Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with di...Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.展开更多
Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidificat...Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidification. Here, we adopted the Soil and Water Assessment Tool(SWAT) model to describe the riverine N output and retention effects in the Shanmei Reservoir Basin, a subtropical mountainous basin located in Quanzhou City, Southeast China. The results revealed that farmlands and orchards in the upstream and central parts of the basin were the dominant land use types, which contributed large N yields. Fertilizer application was the key source of riverine N output and N retention within the basin. On average, approximately 64% of anthropogenic N inputs were retained within the basin, whereas 36% of total N was exported to the downstream and coastal areas. The average N retention efficiency was 80% in a dry year, and within the year, N retention occurred in spring and summer and N release occurred in autumn and winter. The annual variation in N retention within the basin was largely dominated by changes in rainfall and runoff, whereas the seasonal characteristics of N retention were mainly affected by fertilization. Even with a large decrease in fertilizer application, owing to the contributions of the residual N pool and river background, the riverine N output still maintained a certain base value. The effects of precipitation, land use types, and agricultural fertilizer on N retention should be comprehensively considered to implement reasonable N management measures.展开更多
An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight tho...An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.展开更多
基金funded by West Light Foundation of The Chinese Academy of Sciences,CASthe State Council Three Gorges Construction Committee Project of China
文摘Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition.
基金funded by the National Key Research and Development Program of China (2018YFE0206400)the National Natural Science Foundations of China (41601535 and 41807159)。
文摘Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidification. Here, we adopted the Soil and Water Assessment Tool(SWAT) model to describe the riverine N output and retention effects in the Shanmei Reservoir Basin, a subtropical mountainous basin located in Quanzhou City, Southeast China. The results revealed that farmlands and orchards in the upstream and central parts of the basin were the dominant land use types, which contributed large N yields. Fertilizer application was the key source of riverine N output and N retention within the basin. On average, approximately 64% of anthropogenic N inputs were retained within the basin, whereas 36% of total N was exported to the downstream and coastal areas. The average N retention efficiency was 80% in a dry year, and within the year, N retention occurred in spring and summer and N release occurred in autumn and winter. The annual variation in N retention within the basin was largely dominated by changes in rainfall and runoff, whereas the seasonal characteristics of N retention were mainly affected by fertilization. Even with a large decrease in fertilizer application, owing to the contributions of the residual N pool and river background, the riverine N output still maintained a certain base value. The effects of precipitation, land use types, and agricultural fertilizer on N retention should be comprehensively considered to implement reasonable N management measures.
基金supported by the National Natural Science Foundation of China(Grant No.41501458)China Postdoctoral Science Foundation Funded Project(Grant No.2016M592860)+4 种基金National Basic Research Program of China(Grant No.2013CB733204)Key Laboratory of Mining Spatial Information Technology of NASMG(Grant Nos. KLM201309)Science Program of Shanghai Normal University(Grant No. SK201525)the Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development(Grant Nos.2013LASW-A09 & SKHL1310)the Center of Spatial Information Science and Sustainable Development Applications,Tongji University,Shanghai,China
文摘An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China.