期刊文献+
共找到138篇文章
< 1 2 7 >
每页显示 20 50 100
Single-photon scattering and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system
1
作者 黄劲松 黄红武 +1 位作者 李艳玲 徐中辉 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期337-342,共6页
We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical express... We theoretically investigate coherent scattering of single photons and quantum entanglement of two giant atoms with azimuthal angle differences in a waveguide system.Using the real-space Hamiltonian,analytical expressions are derived for the transport spectra scattered by these two giant atoms with four azimuthal angles.Fano-like resonance can be exhibited in the scattering spectra by adjusting the azimuthal angle difference.High concurrence of the entangled state for two atoms can be implemented in a wide angle-difference range,and the entanglement of the atomic states can be switched on/off by modulating the additional azimuthal angle differences from the giant atoms.This suggests a novel handle to effectively control the single-photon scattering and quantum entanglement. 展开更多
关键词 quantum transport quantum entanglement scattering theory optical waveguide
下载PDF
Structural Foundation and Geometry of the Material Singularity (and Its Quantum Entanglement)
2
作者 Rafael Cañete Mesa 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1095-1137,共43页
In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, ... In this paper we develop and study, as the second part of one more general development, the energy transmutation equation for the material singularity, previously obtained through the symmetrisation of a wave packet, that is, we develop the correlation between the terms of this equation, which accounts for the formation of matter from a previous vibrational state, and the different possible energy species. These energetic species are ascribed, in a simplified form, to the equation E¯ω=E¯k+E¯f, which allows us, through its associated phase factor, to gain an insight into the wave character of the kinetic energy and thus to attain the basis of the matter-wave, and all sorts of related phenomenologies, including that concerning quantum entanglement. The formation of the matter was previously identified as an energetic process, analogous to the kinetic one, in which finally the inertial mass is consolidated as a mass in a different phase, now, in addition, the mass of the material singularity is identified as a volumetric density of waves of toroidal geometry created in the process of singularisation or energy transfer between species, which makes it possible to establish the real relation or correspondence between the corpuscular and photonic energy equation (E=mc2=hν), i.e. to explain through m the intimate sense of the first equivalence, which explains what νis in the second one. 展开更多
关键词 Standard Model WAVE-PACKET Material Singularity Wave-Particle Dualism Wave Symmetrisation Matter-Wave Energetic Transmutation quantum entanglement
下载PDF
Design and Implementation of Quantum Repeaters:Insights on Quantum Entanglement Purification
3
作者 Karoki A.Mugambi Geoffrey O.Okeng’o 《Journal of Quantum Computing》 2023年第1期25-40,共16页
Quantum communication is a groundbreaking technology that is driving the future of information transmission and communication technologies to a new paradigm.It relies on quantum entanglement to facilitate the transmis... Quantum communication is a groundbreaking technology that is driving the future of information transmission and communication technologies to a new paradigm.It relies on quantum entanglement to facilitate the transmission of quantum states between parties.Quantum repeaters are crucial for facilitating long-distance quantum communication.These quantum devices act as intermediaries between adjacent communication channel segments within a fragmented quantum network,allowing for entanglement swapping between the channel segments.This entanglement swapping process establishes entanglement links between the endpoints of adjacent segments,gradually creating a continuous entanglement connection over the entire length of the transmission channel.The established quantum link can be utilized for secure and efficient quantum communication between distant sender and receiver nodes.This study focuses on quantum entanglement purification,a protocol aimed at maintaining high fidelity entangled states above the operational threshold of the communication channel.This study investigates the optimal stage for executing the purification protocol and applies optimization schemes to evaluate various purification protocols.We use IBM Qiskit for circuit implementation and simulation.The results offer valuable insights into future approaches to implementing practical quantum repeaters and shed light on existing and anticipated challenges. 展开更多
关键词 quantum repeaters quantum entanglement entanglement purification quantum communication entanglement swapping
下载PDF
Quantum Entanglement Could Be the Result of Leptons, Quarks and Photons Simultaneously Experiencing 4-D Space as (3 + 1)-D Spacetime
4
作者 Franklin Potter 《Journal of Modern Physics》 2023年第11期1382-1391,共10页
We propose that quantum entanglement occurs because the fundamental particles, such as electrons, quarks, and photons, simultaneously experience both the 4th real spatial dimension in R<sup>4</sup> as well... We propose that quantum entanglement occurs because the fundamental particles, such as electrons, quarks, and photons, simultaneously experience both the 4th real spatial dimension in R<sup>4</sup> as well as the time dimension in (3 + 1)-D spacetime. Consequently, the entangled particles can never become separated in the 4th spatial dimension no matter how far they have moved apart in the other 3 spatial dimensions. Because the quark and lepton families represent specific different discrete symmetry binary subgroups of SU(2), we can establish that the quantum states of the fundamental particles are defined in 4 spatial dimensions, so there is then no need for a spacetime communication from one detector (or particle) to inform the other detector (or particle) of the physical state of the first detected entangled particle. A clever experiment needs to determine whether the fundamental particles actually experience a 4th spatial dimension, and if so, whether they experience the 4th spatial dimension as the time dimension simultaneously. Apparently, if a Casimir-like test reveals that virtual particles have a non-zero mass, there are claims that a 4th spatial dimension does not exist. 展开更多
关键词 quantum entanglement Four Dimensions Particle Physics SPACETIME
下载PDF
Quantum entanglement in the system of two two-level atoms interacting with a single-mode vacuum field 被引量:9
5
作者 曾可 方卯发 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期2009-2013,共5页
The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investi... The entanglement properties of the system of two two-level atoms interacting with a single-mode vacuum field are explored. The quantum entanglement between two two-level atoms and a single-mode vacuum field is investigated by using the quantum reduced entropy; the quantum entanglement between two two-level atoms, and that between a single two-level atom and a single-mode vacuum field are studied in terms of the quantum relative entropy. The influences of the atomic dipole-dipole interaction on the quantum entanglement of the system are also discussed. Our results show that three entangled states of two atoms-field, atom-atom, and atom-field can be prepared via two two-level atoms interacting with a single-mode vacuum field. 展开更多
关键词 quantum entanglement single mode vacuum field reduced entropy relative entropy
下载PDF
Generation of the nonlocal quantum entanglement of three three-level particles by local operations 被引量:2
6
作者 金星日 张英俏 +1 位作者 金哲 张寿 《Chinese Physics B》 SCIE EI CAS CSCD 2005年第10期1936-1941,共6页
We propose a scheme to realize the nonlocal quantum entanglement of three three-level particles by using a threeparticle entangled state of three levels as a quantum channel with the aid of some local unitary transfor... We propose a scheme to realize the nonlocal quantum entanglement of three three-level particles by using a threeparticle entangled state of three levels as a quantum channel with the aid of some local unitary transformations. This scheme can be directly generalized to the nonlocal quantum entanglement of N three-level particles. 展开更多
关键词 quantum entanglement three-level particle unitary transformation
下载PDF
Partially secret broadcasting,partially secret splitting with quantum entanglement 被引量:2
7
作者 刘玉 张彬彬 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第1期90-94,共5页
In this paper, we propose a classical secret broadcasting and splitting joint protocol in a quantum scenario. With those genuinely entangled states, the boss can always broadcast some of his secrets and split some oth... In this paper, we propose a classical secret broadcasting and splitting joint protocol in a quantum scenario. With those genuinely entangled states, the boss can always broadcast some of his secrets and split some others to multi- receivers at the same time. The efficiency of the joint protocol is also compared with that of two separate ones which realise classical secret broadcasting and classical secret splitting respectively, and based on the comparison we can see the promising advantage of our joint protocol is that it can realise the two tasks more efficiently and more conveniently. 展开更多
关键词 secret broadcasting secret splitting quantum entanglement
下载PDF
Reversion of weak-measured quantum entanglement state 被引量:1
8
作者 杜少将 彭勇刚 +3 位作者 冯海冉 韩峰 杨连武 郑雨军 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第7期308-312,共5页
We theoretically study the reversible process of quantum entanglement state by means of weak measurement and corresponding reversible operation.We present a protocol of the reversion operation in two bodies based on t... We theoretically study the reversible process of quantum entanglement state by means of weak measurement and corresponding reversible operation.We present a protocol of the reversion operation in two bodies based on the theory of reversion of single photon and then expend it in quantum communication channels.The theoretical results demonstrate that the protocol does not break the information transmission after a weak measurement and a reversible measurement with the subsequent process in the transmission path.It can reverse the perturbed entanglement intensity evolution to its original state.Under the condition of different weak measurement intensity the protocol can reverse the perturbed quantum entanglement system perfectly.In the process we can get the classical information described by information gain from the quantum system through weak measurement operation.On the other hand,in order to realize complete reversibility,the classical information of the quantum entanglement system must obey a limited range we present in this paper in the reverse process. 展开更多
关键词 quantum entanglement weak measurement reversion operation information gain and reversibility
下载PDF
Quantum entanglement and quantum nonlocality for N-photon entangled states 被引量:1
9
作者 孙艳华 匡乐满 《Chinese Physics B》 SCIE EI CAS CSCD 2006年第4期681-686,共6页
Quantum entanglement and quantum nonlocality of N-photon entangled states |ψNm) m Cm [cos γ|N - m) 1 |m)2 + e^iθm sinγ|m)1|N- m)2] and their superpositions are studied. We point out that the relative ph... Quantum entanglement and quantum nonlocality of N-photon entangled states |ψNm) m Cm [cos γ|N - m) 1 |m)2 + e^iθm sinγ|m)1|N- m)2] and their superpositions are studied. We point out that the relative phase θm affects the quantum nonlocality but not the quantum entanglement for the state |ψNm). We show that quantum nonlocality can be controlled and manipulated by adjusting the state parameters of |ψNm), superposition coefficients, and the azimuthal angles of the Bell operator. We also show that the violation of the Bell inequality can reach its maximal value under certain conditions. It is found that quantum superpositions based on |ψNm) can increase the amount of entanglement, and give more ways to reach the maximal violation of the Bell inequality. 展开更多
关键词 quantum entanglement quantum nonlocality Bell inequality
下载PDF
Dynamical correlation between quantum entanglement and intramolecular energy in molecular vibrations:An algebraic approach
10
作者 冯海冉 孟祥佳 +1 位作者 李鹏 郑雨军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期387-393,共7页
The dynamical correlation between quantum entanglement and intramolecular energy in realistic molecular vibrations is explored using the Lie algebraic approach. The explicit expression of entanglement measurement can ... The dynamical correlation between quantum entanglement and intramolecular energy in realistic molecular vibrations is explored using the Lie algebraic approach. The explicit expression of entanglement measurement can be achieved using algebraic operations. The common and different characteristics of dynamical entanglement in different molecular vibrations are also provided. The dynamical study of quantum entanglement and intramolecular energy in small molecular vibrations can be helpful for controlling the entanglement and further understanding the intramolecular dynamics. 展开更多
关键词 quantum entanglement molecular vibration intramolecular energy Lie algebra
下载PDF
Quantum entanglement of an entangled coherent state: Role of particle losses
11
作者 刘盼 冯晓敏 金光日 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期142-146,共5页
We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exac... We analyze entanglement properties of entangled coherent state (ECS), |α,0) 1,2 +|0,α) 1,2, with and without photon losses. By separating the coherent state into ]a) = co|0) + √-Co2|α), we derive exact results of the logarithmic negativity EN, which quantifies the degree of entanglement between the two bosonic modes. Without particle losses, E~ = 1 for the NOON state; while for the ECS, E jr increases from 0 to 1 as |α|-→∞. In the presence of photon losses, we find that the ECS with large enough photon number is more robust than that of the NOON state. An optimal ECS is obtained by maximizing E~ with respect to l a 12. 展开更多
关键词 quantum entanglement entangled coherent state photon losses
下载PDF
Motion-Enhanced Quantum Entanglement in the Dynamics of Excitation Transfer
12
作者 宋伟 黄怿晟 +1 位作者 杨名 曹卓良 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第8期212-215,共4页
We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if th... We investigate the dynamics of entanglement in the excitation transfer through a model consisting of three interacting molecules coupled to environments. It is shown that the entanglement can be further enhanced if the distance between the molecules is oscillating. Our results demonstrate that the motional effect plays a constructive role on quantum entanglement in the dynamics of excitation transfer. This mechanism might provide a useful guideline for designing artificial systems to battle against decoherence. 展开更多
关键词 Motion-Enhanced quantum entanglement in the Dynamics of Excitation Transfer
下载PDF
Conceptual Problems in Bell’s Inequality and Quantum Entanglement
13
作者 Yingqiu Gu 《Journal of Applied Mathematics and Physics》 2022年第7期2216-2231,共16页
The description of the microscopic world in quantum mechanics is very different from that in classical physics, and there are some points of view that are contrary to intuition and logic. The first is the problem of r... The description of the microscopic world in quantum mechanics is very different from that in classical physics, and there are some points of view that are contrary to intuition and logic. The first is the problem of reality;quantum mechanics believes the behavior of micro particles is random and jumping. The second is the loss of certainty;the conjugate physical variables of a system cannot be determined synchronously, they satisfy the Heisenberg uncertainty principle. The third is the non-local correlation. The measurement of one particle in the quantum entanglement pair will influence the state of the other entangled particle simultaneously. In this paper, some concepts related to quantum entanglement, such as EPR correlation, quantum entanglement correlation function, Bell’s inequality and so on, are analyzed in detail. Analysis shows that the mystery and confusion in quantum theory may be caused by the logical problems in its basic framework. Bell’s inequality is only a mathematical theorem, but its physical meaning is actually unclear. The Bell state of quantum entangled pair may not satisfy the dynamic equation of quantum theory, so it cannot describe the true state of microscopic particles. In this paper, the correct correlation functions of spin entanglement pair and photonic entanglement pair are strictly derived according to normal logic. Quantum theory is a more fundamental theory than classical mechanics, and they are not equal relation in logic. However, there are still some unreasonable contents in the framework of quantum theory, which need to be improved. In order to disclose the real relationship between quantum theory and classical mechanics, we propose some experiments which provide intuitionistic teaching materials for the new interpretation of quantum theory. 展开更多
关键词 quantum Mechanics Interpretation Mathematical Foundation of quantum Mechanics EPR Correlation Bohm’s Hidden Variable Theory quantum entanglement Bell’s Inequality quantum Correlation Function Schrödinger Equation Heisenberg Uncertainty Relation
下载PDF
Quantum Entanglement and Cryptography for Automation and Control of Dynamic Systems
14
作者 Farbod KHOSHNOUD Ibrahim I.ESAT +1 位作者 Shayan JAVAHERIAN Behnam BAHR 《Instrumentation》 2019年第4期109-127,共19页
This paper addresses the application of quantum entanglement and cryptography for automation and control of dynamic systems.A dynamic system is a system where the rates of changes of its state variables are not neglig... This paper addresses the application of quantum entanglement and cryptography for automation and control of dynamic systems.A dynamic system is a system where the rates of changes of its state variables are not negligible.Quantum entanglement is realized by the Spontaneous Parametric Down-conversion process.Two entangled autonomous systems exhibit correlated behavior without any classical communication in between them due to the quantum entanglement phenomenon.Specifically,the behavior of a system,Bob,at a distance,is correlated with a corresponding system,Alice.In an automation scenario,the"Bob Robot"is entangled with the"Alice Robot"in performing autonomous tasks without any classical connection between them.Quantum cryptography is a capability that allows guaranteed security.Such capabilities can be implemented in control of autonomous mechanical systems where,for instance,an"Alice Autonomous System"can control a"Bob Autonomous System"for applications of automation and robotics.The applications of quantum technologies to mechanical systems,at a scale larger than the atomistic scale,for control and automation,is a novel contribution of this paper.Notably,the feedback control transfer function of an integrated classical dynamic system and a quantum state is proposed. 展开更多
关键词 quantum entanglement quantum Multibody Dynamics quantum Cooperative Robotics quantum Cryptography quantum Autonomy
下载PDF
From E=mc^(2) to E=mc^(2)/22—A Short Account of the Most Famous Equation in Physics and Its Hidden Quantum Entanglement Origin
15
作者 Mohamed S.El Naschie 《Journal of Quantum Information Science》 2014年第4期284-291,共8页
Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residin... Einstein’s energy mass formula is shown to consist of two basically quantum components E(O) = mc2/22 and E(D) = mc2(21/22). We give various arguments and derivations to expose the quantum entanglement physics residing inside a deceptively simple expression E = mc2. The true surprising aspect of the present work is however the realization that all the involved “physics” in deriving the new quantum dissection of Einstein’s famous formula of special relativity is actually a pure mathematical necessity anchored in the phenomena of volume concentration of convex manifold in high dimensional quasi Banach spaces. Only an endophysical experiment encompassing the entire universe such as COBE, WMAP, Planck and supernova analysis could have discovered dark energy and our present dissection of Einstein’s marvelous formula. 展开更多
关键词 Special Relativity Varying Speed of Light Hardy’s quantum entanglement Dark Energy Measure Concentration in Banach Space ‘tHooft Fractal Spacetime Witten Fractal M-Theory E-Infinity Theory Transfinite Cellular Automata Golden Mean Computer Endophysics Finkelstein-Rossler-Primas Theory of Interface
下载PDF
Quantum entanglement generation on magnons assisted with microwave cavities coupled to a superconducting qubit
16
作者 Jiu-Ming Li Shao-Ming Fei 《Frontiers of physics》 SCIE CSCD 2023年第4期311-320,共10页
We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet(YIG)spheres,microwave cavities and a superconducting(SC)qubit.In the schemes,the YIGs are cou... We present protocols to generate quantum entanglement on nonlocal magnons in hybrid systems composed of yttrium iron garnet(YIG)spheres,microwave cavities and a superconducting(SC)qubit.In the schemes,the YIGs are coupled to respective microwave cavities in resonant way,and the SC qubit is placed at the center of the cavities,which interacts with the cavities simultaneously.By exchanging the virtual photon,the cavities can indirectly interact in the far-detuning regime.Detailed protocols are presented to establish entanglement for two,three and arbitrary N magnons with reasonable fidelities. 展开更多
关键词 MAGNON superconducting qubit quantum electrodynamics quantum entanglement indirect interaction
原文传递
Effects of quantum quench on entanglement dynamics in antiferromagnetic Ising model
17
作者 李玥 房盼盼 +3 位作者 王哲 张盼盼 徐玉良 孔祥木 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第10期199-204,共6页
We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-g... We study the relationship between quench dynamics of entanglement and quantum phase transition in the antiferromagnetic Ising model with the Dzyaloshinskii–Moriya(DM)interaction by using the quantum renormalization-group method and the definition of negativity.Two types of quench protocols(i)adding the DM interaction suddenly and(ii)rotating the spins around x axis are considered to drive the dynamics of the system,respectively.By comparing the behaviors of entanglement in both types of quench protocols,the effects of quench on dynamics of entanglement are studied.It is found that there is the same characteristic time at which the negativity firstly reaches its maximum although the system shows different dynamical behaviors.Especially,the characteristic time can accurately reflect the quantum phase transition from antiferromagnetic to saturated chiral phases in the system.In addition,the correlation length exponent can be obtained by exploring the nonanalytic and scaling behaviors of the derivative of the characteristic time. 展开更多
关键词 quantum entanglement quantum phase transition quantum quench quantum renormalization group
下载PDF
Entanglement and thermalization in the extended Bose–Hubbard model after a quantum quench: A correlation analysis
18
作者 苏晓强 许宗菊 赵有权 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期168-174,共7页
Exploring the role of entanglement in quantum nonequilibrium dynamics is important to understand the mechanism of thermalization in an isolated system. We study the relaxation dynamics in a one-dimensional extended B... Exploring the role of entanglement in quantum nonequilibrium dynamics is important to understand the mechanism of thermalization in an isolated system. We study the relaxation dynamics in a one-dimensional extended Bose–Hubbard model after a global interaction quench by considering several observables: the local Boson numbers, the nonlocal entanglement entropy, and the momentum distribution functions. We calculate the thermalization fidelity for different quench parameters and different sizes of subsystems, and the results show that the degree of thermalization is affected by the distance from the integrable point and the size of the subsystem. We employ the Pearson coefficient as the measurement of the correlation between the entanglement entropy and thermalization fidelity, and a strong correlation is demonstrated for the quenched system. 展开更多
关键词 quantum quench quantum entanglement THERMALIZATION extended Bose–Hubbard model
下载PDF
Detecting the quantum phase transition from the perspective of quantum information in the Aubry–André model
19
作者 韦庚彪 叶柳 王栋 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期171-176,共6页
We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the drivi... We investigate the effectiveness of entropic uncertainty, entanglement and steering in discerning quantum phase transitions(QPTs). Specifically, we observe significant fluctuations in entropic uncertainty as the driving parameter traverses the phase transition point. It is observed that the entropic uncertainty, entanglement and quantum steering, based on the electron distribution probability, can serve as indicators for detecting QPTs. Notably, we reveal an intriguing anticorrelation relationship between entropic uncertainty and entanglement in the Aubry–André model. Moreover, we explore the feasibility of detecting a QPT when the period parameter is a rational number. These observations open up new and efficient avenues for probing QPTs. 展开更多
关键词 quantum phase transition entropic uncertainty quantum entanglement quantum steering
下载PDF
Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal 被引量:2
20
作者 王美姣 夏云杰 +4 位作者 杨阳 曹连振 张钦伟 李英德 赵加强 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第11期203-211,共9页
Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels w... Based on the quantum technique of the weak measurement and quantum measurement reversal(WMR),we propose a scheme to protect entanglement for an entangled two-qubit pure state from four typical quantum noise channels with memory,i.e.,the amplitude damping channel,the phase damping channel,the bit flip channel,and the depolarizing channel.For a given initial state |Ψ>=a |00>+d|11>,it is found that the WMR operation indeed helps to protect entanglement from the above four quantum channels with memory,and the protection effect of WMR scheme is better when the coefficient a is small.For the other initial state |φ>=b|01>+c|10>,the effect of the protection scheme is the same regardless of the coefficient b and the WMR operation can protect entanglement in the amplitude damping channel with memory.Moreover,the protection of entanglement in quantum noise channels without memory in contrast to the results of the channels with memory is more effective.For |Ψ> or |φ>,we also find that the memory parameters play a significant role in the suppression of entanglement sudden death and the initial entanglement can be drastically amplified.Another more important result is that the relationship between the concurrence,the memory parameter,the weak measurement strength,and quantum measurement reversal strength is found through calculation and discussion.It provides a strong basis for the system to maintain maximum entanglement in the nosie channel. 展开更多
关键词 quantum entanglement weak measurement and quantum measurement reversal quantum channel with memory CONCURRENCE
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部