期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Comparison of the rise of water level in the typical catchments,Three Gorges Reservoir area 被引量:1
1
作者 SUN Hong-yang LIAO Xiao-yong +1 位作者 XIA Zhong-mei HE Jing 《Journal of Mountain Science》 SCIE CSCD 2016年第4期715-724,共10页
Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with di... Water level is an important index for studying hydrologic processes. Water level rise processes were studied in three catchments(catchment I, II, III in Chen Jiagou watershed in the Three Gorge Reservoir Area) with different areas to provide useful information to inform data extension from a gauged-catchment to an ungauged catchment. The results showed that there are seasonal changes in the dominant driving mode of the rise of the water level. The rise of the water level in March is likely mainly driven by the mode of stored-full runoff, and in September or October, it is mainly driven by Horton-flow. The correlation coefficients of all indexes were significant among the three catchments, suggesting that these catchments have similarities and that water level data extension is likely to be completed successfully between the large catchment(III-Catchment) and the small catchment(ICatchment). It was confirmed that there is good similarity between the 0.6 km^2 and 6 km^2 catchments, and the data correlation is good between the catchments with the area differences in the Three Gorges Reservoir Area. In addition, the rise processes of the water level in the catchments were not only different under the same rain conditions, but this difference could also change with the rain condition. 展开更多
关键词 Water level precipitation runoff Spearman-correlation coefficients Three Gorge Reservoir
下载PDF
Spatial and temporal variations in nitrogen retention effects in a subtropical mountainous basin in Southeast China
2
作者 LIU Mei-bing CHEN Xing-wei +2 位作者 CHEN Ying GAO Lu DENG Hai-jun 《Journal of Mountain Science》 SCIE CSCD 2021年第10期2672-2687,共16页
Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidificat... Nitrogen retention within a watershed reduces the amount of N exported to the ocean;however, it worsens environmental problems, including surface water eutrophication, aquifer pollution, acid rain, and soil acidification. Here, we adopted the Soil and Water Assessment Tool(SWAT) model to describe the riverine N output and retention effects in the Shanmei Reservoir Basin, a subtropical mountainous basin located in Quanzhou City, Southeast China. The results revealed that farmlands and orchards in the upstream and central parts of the basin were the dominant land use types, which contributed large N yields. Fertilizer application was the key source of riverine N output and N retention within the basin. On average, approximately 64% of anthropogenic N inputs were retained within the basin, whereas 36% of total N was exported to the downstream and coastal areas. The average N retention efficiency was 80% in a dry year, and within the year, N retention occurred in spring and summer and N release occurred in autumn and winter. The annual variation in N retention within the basin was largely dominated by changes in rainfall and runoff, whereas the seasonal characteristics of N retention were mainly affected by fertilization. Even with a large decrease in fertilizer application, owing to the contributions of the residual N pool and river background, the riverine N output still maintained a certain base value. The effects of precipitation, land use types, and agricultural fertilizer on N retention should be comprehensively considered to implement reasonable N management measures. 展开更多
关键词 Nitrogen retention Riverine nitrogen output precipitation and runoff Fertilization management Subtropical mountainous basin
下载PDF
Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds 被引量:6
3
作者 LI WeiYue LIU Chun +7 位作者 Marco SCAIONI SUN WeiWei CHEN Yu YAO DongJing CHEN Sheng HONG Yang ZHANG KaiHang CHENG GuoDong 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第4期720-732,共13页
An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight tho... An empirical simulation method to simulate the possible position of shallow rainfall-induced landslides in China has been developed.This study shows that such a simulation may be operated in real-time to highlight those areas that are highly prone to rainfall-induced landslides on the basis of the landslide susceptibility index and the rainfall intensity-duration(I-D) thresholds.First,the study on landslide susceptibility in China is introduced.The entire territory has been classified into five categories,among which high-susceptibility regions(Zone 4-'High' and 5-'Very high') account for 4.15%of the total extension of China.Second,rainfall is considered as an external triggering factor that may induce landslide initiation.Real-time satellite-based TMPA3B42 products may provide real rainfall spatial and temporal patterns,which may be used to derive rainfall duration time and intensity.By using a historical record of 60 significant past landslides,the rainfall I-D equation has been calibrated.The rainfall duration time that may trigger a landslide has resulted between 3 hours and 45 hours.The combination of these two aspects can be exploited to simulate the spatiotemporal distribution of rainfall-induced landslide hazards when rainfall events exceed the rainfall I-D thresholds,where the susceptibility category is 'high' or 'very high'.This study shows a useful tool to be part of a systematic landslide simulation methodology,potentially providing useful information for a theoretical basis and practical guide for landslide prediction and mitigation throughout China. 展开更多
关键词 Surface and subsurface runoff runoff-produced physical and chemical deposits Precipitated salts and water circulation Groundwater supply mechanism Badain Jaran Desert
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部