Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channe...Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.展开更多
In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBE...In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice,we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively.In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.展开更多
We present a quantum secure imaging(QSI) scheme based on the phase encoding and weak+vacuum decoy-state BB84 protocol of quantum key distribution(QKD). It allows us to implement a computational ghost imaging(CGI) syst...We present a quantum secure imaging(QSI) scheme based on the phase encoding and weak+vacuum decoy-state BB84 protocol of quantum key distribution(QKD). It allows us to implement a computational ghost imaging(CGI) system with more simplified equipment and reconstructed algorithm by using a digital micro-mirror device(DMD) to preset the specific spatial distribution of the light intensity. What is more, the quantum bit error rate(QBER) and the secure key rate analytical functions of QKD are used to see through the intercept-resend jamming attacks and ensure the authenticity of the imaging information. In the experiment, we obtained the image of the object quickly and efficiently by measuring the signal photon counts with a single-photon detector(SPD), and achieved a secure key rate of 571.0 bps and a secure QBER of 3.99%, which is well below the lower bound of QBER of 14.51%. Besides, our imaging system uses a laser with invisible wavelength of 1550 nm, whose intensity is as low as single-photon, that can realize weak-light imaging and is immune to the stray light or air turbulence, thus it will become a better choice for quantum security radar against intercept-resend jamming attacks.展开更多
A novel counterfactual quantum key distribution scheme was proposed by T.-G. Noh and a strict security analysis has been given by Z.-Q.Yin, in which two legitimate geographical separated couples may share secret keys ...A novel counterfactual quantum key distribution scheme was proposed by T.-G. Noh and a strict security analysis has been given by Z.-Q.Yin, in which two legitimate geographical separated couples may share secret keys even when the key carriers are not traveled in the quantum channel. However, there are still plenty of practical details in this protocol that haven’t been discussed yet, which are of significant importance in physical implementation. In this paper, we will give a practical analysis on such kind of counterfactual quantum cryptography in the aspects of quantum bit error rate (QBER) and stabilization. Furthermore, modified schemes are proposed, which can obtain lower QBER and will be much more robust on stabilization in physical implementation.展开更多
To improve the security of the smart grid, quantum key distribution(QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main c...To improve the security of the smart grid, quantum key distribution(QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday–Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate(QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.展开更多
基金The project supported by the Program for New Century Excellent Talents at the University of China under Grant No.NCET-06-0554the National Natural Science Foundation of China under Grant No.60677001+3 种基金the Science Technology Fund of Anhui Province for Outstanding Youth under Grant No.06042087the Key Fund of the Ministry of Education of China under Grant No.206063the Natural Science Foundation of Guangdong Province under Grant Nos.06300345 and 7007806Natural Science Foundation of Hubei Province under Grant No.2006ABA354
文摘Security of the quantum secure direct communication protocol (i.e., the C-S QSDC protocol) recently proposed by Cao and Song [Chin. Phys. Lett. 23 (2006) 290] is analyzed in the case of considerable quantum channel noise. The eavesdropping scheme is presented, which reveals that the C-S QSDC protocol is not secure if the quantum bit error rate (QBER) caused by quantum channel noise is higher than 4.17%. Our eavesdropping scheme induces about 4.17% QBER for those check qubits. However, such QBER can be hidden in the counterpart induced by the noisy quantum channel if the eavesdropper Eve replaces the original noisy channel by an ideal one. Furthermore, if the QBER induced by quantum channel noise is lower than 4.17%, then in the eavesdropping scheme Eve still can eavesdrop part of the secret messages by safely attacking a fraction of the transmitted qubits. Finally, an improvement on the C-S QSDC protocol is put forward.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61573059,61401340,and 61172138)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2016JM6035)the Fundamental Research Funds for the Central Universities,China(Grant No.JB161303)
文摘In quantum key distribution(QKD), the times of arrival of single photons are important for the keys extraction and time synchronization. The time-of-arrival(TOA) accuracy can affect the quantum bit error rate(QBER) and the final key rate. To achieve a higher accuracy and a better QKD performance, different from designing more complicated hardware circuits, we present a scheme that uses the mean TOA of M frequency-entangled photons to replace the TOA of a single photon. Moreover, to address the problem that the entanglement property is usually sensitive to the photon loss in practice,we further propose two schemes, which adopt partially entangled photons and grouping-entangled photons, respectively.In addition, we compare the effects of these three alternative schemes on the QKD performance and discuss the selection strategy for the optimal scheme in detail. The simulation results show that the proposed schemes can improve the QKD performance compared to the conventional single-photon scheme obviously, which demonstrate the effectiveness of the proposed schemes.
文摘We present a quantum secure imaging(QSI) scheme based on the phase encoding and weak+vacuum decoy-state BB84 protocol of quantum key distribution(QKD). It allows us to implement a computational ghost imaging(CGI) system with more simplified equipment and reconstructed algorithm by using a digital micro-mirror device(DMD) to preset the specific spatial distribution of the light intensity. What is more, the quantum bit error rate(QBER) and the secure key rate analytical functions of QKD are used to see through the intercept-resend jamming attacks and ensure the authenticity of the imaging information. In the experiment, we obtained the image of the object quickly and efficiently by measuring the signal photon counts with a single-photon detector(SPD), and achieved a secure key rate of 571.0 bps and a secure QBER of 3.99%, which is well below the lower bound of QBER of 14.51%. Besides, our imaging system uses a laser with invisible wavelength of 1550 nm, whose intensity is as low as single-photon, that can realize weak-light imaging and is immune to the stray light or air turbulence, thus it will become a better choice for quantum security radar against intercept-resend jamming attacks.
文摘A novel counterfactual quantum key distribution scheme was proposed by T.-G. Noh and a strict security analysis has been given by Z.-Q.Yin, in which two legitimate geographical separated couples may share secret keys even when the key carriers are not traveled in the quantum channel. However, there are still plenty of practical details in this protocol that haven’t been discussed yet, which are of significant importance in physical implementation. In this paper, we will give a practical analysis on such kind of counterfactual quantum cryptography in the aspects of quantum bit error rate (QBER) and stabilization. Furthermore, modified schemes are proposed, which can obtain lower QBER and will be much more robust on stabilization in physical implementation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61101137,61201239,61205118,and 11304397)the National Basic Research Program of China(Grants No.2013CB338002)
文摘To improve the security of the smart grid, quantum key distribution(QKD) is an excellent choice. The rapid fluctuations on the power aerial optical cable and electromagnetic disturbance in substations are two main challenges for implementation of QKD. Due to insensitivity to birefringence of the channel, the stable phase-coding Faraday–Michelson QKD system is very practical in the smart grid. However, the electromagnetic disturbance in substations on this practical QKD system should be considered. The disturbance might change the rotation angle of the Faraday mirror, and would introduce an additional quantum bit error rate(QBER). We derive the new fringe visibility of the system and the additional QBER from the electromagnetic disturbance. In the worst case, the average additional QBER only increases about 0.17% due to the disturbance, which is relatively small to normal QBER values. We also find the way to degrade the electromagnetic disturbance on the QKD system.