期刊文献+
共找到171篇文章
< 1 2 9 >
每页显示 20 50 100
Effects of processing parameters on fabrication defects,microstructure and mechanical properties of additive manufactured Mg–Nd–Zn–Zr alloy by selective laser melting process
1
作者 Wenyu Xu Penghuai Fu +4 位作者 Nanqing Wang Lei Yang Liming Peng Juan Chen Wenjiang Ding 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2249-2266,共18页
Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to pr... Mg–3Nd–0.2Zn–0.4Zr(NZ30K,wt.%)alloy is a new kind of high-performance metallic biomaterial.The combination of the NZ30K Magnesium(Mg)alloy and selective laser melting(SLM)process seems to be an ideal solution to produce porous Mg degradable implants.However,the microstructure evolution and mechanical properties of the SLMed NZ30K Mg alloy were not yet studied systematically.Therefore,the fabrication defects,microstructure,and mechanical properties of the SLMed NZ30K alloy under different processing parameters were investigated.The results show that there are two types of fabrication defects in the SLMed NZ30K alloy,gas pores and unfused defects.With the increase of the laser energy density,the porosity sharply decreases to the minimum first and then slightly increases.The minimum porosity is 0.49±0.18%.While the microstructure varies from the large grains with lamellar structure inside under low laser energy density,to the large grains with lamellar structure inside&the equiaxed grains&the columnar grains under middle laser energy density,and further to the fine equiaxed grains&the columnar grains under high laser energy density.The lamellar structure in the large grain is a newly observed microstructure for the NZ30K Mg alloy.Higher laser energy density leads to finer grains,which enhance all the yield strength(YS),ultimate tensile strength(UTS)and elongation,and the best comprehensive mechanical properties obtained are YS of 266±2.1 MPa,UTS of 296±5.2 MPa,with an elongation of 4.9±0.68%.The SLMed NZ30K Mg alloy with a bimodal-grained structure consisting of fine equiaxed grains and coarser columnar grains has better elongation and a yield drop phenomenon. 展开更多
关键词 Selective laser melting Mg alloy processing parameter Lamellar structure Bimodal-grained structure
下载PDF
Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy 被引量:2
2
作者 Tian-yu Liu Kun Shi +6 位作者 Jun Zhao Shi-bing Liu You-wei Zhang Hong-yu Liu Tian-yi Liu Xiao-ming Chen Xin-min Mei 《China Foundry》 SCIE CAS CSCD 2023年第1期49-56,共8页
Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot ... Hot isostatic pressing parameters are critical to Ti60 high temperature titanium alloy castings which have wide application perspective in aerospace.In order to obtain optimal processing parameters,the effects of hot isostatic pressing parameters on defects,composition uniformity,microstructure and mechanical properties of Ti60 cast high temperature titanium alloy were investigated in detail.Results show that increasing temperature and pressure of hot isostatic pressing can reduce defects,especially,the internal defects are substantially eliminated when the temperature exceeds 920℃or the pressure exceeds 125 MPa.The higher temperature and pressure can improve the microstructure uniformity.Besides,the higher pressure can promote the composition uniformity.With the temperature increases from 880℃to 960℃,α-laths are coarsened.But with increasing pressure,the grain size of prior-βphase,the widths ofα-laths andα-colony are reduced.The tensile strength of Ti60 alloy is 949 MPa,yield strength is 827 MPa,and the elongation is 11%when the hot isostatic pressing parameters are 960℃/125 MPa/2 h,which exhibits the best match between the strength and plasticity. 展开更多
关键词 hot isostatic pressing processing parameters Ti60 titanium alloy DEFECTS composition uniformity microstructure mechanical properties
下载PDF
Optimization of chemistry and process parameters for control of intermetallic formation in Mg sludges
3
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1431-1448,共18页
Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM)... Intermetallic formation in sludge during magnesium(Mg)melting,holding and high pressure die casting practices is a very important issue.But,very often it is overlooked by academia,original equipment manufacturers(OEM),metal ingot producers and even die casters.The aim of this study was to minimize the intermetallic formation in Mg sludge via the optimization of the chemistry and process parameters.The Al8Mn5 intermetallic particles were identified by the microstructure analysis based on the Al and Mn ratio.The design of experiment(DOE)technique,Taguchi method,was employed to minimize the intermetallic formation in the sludge of Mg alloys with various chemical compositions of Al,Mn,Fe,and different process parameters,holding temperature and holding time.The sludge yield(SY)and intermetallic size(IS)was selected as two responses.The optimum combination of the levels in terms of minimizing the intermetallic formation were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,690℃ for the holding temperature and holding at 30 mins for the holding time,respectively.The best combination for smallest intermetallic size were 9 wt.%Al,0.15 wt.%Mn,0.001 wt.%(10 ppm)Fe,630℃ for the holding temperature and holding at 60 mins for the holding time,respectively.Three groups of sludge factors,Chemical Sludge(CSF),Physical Sludge(PSF)and Comprehensive Sludge Factors(and CPSF)were established for prediction of sludge yields and intermetallic sizes in Al-containing Mg alloys.The CPSF with five independent variables including both chemical elements and process parameters gave high accuracy in prediction,as the prediction of the PSF with only the two processing parameters of the melt holding temperature and time showed a relatively large deviation from the experimental data.The Chemical Sludge Factor was primarily designed for small ingot producers and die casters with a limited melting and holding capacity,of which process parameters could be fixed easily.The Physical Sludge Factor could be used for mass production with a single type of Mg alloy,in which the chemistry fluctuation might be negligible.In large Mg casting suppliers with multiple melting and holding furnaces and a number of Mg alloys in production,the Comprehensive Sludge Factor should be implemented to diminish the sludge formation. 展开更多
关键词 Magnesium sludge Al-Mn intermetallic OPTIMIZATION Taguchi method Sludge factor Chemical composition Process parameter
下载PDF
Process Parameters Optimization of Laser Cladding for HT200 with 316L Coating Based on Response Surface Method
4
作者 KONG Huaye ZHU Xijing +2 位作者 LI Zejun ZHANG Jinzhe LI Zuoxiu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1569-1579,共11页
In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters o... In order to improve the sealing surface performance of gray cast iron gas gate valves and achieve precise molding control of the cladding layer,as well as to reveal the influence of laser cladding process parameters on the morphology and structure of the cladding layer,we prepared the 316L coating on HT 200 by using Design-Expert software central composite design(CCD)based on response surface analysis.We built a regression prediction model and analyzed the ANOVA with the inspection results.With a target cladding layer width of 3.5 mm and height of 1.3 mm,the process parameters were optimized to obtain the best combination of process parameters.The microstructure,phases,and hardness variations of the cladding layer from experiments with optimal parameters were analyzed by the metallographic microscope,confocal microscope,and microhardness instrument.The experimental results indicate that laser power has a significant impact on the cladding layer width,followed by powder feed rate;scan speed has a significant impact on the cladding layer height,followed by powder feed rate.The HT200 substrate and 316L can metallurgically bond well,and the cladding layer structure consists of dendritic crystals,columnar crystals,and equiaxed crystals in sequence.The optimal process parameter combination satisfying the morphology requirements is laser power(A)of 1993 W,scan speed(B)of 8.949 mm/s,powder feed rate(C)of 1.408 r/min,with a maximum hardness of 1564.3 HV0.5,significantly higher than the hardness of the HT200 substrate. 展开更多
关键词 HT200 laser cladding 316L stainless steel response surface methodology process parameter optimization
下载PDF
Effect of process parameters on the morphology of aluminum/copper alloy lap joints by red and blue hybrid laser welding
5
作者 宋曜祥 肖梦智 +4 位作者 黄德才 张瑞华 尹燕 茹恩光 吴怡霖 《China Welding》 CAS 2024年第2期23-30,共8页
In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduce... In order to overcome the problems of many pores,large deformation and unstable weld quality of traditional laser welded aluminumcopper alloy joints,a red-blue dual-beam laser source and a swinging laser were introduced for welding.T2 copper and 6063 aluminum thin plates were lap welded by coaxial dual-beam laser welding.The morphology of weld cross section was compared to explore the influence of process parameters on the formation of lap joints.The microstructure characteristics of the weld zone were observed and compared by optical microscope.The results show that the addition of laser beam swing can eliminate the internal pores of the weld.With the increase of the swing width,the weld depth decreases,and the weld width increases first and then decreases.The influence of welding speed on the weld cross section morphology is similar to that of swing width.With the increase of welding speed,the weld width increases first and then decreases,while the weld depth decreases all the time.This is because that the red laser is used as the main heat source to melt the base metals,with the increase of red laser power,the weld depth increases.As an auxiliary laser source,blue laser reduces the total energy consumption,consequently,the effective heat input increases and the spatter is restrained effectively.As a result,the increase of red laser power has an enhancement effect on the weld width and weld depth.When the swing width is 1.2 mm,the red laser power is 550 W,the blue laser power is 500 W,and the welding speed is 35 mm/s,the weld forming is the best.The lap joint of T2 copper and 6063 aluminum alloy thin plate can be connected stably with the hybrid of blue laser.The effect rules of laser beam swing on the weld formation were obtained,which improved the quality of the joints. 展开更多
关键词 laser welding aluminum/copper alloy dual beam process parameters weld morphology
下载PDF
Significance-based optimization of processing parameters for thin-walled aluminum alloy tube NC bending with small bending radius 被引量:13
6
作者 XU Jie YANG He +1 位作者 LI Heng ZHAN Mei 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期147-156,共10页
Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of... Thin-walled aluminum alloy tube numerical control (NC) bending with small bending radius is a complex process with multi-factor coupling effects and multi-die constraints. A significance-based optimization method of the parameters was proposed based on the finite element (FE) simulation, and the significance analysis of the processing parameters on the forming quality in terms of the maximum wall thinning ratio and the maximum cross section distortion degree was implemented using the fractional factorial design. The optimum value of the significant parameter, the clearance between the tube and the wiper die, was obtained, and the values of the other parameters, including the friction coefficients and the clearances between the tube and the dies, the mandrel extension length and the boost velocity were estimated. The results are applied to aluminum alloy tube NC bending d50 mm×1 mm×75 mm and d70 mm×1.5 mm×105 mm (initial tube outside diameter D0 × initial tube wall thickness t0 × bending radius R), and qualified tubes are produced. 展开更多
关键词 thin-walled aluminum alloy tube OPTIMIZATION finite element (FE) numerical control bending processing parameters significance analysis small bending radius
下载PDF
Influence of processing parameters on the phase composition of ZrN-Si_3N_4 synthesized from zircon 被引量:10
7
作者 MA Beiyue YU Jingkun 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期367-371,共5页
The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average... The optimum parameters were determined for synthesizing ZrN-Si3N4 composite powder from zircon by carbothermal reduction-nitridation (CTRN) process. The samples were prepared by mixing the carbon black of an average particle size less than 30 μm and the zircon of 40 μm with C/ZrSiO4 mass ratios of 0.2, 0.3, 0.4, and 0.5. The prepared samples were subjected to the CTRN process at temperatures of 1673, 1723, 1753, and 1773 K for 6, 9, and 12 h. The CTRN process was conducted in an atmosphere-controlled tubular furnace in a nitrogen gas flow of 1.0 L/rain. All the products were examined by X-ray powder diffraction to determine the transformation. The results showed that the proper transformation of ZrN-Si3N4 occurred at 1773 K for 12 h with a C/ZrSiO4 mass ratio of 0.4. 展开更多
关键词 inorganic non-metal materials nitrides carbothermal reduction-nitridation ZIRCON processing parameters phase composition
下载PDF
Effects of Phosphoric Acid on Liquefaction of Wood in Phenol and Optimum Liquefaction Processing Parameters 被引量:17
8
作者 ZhangQiuhui ZhaoGuangjie JieShujun 《Forestry Studies in China》 CAS 2004年第3期50-54,共5页
To clarify the influencing factors of liquefaction of wood in phenol using phosphoric acid as a catalyst and get its liquefaction technology, a study on the liquefaction technology of Chinese fir (Cunninghamia lanceol... To clarify the influencing factors of liquefaction of wood in phenol using phosphoric acid as a catalyst and get its liquefaction technology, a study on the liquefaction technology of Chinese fir (Cunninghamia lanceolata) and poplar (triploid Populus tomentosa Carr) under different conditions was conducted. The results indicate that the residue rate decreases with the increase of liquefaction temperature, liquefaction time, catalyst content or liquid ratio. It is also found that the optimum condition of liquefaction for poplar is estimated as: the reaction temperature of 180 C, the reaction time of 2.5 h, liquid ratio (phenol/wood ratio) of 4.5 and catalyst content of 8%, and 4.2% residue rate could be obtained. Under the processing parameters of temperature 180 C, the reaction time of 2.5 h, liquid ratio (phenol/wood ratio) of 4 and catalyst content of 10%, the residue rate of Chinese fir can reach 5.6%. 展开更多
关键词 wood liquefaction PHENOL residue rate liquefaction processing parameters
下载PDF
Effects of processing parameters on figuration during the GMAW rapid prototyping process 被引量:7
9
作者 尹玉环 胡绳荪 +1 位作者 张晓博 何滨华 《China Welding》 EI CAS 2006年第4期30-33,共4页
As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet t... As a deposition technology, gas metal arc welding (GMAW) has shown new promise for rapid prototyping of metallic parts. During the process of metal forming using the arc of GMA W, low heat input and stable droplet transition are critical to high quality figuration. The effects of various processing parameters on figuration quality were studied in the experiment of GMA W rapid prototyping using the wire of ERSO-6 , including welding voltage, wire feeding rate, welding speed and so on. The optimal parameters for ERSO-6 are obtained. Simultaneously, it is verified that the rapid prototyping parts with favorable structures and quality can be achieved under the conditions of low heat input and stable droplet transition. 展开更多
关键词 rapid prototyping gas metal arc welding processing parameters figuration
下载PDF
Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copper 被引量:4
10
作者 Esther T.AKINLABI Anthony ANDREWS Stephen A.AKINLABI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1323-1330,共8页
The influence of friction stir welding processing parameters on dissimilar joints conducted between aluminium alloy (AA5754) and commercially pure copper (C11000) was studied. The welds were produced by varying th... The influence of friction stir welding processing parameters on dissimilar joints conducted between aluminium alloy (AA5754) and commercially pure copper (C11000) was studied. The welds were produced by varying the rotational speed from 600 to 1200 r/min and the feed rate from 50 to 300 mm/min. The resulting microstructure and the corrosion properties of the welds produced were studied. It was found that the joint interfacial regions of the welds were characterized by interlayers of aluminium and copper. The corrosion tests revealed that the corrosion resistance of the welds was improved as the rotational speed was increased. The corrosion rates of the welds compared to the base metals were improved compared with Cu and decreased slightly compared with the aluminium alloy. The lowest corrosion rate was obtained at welds produced at rotational speed of 950 r/min and feed rate of 300 mm/min which corresponds to a weld produced at a low heat input. 展开更多
关键词 aluminium alloy COPPER CORROSION friction stir weld processing parameters
下载PDF
Effect of alloying elements and processing parameters on the Portevin–Le Chatelier effect of Al–Mg alloys 被引量:4
11
作者 Peng-cheng Ma Di Zhang +1 位作者 Lin-zhong Zhuang Ji-shan Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第2期175-183,共9页
The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testin... The effects of alloying elements and processing parameters on the mechanical properties and Portevin-Le Chatelier effect of A1-Mg alloys developed for inner auto body sheets were investigated in detail. Tensile testing was performed in various Zn and Mg contents under different annealing and cold-rolling conditions. In the results, the stress drop and reloading time of serrations increase with increasing plastic strain and exhibit a common linear relationship. The increase rates of stress drop and reloading time increase with increasing Mg or Zn content. The alloys with a greater intensity of serrated yielding generally exhibit a greater elongation. The stress drop and reloading time of serrations decrease with increasing grain size in the case of the annealed samples. The cold-rolled sample exhibits the most severe serra- tion because it initially contains a large number of grain boundaries and dislocations. 展开更多
关键词 aluminum-magnesium alloys Portevin-Le Chatelier effect alloying elements processing parameters mechanical properties
下载PDF
Influence of processing parameters and heat treatment on phase composition and microstructure of plasma sprayed hydroxyapatite coatings 被引量:2
12
作者 ZHAO Guo-liang WEN Guang-wu WU Kun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期463-469,共7页
Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained co... Air plasma spraying process was employed to fabricate various hydroxyapatite(HA)coatings on titanium substrates.The influence of processing parameters on the phase composition and the microstructure of the obtained coatings was investigated.The effect of heat treatment on as-sprayed coating in terms of the crystallinity and microstructure was also studied.The phase composition of coatings was analyzed by X-ray diffraction(XRD)and FTIR.The surface and cross-section morphologies and microstructure of coatings as well as the morphology of feedstock were evaluated using scanning electron microscope(SEM).The crystallization temperature of amorphous HA phase in as-sprayed coating was examined by using differential thermal analysis(DTA). The results suggest that phase composition and microstructure of as-sprayed HA coatings strongly depend on the spraying parameters,and heat treatment at 760 ℃for 2 h is one of effective means for increasing the crystallinity and improvement in microstructure of as-sprayed HA coatings. 展开更多
关键词 hydroxyapatite coatings plasma spraying processing parameters heat treatment
下载PDF
Effects of Solid-State Reaction Synthesis Processing Parameters on Thermoelectric Properties of Mg_2Si 被引量:2
13
作者 姜洪义 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第2期55-56,共2页
The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of th... The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties. 展开更多
关键词 solid-state reaction processing parameters Mg_2Si based compounds
下载PDF
Optimization of processing parameters for preparation of Al-3Ti-1B grain refiner 被引量:1
14
作者 LI Bao WANG Hong-wei +1 位作者 ZHAO Rui-feng WEI Zun-jie 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期387-391,共5页
Al-3Ti-1B master alloys were prepared at different processing parameters by the reaction of halide salts,and the grain refining response of Al-7Si alloy was investigated with Al-3Ti-B master alloy.The microstructure o... Al-3Ti-1B master alloys were prepared at different processing parameters by the reaction of halide salts,and the grain refining response of Al-7Si alloy was investigated with Al-3Ti-B master alloy.The microstructure of master alloy and its grain refining effect on Al-7Si alloy were investigated by means of OM,XRD and SEM.Experimental results show that,the size of Al3Ti particles presented in Al-3Ti-1B master alloys increases with the increase of reaction temperature and decreases with the increase of cooling rate.The grain refining efficiency of Al-3Ti-1B master alloy on Al-7Si alloy is mainly attributed to heterogeneous nucleation of Al3Ti particles,and the morphology ofα(Al)changes from coarse dendritic to fine equiaxed.As a result,Al-3Ti-1B master alloy is prepared by permanent mold,and holding at 800 ℃for 30min,which has better grain refining performance on Al-7Si alloy. 展开更多
关键词 Al-3Ti-1B master alloy processing parameters grain refinement Al-7Si alloy
下载PDF
Inherent relationship between process parameters,crystallization and mechanical properties of continuous carbon fiber reinforced PEEK composites 被引量:2
15
作者 Xiao-long Ma Li-hua Wen +3 位作者 Shi-yu Wang Jin-you Xiao Wen-hao Li Xiao Hou 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期269-284,共16页
High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters ... High-performance thermoplastic composites have been developed as significant structural materials for cutting-edge equipment in the aerospace and defence fields.However,the internal mechanism of processing parameters on mechanical properties in the manufacturing process of thermoplastic composite structures is still a serious challenge.The purpose of this study is to investigate the process/crystallization/property relationships for continuous carbon fiber(CF)reinforced polyether-ether-ketone(PEEK)composites.The composite laminates are fabricated according to orthogonal experiments via the thermoforming method.The mechanical performance is investigated in terms of crystallization properties and fracture morphology characterizations.Experimental results show that the mechanical performance and crystallization properties of thermoplastic composites are significantly affected by the coupling of processing parameters.The increased molding temperature,pressure,and holding time improve the degree of fiber/matrix infiltration and affect the crystallinity and crystalline morphology of the matrix,which further influences the mechanical properties of the composites.This is reflected in the test results that crystallinity has an approximately linear effect on mode-I interlaminar fracture toughness and transverse flexural modulus.As well as the higher molding temperature can destroy the pre-existent crystals to improve the toughness of the matrix,and the well-defined crystalline structures can be observed when fabricated at higher temperatures and longer periods of holding time. 展开更多
关键词 Polymer matrix composites THERMOPLASTIC processing parameters Mechanical properties CRYSTALLIZATION
下载PDF
Influence of processing parameters on coating surface roughness of aluminum alloy
16
作者 PAN Ming-qiang CHI Guan-xin +1 位作者 WEI Dong-bo DI Shi-chun 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2009年第S02期392-397,共6页
The influence of processing parameters on the coating surface roughness of LD10 aluminum alloy treated by the power source with positive and negative pulse in the alkaline electrolyte was discussed.Lots of experiments... The influence of processing parameters on the coating surface roughness of LD10 aluminum alloy treated by the power source with positive and negative pulse in the alkaline electrolyte was discussed.Lots of experiments were done with different processing parameters including the positive final voltage,the negative final voltage,the frequency,the duty ratio,the processing time and electrolyte temperature.And the surface roughness tester TR200 was used to measure the coating surface roughness.The influence of the processing time on the surface roughness is the smallest,less than 0.2μm.The surface roughness decreases gradually with the duty ratio decreasing or the frequency increasing;it decreases gradually with each of the other parameters increasing,and then increases gradually after achieving the minimum value.Appropriately by selecting processing parameters,the coating with Ra 0.6 can be obtained. 展开更多
关键词 micro-arc oxidation processing parameter surface roughness aluminum alloy
下载PDF
Optimization of Processing Parameters for Laser Powder Deposition using Finite Element Method
17
作者 付垚 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第5期832-837,共6页
In order to investigate the effects of powder materials and processing parameters on thermal and stress field during laser powder deposition (LPD), a finite element model was developed with the help of ANSYS softwar... In order to investigate the effects of powder materials and processing parameters on thermal and stress field during laser powder deposition (LPD), a finite element model was developed with the help of ANSYS software. The finite element model was verified by the comparison between the experimental results and computed results. Then LPD processes with different powder materials and processing parameters were simulated by using the FE model. The results show that less difference of thermal conductivity and thermal expansion coefficient between powder material and substrate material produces lower residual stress; higher laser power, laser scanning speed and smaller laser beam diameter can lead higher peak temperature and higher residual stress. The research opens up a way to rational selection of the powder materials and processing parameters for ensured quality. 展开更多
关键词 laser powder deposition thermal field stress field powder material processing parameters
下载PDF
Experimental Design on Laminated Veneer Lumber Fiber Reinforced Composite: Processing Parameters and Its Durability
18
作者 Utai Meekum Yumatom Mingmongkol( 《Journal of Civil Engineering and Architecture》 2012年第8期1029-1038,共10页
The investigating of the hot press process parameters on the flexural properties of LVL (Laminated Veneer Lumber) reinforced composites derived from rubber wood veneer reinforced with fiber glass woven and epoxy adh... The investigating of the hot press process parameters on the flexural properties of LVL (Laminated Veneer Lumber) reinforced composites derived from rubber wood veneer reinforced with fiber glass woven and epoxy adhesive were performed via the DOE (design of experimental) approach. It was discovered that pressure was the most significantly and negatively effect on the product properties. Enhancing in the mechanical properties was related to decrease the processing pressure. Beside, press time was also significantly and positively effect. Although time was not clearly reflect from the mechanical results, but it was detected from the ANOVA (analysis of variance)results. The mechanical properties were increased with increasing compression time. From the results, the optimal condition to maximize mechanical properties was assumed at low pressure, 15 bars, low temperature, 70℃, and long time, 60 mins. The durability testing including screw nail withdrawal strength, water absorption, and termite resistance of LVL reinforced composite were also studied. The results are shown that the LVL wood has superior properties when compare with solid woods. It was found the withdrawal strength of LVL reinforce composite was higher than the solid woods. As expected that solid woods, except eucalyptus, had low water absorption resistance as it more hygroscopic corresponded to LVL reinforced wood. Also solid woods, except teal(, had low resistance to termite attack. Therefore, LVL reinforced was the best candidate by mean of durability properties compared to solid wood. 展开更多
关键词 DOE LVL reinforced wood processing parameters durability testing.
下载PDF
Review of Design of Process Parameters for Squeeze Casting
19
作者 Jianxin Deng Bin Xie +1 位作者 Dongdong You Haibin Huang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第6期22-35,共14页
Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal effic... Squeeze casting(SC)is an advanced net manufacturing process with many advantages for which the quality and properties of the manufactured parts depend strongly on the process parameters.Unfortunately,a universal efficient method for the determination of optimal process parameters is still unavailable.In view of the shortcomings and development needs of the current research methods for the setting of SC process parameters,by consulting and analyzing the recent research literature on SC process parameters and using the CiteSpace literature analysis software,manual reading and statistical analysis,the current state and characteristics of the research methods used for the determination of SC process parameters are summarized.The literature data show that the number of pub-lications in the literature related to the design of SC process parameters generally trends upward albeit with signifi-cant fluctuations.Analysis of the research focus shows that both“mechanical properties”and“microstructure”are the two main subjects in the studies of SC process parameters.With regard to materials,aluminum alloys have been extensively studied.Five methods have been used to obtain SC process parameters:Physical experiments,numeri-cal simulation,modeling optimization,formula calculation,and the use of empirical values.Physical experiments are the main research methods.The main methods for designing SC process parameters are divided into three categories:Fully experimental methods,optimization methods that involve modeling based on experimental data,and theoreti-cal calculation methods that involve establishing an analytical formula.The research characteristics and shortcomings of each method were analyzed.Numerical simulations and model-based optimization have become the new required methods.Considering the development needs and data-driven trends of the SC process,suggestions for the develop-ment of SC process parameter research have been proposed. 展开更多
关键词 Squeeze casting Process parameter design Process parameter optimization DATA-DRIVEN Neural network Research method analysis Literature analysis CITESPACE
下载PDF
Multi-objective optimization of process parameters for ultra-narrow gap welding based on Universal Kriging and NSGA Ⅱ
20
作者 马生明 张爱华 +3 位作者 顾建军 漆宇晟 马晶 王平 《China Welding》 CAS 2023年第3期28-35,共8页
The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-af... The successful confinement of the arc by the flux band depends on the welding process parameters for achieving single-pass,multi-layer, and ultra-narrow gap welding. The sidewall fusion depth, the width of the heat-affected zone, and the line energy are utilized as comprehensive indications of the quality of the welded joint. In order to achieve well fusion and reduce the heat input to the base metal.Three welding process characteristics were chosen as the primary determinants, including welding voltage, welding speed, and wire feeding speed. The metamodel of the welding quality index was built by the orthogonal experiments. The metamodel and NSGA-Ⅱ(Non-dominated sorting genetic algorithm Ⅱ) were combined to develop a multi-objective optimization model of ultra-narrow gap welding process parameters. The results showed that the optimized welding process parameters can increase the sidewall fusion depth, reduce the width of the heataffected zone and the line energy, and to some extent improve the overall quality of the ultra-narrow gap welding process. 展开更多
关键词 ultra-narrow gap optimization of process parameters non-dominated sorting genetic algorithm II the sidewall fusion depth
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部