期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis 被引量:5
1
作者 刘春轩 陈建勋 +3 位作者 苏哲安 杨鑫 曹柳絮 黄启忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1779-1784,共6页
C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase com... C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase composition,microstructure,composition of the precursors and products were analyzed by thermal gravimetric analyzer,Fourier transform infrared spectrometer,X-ray diffraction and scanning electron microscope.The results indicate that the ZrC precursor transforms to inorganic ZrO2 from room temperature to 1200 ℃,then reduces to ZrC at 1600 ℃ through the carbothermal reduction reaction.The microstructure of the C/C-ZrC composites was also investigated.The composites exhibit an interesting structure,a coating composed of ZrC ceramic covers the exterior of the composite,and the ZrC ceramic is embedded in the pores of the matrix inside the composite. 展开更多
关键词 ZrC precursor pyrolysis mechanism precursor infiltration and pyrolysis C/C-ZrC composites
下载PDF
Processing and properties of 2D SiC/SiC composites by precursor infiltration and pyrolysis 被引量:2
2
作者 于海蛟 周新贵 +3 位作者 王洪磊 赵爽 羊建高 黄泽兰 《Journal of Central South University》 SCIE EI CAS 2009年第2期190-194,共5页
Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide(2D-SiC/SiC)composites were molded by stacking method and densified through precursor infiltration and pyrolysis(PIP)process.SiC coati... Two-dimensional plain-weave silicon carbide fiber fabric reinforced silicon carbide(2D-SiC/SiC)composites were molded by stacking method and densified through precursor infiltration and pyrolysis(PIP)process.SiC coating was deposited as the fiber/matrix interphase layer by chemical vapor deposition(CVD)technique.Fiber/matrix debonding and relatively long fiber pullouts were observed on the fracture surfaces.Additionally,the flexural strength and elastic modulus of the composites with and without fiber/matrix interphase layer were investigated using three-point bending test and single-edge notched beam test.The results show that the fiber fraction and the porosity of 2D-SiC/SiC composites with and without coating are 27.2%(volume fraction)and 11.1%,and 40.7%(volume fraction)and 7.5%,respectively.And the flexural strength and elastic modulus of 2D-SiC/SiC composites with and without coating are 363.3 MPa and 127.8 GPa,and 180.2 MPa and 97.2 GPa,respectively.With a proper thickness,the coating can effectively adjust the fiber/matrix interface,thus causing a dramatic increase in the mechanical properties of the composites. 展开更多
关键词 SiC/SiC composites COATING precursor infiltration and pyrolysis chemical vapor deposition
下载PDF
A novel mullite anti-gyroid/SiC gyroid ceramic metastructure based on digital light processing 3D printing with enhanced electromagnetic wave absorption and mechanical properties
3
作者 Chaoyang Wang Xiao Chen +5 位作者 Zhicheng Wang Jjalin Bai Jie Tang Yulong She Zhengren Huang Yong Yang 《Journal of Advanced Ceramics》 SCIE EI CAS 2024年第8期1212-1222,共11页
Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation proc... Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation process hinder their broader application.In this study,novel mullite anti-gyroid/SiC gyroid metastructures are designed to integrate the mechanical and electromagnetic wave(EMW)absorption properties of composite materials.Mullite anti-gyroid/SiC gyroid composites are fabricated utilizing a combination of digital light processing(DLP)three-dimensional(3D)printing and precursor infiltration and pyrolysis(PiP)processes.Through the modulation of structural units,the electromagnetic parameters can be effectively regulated,thus improving the impedance matching characteristics of the composites.The structural composites show outstanding EMW absorption properties,with a minimum reflection loss of-54 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 3.20 GHz at a thickness of 2.2 mm.Furthermore,the PIP process significantly enhances the mechanical properties of the composites;compared with those of the mullite/SiC ceramics,the flexural strength of the composites is improved by 3.69-5.85 times(13.28±1.15 MPa vs.(49.05±1.07)-(77.78±3.72)MPa),and the compressive strength is improved by 4.59-13.58 times(8.55±0.90 MPa vs.(39.02±1.63)-(116.13±2.58)MPa).This approach offers a novel and effective method for fabricating structural composites with an expanded range of higher electromagnetic wave absorption properties and improved mechanical properties. 展开更多
关键词 mullite anti-gyroid/SiC gyroid metastructures digital light processing(DLP) precursor infiltration and pyrolysis(PIP) electromagnetic waveabsorption
原文传递
New route to synthesize preceramic polymers for zirconium carbide 被引量:3
4
作者 Xue Yu Tao Wen Feng Qiu +2 位作者 Hao Li Tong Zhao Xian Yong Wei 《Chinese Chemical Letters》 SCIE CAS CSCD 2012年第9期1075-1078,共4页
A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubili... A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubility and rheology. These properties are useful for the processing of C/C-ZrC composites v/a precursor infiltration and pyrolysis (PIP) process. The polymer to ceramic conversion was investigated by TG, XRD and TEM. Nanosized ZrC was formed by pyrolysis of this precursor at 1300 ℃ in argon with ceramic yield of 57.8%. 展开更多
关键词 Preceramic polymer Zirconium carbide precursor infiltration and pyrolysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部