As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most q...As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.展开更多
Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane...Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane patterned sapphire substrates(PSS)by metal organic vapor phase epitaxy(MOVPE).The influences of growth conditions on the surface morphol-ogy are experimentally studied and explained by Wulff constructions.The competition of growth rate among{0001},{1011},and{1122}facets results in the various surface morphologies of GaN.A higher growth temperature of 985 ℃ and a lowerⅤ/Ⅲratio of 25 can expand the area of{}facets in GaN inverted pyramids.On the other hand,GaN inverted pyramids with almost pure{}facets are obtained by using a lower growth temperature of 930℃,a higherⅤ/Ⅲratio of 100,and PSS with pattern arrangement perpendicular to the substrate primary flat.展开更多
Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality a...Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).展开更多
Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain les...Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.展开更多
Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental ...Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R).展开更多
In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of...In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).展开更多
[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Ma...[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Mason) was used to hybrid with the known resistance cultivars "Kangwenqingzhan" (harboring GM5 gene), OB677( harboring GM3 gene) from Sri Lanka, HT1350 and high yield end quality cultivar " Guiruanzhan". [ Result] Through pyramiding the multi-resistant genes via routine hybridization, the general resistances of the hybrids were remarkably enhanced. The grades of resistance were also improved, many of the combinations were endowed with a resistance at immune level (grade 0) ; and interestingly, the respective hybridization of GX-M001 (high resistance) with OB677( medium resistance) and HT1350(suscepti- ble) also generate two lines at immune level, which is probably the effects of additive effects of genes.[ Conclusion] By routine hybridization, multiple genes were successfully pyramided, thus generating novel rice lines with multiple resistances. For the rice breeding scientists at the grass-roots level, the resistance-resistance pyramiding is an effective approach to breed high resistance cultivars.展开更多
Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grindin...Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.展开更多
This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ...This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ideal population. We investigate impacts of some factors on the pyramiding efficiencies by simulation. These factors include selection strategies (the breeding value selection, the molecular scores selection and the index selection), proportion selected (2, 10 and 20%), recombination rates between adjacent target genes (0.1, 0.3 and 0.5) and different mating types (the random mating and the positive assortative mating avoiding sib mating). The results show that: (1) The more recombination rate and the lower proportion male selected, the better pyramiding efficiency; (2) the ideal population is obtained via various selection strategies, while different selection strategies are suitable for different breeding objectives. From the perspective of pyramiding target genes merely, the molecular scores selection is the best one, for the purpose of pyramiding target genes and recovering genetic background of the target trait, the index selection is the best one, while from the saving cost point of view, the breeding value selection is the best one; (3) the positive assortative mating is more efficient for gene pyramiding compared with the random mating in the terms of the number of generations of intercross for getting the ideal population.展开更多
The aberrant pyramidal tract is the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 21-year-old man presented with right hemiparesis due to a traumatic intracerebral hemorrha...The aberrant pyramidal tract is the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 21-year-old man presented with right hemiparesis due to a traumatic intracerebral hemorrhage in the left corona radiata. His motor function recovered almost to the normal state at 10 months after onset. Through diffusion tensor tractography, the pyramidal tract in the affected (left) hemisphere showed discontinuation at the pontine level at 13 months after onset. An aberrant pyramidal tract was observed, which originated from the primary motor cortex and the supplementary motor area and descended through the corona radiata, then through the posterior limb of the internal capsule and the medial lemniscus pathway from the midbrain to the pons, finally entered into the pyramidal tract area at the pontomedullary junction, it suggests that the motor functions of the right extremities in this patient had recovered by this aberrant pyramidal tract.展开更多
The aberrant pyramidal tract refers to the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 63-year-old male patient presented with severe paralysis of the left extremities du...The aberrant pyramidal tract refers to the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 63-year-old male patient presented with severe paralysis of the left extremities due to a right corona radiata infarct. He was able to extend the affected fingers against resistance at 2 months after stroke onset. At 6 months after stroke onset, he was able to perform some fine motor activities, as well as to walk with a nearly normal gait. Functional MRI, which was performed at 6 months after onset, showed that the contralateral primary sensorimotor cortex was activated during affected (left) hand movements. Diffusion tensor tractography results showed that at 2 weeks after stroke onset, pyramidal tracts of the affected hemisphere originated from the primary motor cortex and descended along the known pathway of the pyramidal tract with an aberrant pyramidal tract, which was bypassed through the medial lemniscus from the midbrain to the lower pons. However, the pyramidal tract from midbrain to pons in the affected hemisphere could not be depicted by diffusion tensor tractography at 6 months after stroke onset; instead, only the aberrant pyramidal tract existed for the course of the disappeared pyramidal tract. Results from this study indicate that the main motor functions of the affected extremities appeared to be controlled via the aberrant pyramidal tract with degeneration of the pyramidal tract in the brainstem of the affected hemisphere.展开更多
Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgica...Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images.展开更多
While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection ...While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62172268 and 62302289)the Shanghai Science and Technology Project(Grant Nos.21JC1402800 and 23YF1416200)。
文摘As a part of quantum image processing,quantum image filtering is a crucial technology in the development of quantum computing.Low-pass filtering can effectively achieve anti-aliasing effects on images.Currently,most quantum image filterings are based on classical domains and grayscale images,and there are relatively fewer studies on anti-aliasing in the quantum domain.This paper proposes a scheme for anti-aliasing filtering based on quantum grayscale and color image scaling in the spatial domain.It achieves the effect of anti-aliasing filtering on quantum images during the scaling process.First,we use the novel enhanced quantum representation(NEQR)and the improved quantum representation of color images(INCQI)to represent classical images.Since aliasing phenomena are more pronounced when images are scaled down,this paper focuses only on the anti-aliasing effects in the case of reduction.Subsequently,we perform anti-aliasing filtering on the quantum representation of the original image and then use bilinear interpolation to scale down the image,achieving the anti-aliasing effect.The constructed pyramid model is then used to select an appropriate image for upscaling to the original image size.Finally,the complexity of the circuit is analyzed.Compared to the images experiencing aliasing effects solely due to scaling,applying anti-aliasing filtering to the images results in smoother and clearer outputs.Additionally,the anti-aliasing filtering allows for manual intervention to select the desired level of image smoothness.
基金the National Key Research and Development Program(2021YFA0716400)the National Natural Science Foundation of China(62225405,62350002,61991443)+1 种基金the Key R&D Project of Jiangsu Province,China(BE2020004)the Collaborative Innovation Centre of Solid-State Lighting and Energy-Saving Electronics.
文摘Growth of gallium nitride(GaN)inverted pyramids on c-plane sapphire substrates is benefit for fabricating novel devices as it forms the semipolar facets.In this work,GaN inverted pyramids are directly grown on c-plane patterned sapphire substrates(PSS)by metal organic vapor phase epitaxy(MOVPE).The influences of growth conditions on the surface morphol-ogy are experimentally studied and explained by Wulff constructions.The competition of growth rate among{0001},{1011},and{1122}facets results in the various surface morphologies of GaN.A higher growth temperature of 985 ℃ and a lowerⅤ/Ⅲratio of 25 can expand the area of{}facets in GaN inverted pyramids.On the other hand,GaN inverted pyramids with almost pure{}facets are obtained by using a lower growth temperature of 930℃,a higherⅤ/Ⅲratio of 100,and PSS with pattern arrangement perpendicular to the substrate primary flat.
基金supported and founded by the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB311the Youth Science and Technology Talent Growth Project of Guizhou Provincial Education Department under Grant No.QJH-KY-ZK[2021]132+2 种基金the Guizhou Provincial Science and Technology Project under the Grant No.QKH-Basic-ZK[2021]YB319the National Natural Science Foundation of China(NSFC)under Grant 61902085the Key Laboratory Program of Blockchain and Fintech of Department of Education of Guizhou Province(2023-014).
文摘Copy-Move Forgery Detection(CMFD)is a technique that is designed to identify image tampering and locate suspicious areas.However,the practicality of the CMFD is impeded by the scarcity of datasets,inadequate quality and quantity,and a narrow range of applicable tasks.These limitations significantly restrict the capacity and applicability of CMFD.To overcome the limitations of existing methods,a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach.Firstly,this study formulates the objective task and network relationship as an optimization problem using transfer learning.Furthermore,it thoroughly discusses and analyzes the relationship between CMFD and deep network architecture by employing ResNet-50 during the optimization solving phase.Secondly,a quantitative comparison between fine-tuning and feature decoupling is conducted to evaluate the degree of similarity between the image classification and CMFD domains by the enhanced ResNet-50.Finally,suspicious regions are localized using a feature pyramid network with bottom-up path augmentation.Experimental results demonstrate that IMTNet achieves faster convergence,shorter training times,and favorable generalization performance compared to existingmethods.Moreover,it is shown that IMTNet significantly outperforms fine-tuning based approaches in terms of accuracy and F_(1).
文摘Effective small object detection is crucial in various applications including urban intelligent transportation and pedestrian detection.However,small objects are difficult to detect accurately because they contain less information.Many current methods,particularly those based on Feature Pyramid Network(FPN),address this challenge by leveraging multi-scale feature fusion.However,existing FPN-based methods often suffer from inadequate feature fusion due to varying resolutions across different layers,leading to suboptimal small object detection.To address this problem,we propose the Two-layerAttention Feature Pyramid Network(TA-FPN),featuring two key modules:the Two-layer Attention Module(TAM)and the Small Object Detail Enhancement Module(SODEM).TAM uses the attention module to make the network more focused on the semantic information of the object and fuse it to the lower layer,so that each layer contains similar semantic information,to alleviate the problem of small object information being submerged due to semantic gaps between different layers.At the same time,SODEM is introduced to strengthen the local features of the object,suppress background noise,enhance the information details of the small object,and fuse the enhanced features to other feature layers to ensure that each layer is rich in small object information,to improve small object detection accuracy.Our extensive experiments on challenging datasets such as Microsoft Common Objects inContext(MSCOCO)and Pattern Analysis Statistical Modelling and Computational Learning,Visual Object Classes(PASCAL VOC)demonstrate the validity of the proposedmethod.Experimental results show a significant improvement in small object detection accuracy compared to state-of-theart detectors.
文摘Globally,potable water scarcity is pervasive problem.The solar distillation device is a straightforward apparatus that has been purposefully engineered to convert non-potable water into potable water.The experimental study is distinctive due to the implementation of a rotational mechanism within the pyramidal solar still(PSS),which serves to enhance the evaporation and condensation processes.The objective of this research study is to examine the impact of integrating rotational motion into pyramidal solar stills on various processes:water distillation,evaporation,condensation,heat transfer,and energy waste reduction,shadow effects,and low water temperature in saline environments.Ultimately,the study aims to enhance the production of distilled water.An economic evaluation was undertaken in order to ascertain the extent of cost reduction.Experiments measuring freshwater productivity and thermal performance were conducted over a three-month period at the University of Science and Technology in Tehran.The entire pyramid structure was rotated using a direct current motor driven by a photovoltaic cell.The research methodology entailed the operation of a PSS with varying rotational speeds(0.125,0.25,1,and 1.5 rpm)and without rotation,from 9 am to 4 pm.The findings suggested that the productivity of the distillation apparatus in terms of distilled water increased as the rotation speed rose,with the most pronounced increase occurring at 1 rpm in comparison to the other conditions.The presence of turbulence in the water enhanced the heat transfer occurring between the absorber plate and thewater.At 2:00 p.m.on an experimental day,this effect was observed when the absorber plate temperature reached 79.1°C at 1.5 rpm.In contrast,its temperature decreased to 78°C when not in a state of rotation,as the intensity of solar radiation was higher in the non-rotation state.At 1 rpm,the solar pyramid distiller achieved a 30.2%increase in output compared to its non-rotating state.At 1 rpm,the distiller achieved a 20.6%increase in output compared to 0.25 revolutions per minute.In addition to the control condition,the thermal efficiency of the solar still varied as follows:at 1,1.5,0.25,and 0.125 rpm,it was 46.2%;at 44.2%,37.8%;at 35.3%;and at 36.6%,respectively.Furthermore,distilled water generated by a pyramid solar still with rotation(PSSR)is priced at$0.03 per liter,whereas it costs$0.0317 per liter when produced by a pyramid solar still without rotation(PSS without R).
文摘In the face of an escalating global water crisis,countries worldwide grapple with the crippling effects of scarcity,jeopardizing economic progress and hindering societal advancement.Solar energy emerges as a beacon of hope,offering a sustainable and environmentally friendly solution to desalination.Solar distillation technology,harnessing the power of the sun,transforms seawater into freshwater,expanding the availability of this precious resource.Optimizing solar still performance under specific climatic conditions and evaluating different configurations is crucial for practical implementation and widespread adoption of solar energy.In this study,we conducted theoretical investigations on three distinct solar still configurations to evaluate their performance under Baghdad’s climatic conditions.The solar stills analyzed include the passive solar still,themodified solar still coupled with a magnetic field,and themodified solar still coupled with bothmagnetic and electrical fields.The results proved that the evaporation heat transfer coefficient peaked at 14:00,reaching 25.05 W/m^(2).℃for the convention pyramid solar still(CPSS),32.33 W/m^(2).℃for the magnetic pyramid solar still(MPSS),and 40.98 W/m^(2).℃for elecro-magnetic pyramid solar still(EMPSS),highlighting their efficiency in converting solar energy to vapor.However,exergy efficiency remained notably lower,at 1.6%,5.31%,and 7.93%for the three still types,even as energy efficiency reached its maximum of 18.6%at 14:00 with a corresponding peak evaporative heat of 162.4 W/m^(2).
文摘目的为了提高数字水印的鲁棒性和不可见性,提出一种基于Laplacian Pyramid和LWT-QR分解的水印算法。方法首先对宿主图像进行2层Laplacian Pyramid分解,取其第2层Laplacian残差图像进行一层LWT分解,取其低频子带进行大小为4×4的无重叠分块处理。然后,基于提升小波系数的相关属性,再对每个选中的低频子块进行QR分解,取分解后R矩阵的第1行为目标进行水印的嵌入,同时对水印进行Arnold置乱,置乱后的水印图像嵌入到R矩阵的第1行元素中。结果嵌入水印后图像的PSNR能够达到45 d B,而且该方案对常见的信号处理攻击有较好的鲁棒性,NC均值在0.9以上。结论理论分析和大量的实验数据表明,该方案能够很好地改善图像操作过程中的鲁棒性和不可见性。
基金Supported by National Natural Science Foundation of China(30760117)National Key Technology R &D Program (2007BAD68B01)~~
文摘[ Objective] This study was to breed rice cultivars with multi-resistance to Orseolia oryzae (Wood-Mason). [ Method] The Guangxi local cultivar GX-M001 (Jiangchao) with high resistance to Orseolia oryzae (Wood-Mason) was used to hybrid with the known resistance cultivars "Kangwenqingzhan" (harboring GM5 gene), OB677( harboring GM3 gene) from Sri Lanka, HT1350 and high yield end quality cultivar " Guiruanzhan". [ Result] Through pyramiding the multi-resistant genes via routine hybridization, the general resistances of the hybrids were remarkably enhanced. The grades of resistance were also improved, many of the combinations were endowed with a resistance at immune level (grade 0) ; and interestingly, the respective hybridization of GX-M001 (high resistance) with OB677( medium resistance) and HT1350(suscepti- ble) also generate two lines at immune level, which is probably the effects of additive effects of genes.[ Conclusion] By routine hybridization, multiple genes were successfully pyramided, thus generating novel rice lines with multiple resistances. For the rice breeding scientists at the grass-roots level, the resistance-resistance pyramiding is an effective approach to breed high resistance cultivars.
基金Project (BK2009379) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (1006-56XNA12069) supported by the Nanjing University of Aeronautics and Astronautics Research Funding, China+3 种基金Projects (51172108, 91023020) supported by the National Natural Science Foundation of ChinaProject (IRT0968) supported by the Program for Changjiang Scholars and Innovative Research Team in University, ChinaProject (NCET-10-0070) supported by the Program for New Century Excellent Talents in University, ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China
文摘Large-scale synthesis of ZnO hexagonal pyramids was achieved by a simple thermal decomposition route of precursor at 240 oC in the presence of PEG400. The precursor was obtained by room-temperature solid-state grinding reaction between Zn(CH3COO)2-2H2O and Na2CO3. Crystal structure and morphology of the products were analyzed and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The results of further experiments show that PEG400 has an important role in the formation of ZnO hexagonal pyramids. Difference between the single and double hexagonal pyramid structure may come from the special thermal decomposition reaction. The photoluminescence (PL) spectra of ZnO hexagonal pyramids exhibit strong near-band-edge emission at about 386 nm and weak green emission at about 550 nm. The Raman-active vibration at about 435 cm-1 suggests that the ZnO hexagonal pyramids have high crystallinity.
基金supported by the National Major Special Project of China on New Varieties Cultivation for Transgenic Organisms (2009ZX08009-146B)by the National Non-profit Institute Research Grant,China (2012cj-2)
文摘This gene pyramiding strategy is based on the idea of efficiently pyramiding genes of interest by crosses and selection to obtain a population with favorable alleles from different breeds or lines, which is called an ideal population. We investigate impacts of some factors on the pyramiding efficiencies by simulation. These factors include selection strategies (the breeding value selection, the molecular scores selection and the index selection), proportion selected (2, 10 and 20%), recombination rates between adjacent target genes (0.1, 0.3 and 0.5) and different mating types (the random mating and the positive assortative mating avoiding sib mating). The results show that: (1) The more recombination rate and the lower proportion male selected, the better pyramiding efficiency; (2) the ideal population is obtained via various selection strategies, while different selection strategies are suitable for different breeding objectives. From the perspective of pyramiding target genes merely, the molecular scores selection is the best one, for the purpose of pyramiding target genes and recovering genetic background of the target trait, the index selection is the best one, while from the saving cost point of view, the breeding value selection is the best one; (3) the positive assortative mating is more efficient for gene pyramiding compared with the random mating in the terms of the number of generations of intercross for getting the ideal population.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology,No.2012R1A1A4A01001873
文摘The aberrant pyramidal tract is the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 21-year-old man presented with right hemiparesis due to a traumatic intracerebral hemorrhage in the left corona radiata. His motor function recovered almost to the normal state at 10 months after onset. Through diffusion tensor tractography, the pyramidal tract in the affected (left) hemisphere showed discontinuation at the pontine level at 13 months after onset. An aberrant pyramidal tract was observed, which originated from the primary motor cortex and the supplementary motor area and descended through the corona radiata, then through the posterior limb of the internal capsule and the medial lemniscus pathway from the midbrain to the pons, finally entered into the pyramidal tract area at the pontomedullary junction, it suggests that the motor functions of the right extremities in this patient had recovered by this aberrant pyramidal tract.
基金the National Research Foundation of Korea Grant funded by the Korean Government,No. KRF-2008-314-E00173
文摘The aberrant pyramidal tract refers to the collateral pathway of the pyramidal tract through the medial lemniscus in the brainstem. A 63-year-old male patient presented with severe paralysis of the left extremities due to a right corona radiata infarct. He was able to extend the affected fingers against resistance at 2 months after stroke onset. At 6 months after stroke onset, he was able to perform some fine motor activities, as well as to walk with a nearly normal gait. Functional MRI, which was performed at 6 months after onset, showed that the contralateral primary sensorimotor cortex was activated during affected (left) hand movements. Diffusion tensor tractography results showed that at 2 weeks after stroke onset, pyramidal tracts of the affected hemisphere originated from the primary motor cortex and descended along the known pathway of the pyramidal tract with an aberrant pyramidal tract, which was bypassed through the medial lemniscus from the midbrain to the lower pons. However, the pyramidal tract from midbrain to pons in the affected hemisphere could not be depicted by diffusion tensor tractography at 6 months after stroke onset; instead, only the aberrant pyramidal tract existed for the course of the disappeared pyramidal tract. Results from this study indicate that the main motor functions of the affected extremities appeared to be controlled via the aberrant pyramidal tract with degeneration of the pyramidal tract in the brainstem of the affected hemisphere.
文摘Three dimensional(3D)echocardiogram enables cardiologists to visua-lize suspicious cardiac structures in detail.In recent years,this three-dimensional echocardiogram carries important clinical value in virtual surgical simulation.However,this 3D echocardiogram involves a trade-off difficulty between accu-racy and efficient computation in clinical diagnosis.This paper presents a novel Flip Directional 3D Volume Reconstruction(FD-3DVR)method for the recon-struction of echocardiogram images.The proposed method consists of two main steps:multiplanar volumetric imaging and 3D volume reconstruction.In the crea-tion of multiplanar volumetric imaging,two-dimensional(2D)image pixels are mapped into voxels of the volumetric grid.As the obtained slices are discontin-uous,there are some missing voxels in the volume data.To restore the structural and textural information of 3D ultrasound volume,the proposed method creates a volume pyramid in parallel with theflip directional texture pyramid.Initially,the nearest neighbors of missing voxels in the multiplanar volumetric imaging are identified by 3D ANN(Approximate Nearest Neighbor)patch matching method.Furthermore,aflip directional texture pyramid is proposed and aggregated with distance in patch matching tofind out the most similar neighbors.In the recon-struction step,structural and textural information obtained from differentflip angle directions can reconstruct 3D volume well with the desired accuracy.Com-pared with existing 3D reconstruction methods,the proposed Flip Directional 3D Volume Reconstruction(FD-3DVR)method provides superior performance for the mean peak signal-to-noise ratio(40.538 for the proposed method I and 39.626 for the proposed method II).Experimental results performed on the cardi-ac datasets demonstrate the efficiency of the proposed method for the reconstruc-tion of echocardiogram images.
基金supported by the Program of Introducing Talents of Discipline to Universities(111 Plan)of China(B14010)the National Natural Science Foundation of China(31727901)
文摘While moving ahead with the object detection technology, especially deep neural networks, many related tasks, such as medical application and industrial automation, have achieved great success. However, the detection of objects with multiple aspect ratios and scales is still a key problem. This paper proposes a top-down and bottom-up feature pyramid network(TDBU-FPN),which combines multi-scale feature representation and anchor generation at multiple aspect ratios. First, in order to build the multi-scale feature map, this paper puts a number of fully convolutional layers after the backbone. Second, to link neighboring feature maps, top-down and bottom-up flows are adopted to introduce context information via top-down flow and supplement suboriginal information via bottom-up flow. The top-down flow refers to the deconvolution procedure, and the bottom-up flow refers to the pooling procedure. Third, the problem of adapting different object aspect ratios is tackled via many anchor shapes with different aspect ratios on each multi-scale feature map. The proposed method is evaluated on the pattern analysis, statistical modeling and computational learning visual object classes(PASCAL VOC)dataset and reaches an accuracy of 79%, which exhibits a 1.8% improvement with a detection speed of 23 fps.