism.The discretization is applied to the state variables instead of time range in QSS.QSS is efficient to solve ODEs,but it is difficulty to be used when simulating actual power electronics systems with controller’s and other events.Based on the idea of this numerical algorithm and discrete event,a Discrete State Event Driven(DSED)simulation method is presented in this paper,which is fit for simulation of power electronics system.The method is developed to deal with non-linearity,stiffness and multi-time scale of power electronics systems.The DSED simulation method includes event definition,module seperation and modeling,event-driven mechanisms,numerical computation based on QSS,and some other operations.Simulation results verified the effectiveness and validity of the proposed method.展开更多
The heat losses density in power electronics products follows an ever increasing trend. Nowadays they reach 200 W/cmz at chip level and 50 W/cm2 at heatsink base level. Water cooling is the most effective cooling meth...The heat losses density in power electronics products follows an ever increasing trend. Nowadays they reach 200 W/cmz at chip level and 50 W/cm2 at heatsink base level. Water cooling is the most effective cooling method but unfortunately water is often undesired due to high voltages or costumer requirements. Two-phase cooling is a promising technology for electronics cooling. It allows using dielectric fluids in passive systems and still benefits from very high heat transfer coefficients. Thermosyphons are a particularly interesting technology in the field of power electronics because it is entirely passive and a simple equipment. ABB has developed a compact thermosyphon heat exchanger based on automotive technology, which uses numerous multi-port extruded tubes with capillary sized channels disposed in parallel and brazed to a heated base plate in order to achieve the desired compactness. The experimental performances of this novel power electronics cooling system are presented with R134a as a working fluid. The influence of several parameters on the performances was studied experimentally: coolant flow rate, coolant temperature, heat load and fluid filling.展开更多
Today, new applications of power electronics systems appear in many domains like transport: more electric aircrafts or electric cars. In order to combine power and electronic systems in the same environment or to take...Today, new applications of power electronics systems appear in many domains like transport: more electric aircrafts or electric cars. In order to combine power and electronic systems in the same environment or to take into account norma- tive constraints in term of electromagnetic field exposure for humans, electromagnetic compatibility (EMC) has to be integrated early in the design flow of the complete system (aircraft or car). The shielding is one of the most used solu- tions to avoid unwanted couplings between power systems and their environment. This paper presents a new experi- mental solution to determine the shielding efficiency of new material (composite material or association of different materials) in the frequency range of power electronic systems.展开更多
Due to the impact of the novel coronavirus outbreak,universities have adopted online teaching and carried out remote teaching.With the improvement of the epidemic and the approaching of the new school year,the organic...Due to the impact of the novel coronavirus outbreak,universities have adopted online teaching and carried out remote teaching.With the improvement of the epidemic and the approaching of the new school year,the organic connection between online teaching during the epidemic and offline course construction after the epidemic is not only a challenge for tertiary education teachers,but also an urgent issue to be addressed.Therefore,the power electronics course is taken as an example to explore this connection.展开更多
The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and ...The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and traction applications,as well as grid related or charging systems,with the potential to provide paradigm shifts in performance and efficiency over Silicon devices in current use today.Despite these exciting developments,however,there are still many outstanding challenges for both researchers and industry to solve before WBG technology becomes pervasive.In this paper we will explore some of these challenges and highlight the strengths of WBG devices,some of the specific issues for machine drives and develop some potential solutions for future developments in power electronics.展开更多
The interaction between the active chips mounted and the same base plate is considered as a thermoelectrical coupling effect.An approach to coupling effect analysis of a multi-chip system is presented with IGBT as a s...The interaction between the active chips mounted and the same base plate is considered as a thermoelectrical coupling effect.An approach to coupling effect analysis of a multi-chip system is presented with IGBT as a sample.Finite element method is used to evaluate the temperature distribution in power modules.The precise electrothermal model is obtained by fitting the curve of transient thermal impedance with a finite series of exponential terms,in which,the thermal-coupling effect among chips is considered as a prediction of the highest transient temperature of the chips.This model can be used in many thermal monitoring systems.Both ANSYS and PSPICE si- mulation software have been employed,and the simulation results agree with the experimental ones very well.展开更多
This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
Sliding mode control(SMC)has been studied since the 1950s and widely used in practical applications due to its insensitivity to matched disturbances.The aim of this paper is to present a review of SMC describing the k...Sliding mode control(SMC)has been studied since the 1950s and widely used in practical applications due to its insensitivity to matched disturbances.The aim of this paper is to present a review of SMC describing the key developments and examining the new trends and challenges for its application to power electronic systems.The fundamental theory of SMC is briefly reviewed and the key technical problems associated with the implementation of SMC to power converters and drives,such chattering phenomenon and variable switching frequency,are discussed and analyzed.The recent developments in SMC systems,future challenges and perspectives of SMC for power converters are discussed.展开更多
Through the inspiration of the reliability mechanism of human body, it is obvious that the bionic methods can be used as a reference for the optimized design of high power plasma inverter. On this basis, the high powe...Through the inspiration of the reliability mechanism of human body, it is obvious that the bionic methods can be used as a reference for the optimized design of high power plasma inverter. On this basis, the high power plasma inverter can be composed of several high power density intelligent power electric building blocks ( IPEBB ) , which are controlled by intelligent controller with the capability of self-management and can be regarded as the cell of the inverter. All of these IPEBB can be controllable and cooperative through distributed communication structure with digital control. This structure can be regarded as the nerve of the inverter. In each IPEBB, the advance mechanical feedback mechanism is adopted to suppress the magnetic bins, over-current protection and gate driving for the high power switches. A 75 kW Prototype constructed by IPEBBs was built to test the performance. Experimental results verify the feasibility of the proposed approach, and the bionic design methods can benefit the optimized design of high power plasma inverter.展开更多
A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correl...A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissi...展开更多
At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important i...At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.展开更多
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
基金Fok Ying Tung Education Foundation(No.91058)the Natural Science Foundation of High Education Institutions of Jiangsu Province(No.08KJD470004)Qing Lan Project of Jiangsu Province of 2008
文摘High performance can be obtained for the integrated power electronics module(IPEM) by using a three-dimensional packaging structure instead of a planar structure. A three- dimensional packaged half bridge-IPEM (HB-IPEM), consisting of two chip scale packaged MOSFETs and the corresponding gate driver and protection circuits, is fabricated at the laboratory. The reliability of the IPEM is controlled from the shape design of solder joints and the control of assembly process parameters. The parasitic parameters are extracted using Agilent 4395A impedance analyzer for building the parasitic parameter model of the HB- IPEM. A 12 V/3 A output synchronous rectifier Buck converter using the HB-IPEM is built to test the electrical performance of the HB-IPEM. Low voltage spikes on two MOSFETs illustrate that the three-dimensional package of the HB-IPEM can decrease parasitic inductance. Temperature distribution simulation results of the HB-IPEM using FLOTHERM are given. Heat dissipation of the solder joints makes the peak junction temperature of the chip drop obviously. The package realizes three-dimensional heat dissipation and has better thermal management.
基金the Major Program of National Natural Science Foundation of China(51490683).
文摘Modeling and simulation have emerged as an indispensable approach to create numerical experiment platforms and study engineering systems.However,the increasingly complicated systems that engineers face today dramatically challenge state-of-the-art modeling and simulation approaches.Such complicated systems,which are composed of not only continuous states but also discrete events,and which contain complex dynamics across multiple timescales,are defined as generalized hybrid systems(GHSs)in this paper.As a representative GHS,megawatt power electronics(MPE)systems have been largely integrated into the modern power grid,but MPE simulation remains a bottleneck due to its unacceptable time cost and poor convergence.To address this challenge,this paper proposes the numerical convex lens approach to achieve state-discretized modeling and simulation of GHSs.This approach transforms conventional time-discretized passive simulations designed for pure-continuous systems into state-discretized selective simulations designed for GHSs.When this approach was applied to a largescale MPE-based renewable energy system,a 1000-fold increase in simulation speed was achieved,in comparison with existing software.Furthermore,the proposed approach uniquely enables the switching transient simulation of a largescale megawatt system with high accuracy,compared with experimental results,and with no convergence concerns.The numerical convex lens approach leads to the highly efficient simulation of intricate GHSs across multiple timescales,and thus significantly extends engineers’capability to study systems with numerical experiments.
文摘Out of many renewable energy resources, solar energy is one of the conspicuous sources of energy which can supply the increasing demand of energy. As of May 2014, India has an installed PV capacity of 2.5 GW. The solar photovoltaic project includes power electronics with high quality performance devices, incorporated with smart energy management principles. Power electronics is used to improve the energy efficiency of apparatus, and help the generation of environmentally clean energy. In this article the explanation of role of power electronics and the discussion about similar and future concepts in solar photovoltaic systems related to reliability and advancement of each technology in India has been presented.
文摘Power electronics is a new technology of power transmission and control.Compared with the traditional power transmission,non-contact power transmission has the advantages of low wear rate,safety,reliability,convenience and flexibility.In this way,it avoids the problems of friction,wear,aging and so on in the traditional power supply mode,saves a lot of wires,makes up for the shortcomings of the traditional power transmission mode,and has a wider application range.Therefore,it is of great practical significance to study the key technology of power electronic information transmission for promoting the intelligent development of power transmission in China.
文摘A new structure of integrated low-pass LC filter of DC-DC power converter is proposed in this paper. This filter consists in a circular planar coil enclosed between two ferrites substrates. Mn-Zn ferrite has been chosen because of its high permeability and permittivity. In this filter Mn-Zn substrates act not only as a magnetic core but also as a capacitor. In order to reduce the conduction losses in the part of the ferrite used as a capacitor, a particular topology using a blocking layer is proposed. A modelling of the dielectric behaviour of the materials has been performed and injected in a simulation in order to find the resulting LC filter performances and its power range of use. In order to increase the filter efficiency, different solutions have been explored. In particular the inter-turn gap evolution has been optimized to reduce the inter-turn losses. Regarding the bulk losses, BaTiO3?blocking layers have?been added, either upon the ground or the conductor. In this last case a co-firing ferrite tape has been inserted between turns to increase the LC product. Finally the use of low losses Mn-Zn and BaTiO3?has been proposed and the final characteristics (both electrical and dimensional) of our filter have been compared toconventional ones.
文摘In this paper power electronics used in PV power generation systems have been reviewed and modelled. PV systems need converters for maximum power point tracking, power conditioning, voltage step-up/down as necessary, and for storage charge-controlling. Inverters are needed for AC loads and for utility grid interfacing. The four basic DC-DC converters commonly used with PV systems have been reviewed and modelled. Different DC-AC inverter types and operational architectures have also been reviewed with the two-stage DC-AC inverter, with the point of common coupling (PCC) at the inverter input, suggested as the most cost-effective and efficient architecture for PV-based communal grids. This is because only one inverter is used for the entire system as opposed to an inverter for every module string, resulting in higher efficiencies, low cost, and low harmonic distortions when compared to systems with PCC at AC terminal. The aim of power conversion/inversion is to extract maximum power possible from the PV system and where necessary, to invert it at close to 100% as possible. Highlight: 1) DC-DC converters are necessary for power conditioning in PV systems;2) DC-AC inverters are necessary for AC loads and for utility grid interfacing;3) DC-AC inverters are also used to control the PV systems when grid connected;4) Best inverter configuration cost-effectively and efficiently allows easy system modifications.
文摘Abstract: This paper presents results from an on-going research project on pressure tolerant power electronics at SINTEF Energy Research, Norway. The driving force for this research is to enable power electronic components to operate in pressurized dielectric environment. The intended application is the converters for operation down to 3,000 meters ocean depth, primarily for subsea oil and gas processing. The paper focuses on the needed modifications to a general purpose gate driver for IGBT (insulated gate bipolar transistors) that will give pressure tolerance. Adaptations and modifications of the individual driver components are presented.The results from preliminary testing are promising, which shows that the considered adaptations give feasible solutions.
基金This work was supported by a grant from the National Nature Science Foundation of China(No 51490680,No 51490683)。
文摘In the analysis of power electronics system,it is necessary to simulate ordinary differential equations(ODEs)with discontinuities and stiffness.However,there are many difficulties in using traditional discrete-time algorithms to solve such equations.Kofman and others presented the quantized state systems(QSS)algorithm in the discrete event system specification(DEVS)formalism.The discretization is applied to the state variables instead of time range in QSS.QSS is efficient to solve ODEs,but it is difficulty to be used when simulating actual power electronics systems with controller’s and other events.Based on the idea of this numerical algorithm and discrete event,a Discrete State Event Driven(DSED)simulation method is presented in this paper,which is fit for simulation of power electronics system.The method is developed to deal with non-linearity,stiffness and multi-time scale of power electronics systems.The DSED simulation method includes event definition,module seperation and modeling,event-driven mechanisms,numerical computation based on QSS,and some other operations.Simulation results verified the effectiveness and validity of the proposed method.
文摘The heat losses density in power electronics products follows an ever increasing trend. Nowadays they reach 200 W/cmz at chip level and 50 W/cm2 at heatsink base level. Water cooling is the most effective cooling method but unfortunately water is often undesired due to high voltages or costumer requirements. Two-phase cooling is a promising technology for electronics cooling. It allows using dielectric fluids in passive systems and still benefits from very high heat transfer coefficients. Thermosyphons are a particularly interesting technology in the field of power electronics because it is entirely passive and a simple equipment. ABB has developed a compact thermosyphon heat exchanger based on automotive technology, which uses numerous multi-port extruded tubes with capillary sized channels disposed in parallel and brazed to a heated base plate in order to achieve the desired compactness. The experimental performances of this novel power electronics cooling system are presented with R134a as a working fluid. The influence of several parameters on the performances was studied experimentally: coolant flow rate, coolant temperature, heat load and fluid filling.
文摘Today, new applications of power electronics systems appear in many domains like transport: more electric aircrafts or electric cars. In order to combine power and electronic systems in the same environment or to take into account norma- tive constraints in term of electromagnetic field exposure for humans, electromagnetic compatibility (EMC) has to be integrated early in the design flow of the complete system (aircraft or car). The shielding is one of the most used solu- tions to avoid unwanted couplings between power systems and their environment. This paper presents a new experi- mental solution to determine the shielding efficiency of new material (composite material or association of different materials) in the frequency range of power electronic systems.
基金the Research and Practice of“Power Electronics Technology”Online Course Construction(kczx202007)the Research of“Power Electronics Technology”Course Blended Teaching Reform(2020yb06)Oriented to the New Engineering Discipline by Higher-Order Learning,which is a university-level project of Qilu University of Technology(Shandong Academy of Sciences).
文摘Due to the impact of the novel coronavirus outbreak,universities have adopted online teaching and carried out remote teaching.With the improvement of the epidemic and the approaching of the new school year,the organic connection between online teaching during the epidemic and offline course construction after the epidemic is not only a challenge for tertiary education teachers,but also an urgent issue to be addressed.Therefore,the power electronics course is taken as an example to explore this connection.
文摘The rapid pace of change in the wide band gap(WBG)power semiconductor area has led to an explosion in potential uses for WBG devices in a huge variety of applications.The applications include automotive,aerospace and traction applications,as well as grid related or charging systems,with the potential to provide paradigm shifts in performance and efficiency over Silicon devices in current use today.Despite these exciting developments,however,there are still many outstanding challenges for both researchers and industry to solve before WBG technology becomes pervasive.In this paper we will explore some of these challenges and highlight the strengths of WBG devices,some of the specific issues for machine drives and develop some potential solutions for future developments in power electronics.
文摘The interaction between the active chips mounted and the same base plate is considered as a thermoelectrical coupling effect.An approach to coupling effect analysis of a multi-chip system is presented with IGBT as a sample.Finite element method is used to evaluate the temperature distribution in power modules.The precise electrothermal model is obtained by fitting the curve of transient thermal impedance with a finite series of exponential terms,in which,the thermal-coupling effect among chips is considered as a prediction of the highest transient temperature of the chips.This model can be used in many thermal monitoring systems.Both ANSYS and PSPICE si- mulation software have been employed,and the simulation results agree with the experimental ones very well.
文摘This paper presents the study and application of the electronic device anti-interference techniques underhigh voltage and/or heavy current electro-magnetic circumstance in power system.[
基金supported in part by the National Key R&D Program of China(2019YFB1312000)the National Natural Science Foundation of China(62022030 and 62033005)+2 种基金the Fundamental Research Funds for the Central Universities(HIT.OCEF.2021005)the Heilongjiang Provincial Natural Science Foundation of China(62033005)the SelfPlanned Task of State Key Laboratory of Advanced Welding and Joining(HIT)。
文摘Sliding mode control(SMC)has been studied since the 1950s and widely used in practical applications due to its insensitivity to matched disturbances.The aim of this paper is to present a review of SMC describing the key developments and examining the new trends and challenges for its application to power electronic systems.The fundamental theory of SMC is briefly reviewed and the key technical problems associated with the implementation of SMC to power converters and drives,such chattering phenomenon and variable switching frequency,are discussed and analyzed.The recent developments in SMC systems,future challenges and perspectives of SMC for power converters are discussed.
基金Supported by National Natural Science Foundation of China (50805051), and Guangzhou Support Science and Technology Project (10A41071568)
文摘Through the inspiration of the reliability mechanism of human body, it is obvious that the bionic methods can be used as a reference for the optimized design of high power plasma inverter. On this basis, the high power plasma inverter can be composed of several high power density intelligent power electric building blocks ( IPEBB ) , which are controlled by intelligent controller with the capability of self-management and can be regarded as the cell of the inverter. All of these IPEBB can be controllable and cooperative through distributed communication structure with digital control. This structure can be regarded as the nerve of the inverter. In each IPEBB, the advance mechanical feedback mechanism is adopted to suppress the magnetic bins, over-current protection and gate driving for the high power switches. A 75 kW Prototype constructed by IPEBBs was built to test the performance. Experimental results verify the feasibility of the proposed approach, and the bionic design methods can benefit the optimized design of high power plasma inverter.
基金Supported by National Natural Science Foundation of China (No.60806010,No.60976030)Tianjin Innovation Special Funds for Science and Technology (No.05FZZDGX00200)
文摘A low cost of die area and power consumption CMOS image sensor readout circuit with fixed pattern noise(FPN) cancellation is proposed.By using only one coupling capacitor and switch in the double FPN cancelling correlative double sampling(CDS),pixel FPN is cancelled and column FPN is stored and eliminated by the sampleand-hold operation of digitally programmable gain amplifier(DPGA).The bandwidth balance technology based on operational amplifier(op-amp) sharing is also introduced to decrease the power dissi...
基金the National Key Research and Development Program of China(2017YFB0903200).
文摘At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.