Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic ...Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic Aperture Radar) is documented in some recent papers[3] to [6]. Applications have been attempted also to SAR (Synthetic Aperture Radar)[7][8]. In these fields the benefit ofspectral estimation reveals in a resolution beyond the Rayleigh limits set by compressed pulse andsynthetic aperture lengths. Furthermore very low sidelobes of point scatterer response are obtained.In this paper superresolution has been applied both to simulated stepped-frequency ISAR dataand to real ERS-1 SAR data; the achieved results are encouraging and suggest a more extensivepractical application of the technique. The paper is organized in two parts. In the first we have applied the autoregressive (AR) and the minimum variance (MV)-Capon methods to improve therange resolution of simulated ISAR data. In the second part we have conceived an upgraded versionof spectral analysis (SPECAN) processing to obtain a SAR image of better quality. The method hasbeen tested on recorded live data of ERS-1 mission.展开更多
For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics o...For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.展开更多
Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficien...Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.展开更多
Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to ...Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.展开更多
The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem ...The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.展开更多
It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used suc...It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.展开更多
Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot ...Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.展开更多
Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse sign...Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging.展开更多
The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target refle...The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.展开更多
Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing...Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.展开更多
Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration...Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.展开更多
In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose...In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar(ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead of simultaneous perturbation stochastic approximation(SPSA), we use weighted l1 norm as the surrogate functional and successfully develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the noise. Both the peak sidelobe ratio(PSLR) and the reconstruction relative error(RE) indicate that the proposed method outperforms the l1 norm based method.展开更多
With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital rec...With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.展开更多
Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workl...Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workload and increase safety. Therefore, a cable detection radar system is developed The real-time dynamic imaging synchronizing with radar space scanning has been implemented in developed ladar system. The requirements of the flight mission to prevent "wire strike" are analyzed and estimated, the advantages and disadvantages of the millimeter wave system with the laser system are weighted The result shows that Laser system is the best suited for helicopter avoidance obstacle. In addition, several design gist of detecting wire radar that was used in the developed ladar system is proposed and the developed zero backlash imaging technology and several advanced warning function are described. The detailed results of system ground tests and the performances description are presented The ground test of the developed ladar system has demonstrated that the developed imaging ladar system performance can achieve and satisfy the requirements of the mission to prevent "wire strike".展开更多
This study presents an innovative approach to improving the performance of YOLO-v8 model for small object detection in radar images.Initially,a local histogram equalization technique was applied to the original images...This study presents an innovative approach to improving the performance of YOLO-v8 model for small object detection in radar images.Initially,a local histogram equalization technique was applied to the original images,resulting in a notable enhancement in both contrast and detail representation.Subsequently,the YOLO-v8 backbone network was augmented by incorporating convolutional kernels based on a multidimensional attention mechanism and a parallel processing strategy,which facilitated more effective feature information fusion.At the model’s head,an upsampling layer was added,along with the fusion of outputs from the shallow network,and a detection head specifically tailored for small object detection,thereby further improving accuracy.Additionally,the loss function was modified to incorporate focal-intersection over union(IoU)in conjunction with scaled-IoU,which enhanced the model’s performance.A weighting strategy was also introduced,effectively improving detection accuracy for small targets.Experimental results demonstrate that the customized model outperforms traditional approaches across various evaluation metrics,including recall,precision,F1-score,and the receiver operating characteristic(ROC)curve,validating its efficacy and innovation in small object detection within radar imagery.The results indicate a substantial improvement in accuracy compared to conventional methods such as image segmentation and standard convolutional neural networks.展开更多
The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving t...The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.展开更多
Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribut...Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.展开更多
In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Rec...In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Recently, L. Stankovic proposed an m-D removal method based on L-statistics, which has been proved effective and simple. The algorithm can extract the m-D effects according to different behaviors of signals induced by rotational parts and rigid bodies in time-frequency (T-F) domain. However, by removing m-D effects, some useful short time Fourier transform (STFT) samples of rigid bodies are also extracted, which induces the side lobe problem of rigid bodies. A parameter estimation method for rigid bodies after m-D removal is proposed, which can accurately re- cover rigid bodies and avoid the side lobe problem by only using m-D removal. Simulations are given to validate the effectiveness of the proposed method.展开更多
In the composed system of a target and rough surface, the electromagnetic scattering mechanism, especially the multipath scattering, is investigated. Using physical optics double bouncing algorithm, the multipath scat...In the composed system of a target and rough surface, the electromagnetic scattering mechanism, especially the multipath scattering, is investigated. Using physical optics double bouncing algorithm, the multipath scattering model of the system has been established. Simulated by a wide-band radar signal and based on fractal rough surface, the artificial echo of the target has been obtained in virtue of the established multipath scattering model. By simulating to image the target in one dimension using the artificial echo, two kinds of range profiles are attained. It is found that one is from the target and the other is from the multipath scattering effect. Key words multipath scattering - radar imaging - rough surface scattering CLC number O 451 Foundation item: Supported by the Key Laboratory Foundation of National Defense Science and Technology (99JS93. 1. 2. JW1204)Biography: Yang Chun-hua(1978-), male, Ph. D candidate, research direction: radio wave propagation and wiresless communication.展开更多
文摘Modern spectral estimation techniques (superresolution in technical jargon) have been applied to many fields of signal processing since many years[1][2]. Application to radar imaging, mainlyto ISAR (Inverse Synthetic Aperture Radar) is documented in some recent papers[3] to [6]. Applications have been attempted also to SAR (Synthetic Aperture Radar)[7][8]. In these fields the benefit ofspectral estimation reveals in a resolution beyond the Rayleigh limits set by compressed pulse andsynthetic aperture lengths. Furthermore very low sidelobes of point scatterer response are obtained.In this paper superresolution has been applied both to simulated stepped-frequency ISAR dataand to real ERS-1 SAR data; the achieved results are encouraging and suggest a more extensivepractical application of the technique. The paper is organized in two parts. In the first we have applied the autoregressive (AR) and the minimum variance (MV)-Capon methods to improve therange resolution of simulated ISAR data. In the second part we have conceived an upgraded versionof spectral analysis (SPECAN) processing to obtain a SAR image of better quality. The method hasbeen tested on recorded live data of ERS-1 mission.
基金Project(61360020102) supported by the National Basic Research Development Program of China
文摘For ballistic mid-course targets,in addition to constant orbital motion,the target or any structure on the target undergoes micro-motion dynamics,such as spin,precession and tumbling.The micro-motion characteristics of the ballistic mid-course targets were discussed.The target motion model and inverse synthetic aperture radar(ISAR) imaging model for this kind of targets were built.Then,the influence of micro-motion on ISAR imaging based on the established imaging model was presented.The computer simulation to get mid-course target echoes from static darkroom electromagnetic scattering data based on the established target motion model was realized.The imaging results of computer simulation show the validity of ISAR imaging analysis for micro-motion targets.
基金supported by the China National Funds for Distinguished Young Scientists(61025006)
文摘Imaging the spatial precession cone-shaped targets with narrowband radar is a new technical approach in mid-course recognition problem. However, most existing time-frequency methods still have some inevitable deficiencies for extracting microDoppler information in practical applications, which leads to blurring of the image. A new narrowband radar imaging algorithm for the precession cone-shaped targets is proposed. The instantaneous frequency of each scattering point is gained by using the improved Hilbert-Huang transform, then the positions of scattering points in the parameter domain are reconstructed. Numerical simulation and experiment results confirm the effectiveness and high precision of the proposed algorithm.
文摘Based on the array architecture of multiple transmitting/receiving antennas, Multi-Input Multi-Output (MIMO) radar provides a new mechanism for radar imaging technology. In order to explore the processing approach to this imaging mechanism, the two dimensional (2D) imaging model of MIMO radar is established first, and the spatial sampling ability is analyzed from the concept of spatial convolution of the antenna elements. The target spatial spectral filling format of MIMO radar with monochromatic transmitting signal is described. High-resolution imaging capability of MIMO radar is analyzed according to spatial spectral coverage and the corresponding imaging algorithm is presented. Finally, field imaging experiment is used to demonstrate the superior imaging performance of MIMO radar.
基金The Natural Science Foundation of Jiangsu Province(NoBK2008429)Open Research Foundation of State Key Laboratory ofMillimeter Waves of Southeast University(NoK200903)+1 种基金China Postdoctoral Science Foundation(No20080431126)Jiangsu Province Postdoctoral Science Foundation(No2007337)
文摘The convergence performance of the minimum entropy auto-focusing(MEA) algorithm for inverse synthetic aperture radar(ISAR) imaging is analyzed by simulation. The results show that a local optimal solution problem exists in the MEA algorithm. The cost function of the MEA algorithm is not a downward-convex function of multidimensional phases to be compensated. Only when the initial values of the compensated phases are chosen to be near the global minimal point of the entropy function, the MEA algorithm can converge to a global optimal solution. To study the optimal solution problem of the MEA algorithm, a new scheme of entropy function optimization for radar imaging is presented. First, the initial values of the compensated phases are estimated by using the modified Doppler centroid tracking (DCT)algorithm. Since these values are obtained according to the maximum likelihood (ML) principle, the initial phases can be located near the optimal solution values. Then, a fast MEA algorithm is used for the local searching process and the global optimal solution can be obtained. The simulation results show that this scheme can realize the global optimization of the MEA algorithm and can avoid the selection and adjustment of parameters such as iteration step lengths, threshold values, etc.
文摘It has long been realized that the problem of radar imaging is a special case of image reconstruction in which the data are incomplete and noisy. In other fields, iterative reconstruction algorithms have been used successfully to improve the image quality. This paper studies the application of iterative algorithms in radar imaging. A discrete model is first derived, and the iterative algorithms are then adapted to radar imaging. Although such algorithms are usually time consuming, this paper shows that, if the algorithms are appropriately simplified, it is possible to realize them even in real time. The efficiency of iterative algorithms is shown through computer simulations.
基金supported by the National Natural Science Foundation of China(60871070)
文摘Target modeling and scattering function calculating are important prerequisites and groundwork for the synthetic aperture radar(SAR) imaging simulation.According to the difficult problems that normal methods cannot calculate the scattering function of electrically large object under the condition to wideband,an effective method of improved equivalent edge currents is presented and applied to SAR imaging simulation for the first time.This method improves calculating velocity and has relatively high precision.The concrete steps of applying the method are given.By way of the simulation experiment,the effectiveness of the method is verified.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2010CB731900)
文摘Sparse signal processing is a signal processing technique that takes advantage of signal’s sparsity,allowing signal to be recovered with a reduced number of samples.Compressive sensing,a new branch of the sparse signal processing,has become a rapidly growing research field.Sparse microwave imaging introduces the sparse signal processing theory to radar imaging to obtain new theories,new systems and new methodologies of microwave imaging.This paper first summarizes the latest application of sparse microwave imaging,including Synthetic Aperture Radar(SAR),tomographic SAR and inverse SAR.As sparse signal processing keeps evolving,an avalanche of results have been obtained.We also highlight its recent theoretical advances,including structured sparsity,off-grid,Bayesian approaches,and point out new research directions in sparse microwave imaging.
基金supported by the Prominent Youth Fund of the National Natural Science Foundation of China (61025006)
文摘The theory of compressed sensing (CS) provides a new chance to reduce the data acquisition time and improve the data usage factor of the stepped frequency radar system. In light of the sparsity of radar target reflectivity, two imaging methods based on CS, termed the CS-based 2D joint imaging algorithm and the CS-based 2D decoupled imaging algorithm, are proposed. These methods incorporate the coherent mixing operation into the sparse dictionary, and take random measurements in both range and azimuth directions to get high resolution radar images, thus can remarkably reduce the data rate and simplify the hardware design of the radar system while maintaining imaging quality. Ex- periments from both simulated data and measured data in the anechoic chamber show that the proposed imaging methods can get more focused images than the traditional fast Fourier trans- form method. Wherein the joint algorithm has stronger robustness and can provide clearer inverse synthetic aperture radar images, while the decoupled algorithm is computationally more efficient but has slightly degraded imaging quality, which can be improved by increasing measurements or using a robuster recovery algorithm nevertheless.
基金Projects(61171133,61271442)supported by the National Natural Science Foundation of ChinaProject(61025006)supported by the National Natural Science Foundation for Distinguished Young Scholars of ChinaProject(B110404)supported by the Innovation Program for Excellent Postgraduates of National University of Defense Technology,China
文摘Narrowband radar has been successfully used for high resolution imaging of fast rotating targets by exploiting their micro-motion features.In some practical situations,however,the target image may suffer from aliasing due to the fixed pulse repetition interval(PRI)of traditional radar scheme.In this work,the random PRI signal associated with compressed sensing(CS)theory was introduced for aliasing reduction to obtain high resolution images of fast rotating targets.To circumvent the large-scale dictionary and high computational complexity problem arising from direct application of CS theory,the low resolution image was firstly generated by applying a modified generalized Radon transform on the time-frequency domain,and then the dictionary was scaled down by random undersampling as well as the atoms extraction according to those strong scattering areas of the low resolution image.The scale-down-dictionary CS(SDD-CS)processing scheme was detailed and simulation results show that the SDD-CS scheme for narrowband radar can achieve preferable images with no aliasing as well as acceptable computational cost.
基金supported by the Opening Foundation of the Agile and Intelligence Computing Key Laboratory of Sichuan Province under Grant No.H23004the Chengdu Municipal Science and Technology Bureau Technological Innovation R&D Project(Key Project)under Grant No.2024-YF08-00106-GX.
文摘Aiming to solve the bottleneck problem of electromagnetic scattering simulation in the scenes of extremely large-scale seas and ships,a high-frequency method by using graphics processing unit(GPU)parallel acceleration technique is proposed.For the implementation of different electromagnetic methods of physical optics(PO),shooting and bouncing ray(SBR),and physical theory of diffraction(PTD),a parallel computing scheme based on the CPU-GPU parallel computing scheme is realized to balance computing tasks.Finally,a multi-GPU framework is further proposed to solve the computational difficulty caused by the massive number of ray tubes in the ray tracing process.By using the established simulation platform,signals of ships at different seas are simulated and their images are achieved as well.It is shown that the higher sea states degrade the averaged peak signal-to-noise ratio(PSNR)of radar image.
基金supported by National Natural Science Foundationof China(Nos.61071146,61171165 and 61301217)Natural ScienceFoundation of Jiangsu Province(No.BK2010488)National Scientific Equipment Developing Project of China(No.2012YQ050250)
文摘In compressive sensing(CS) based inverse synthetic aperture radar(ISAR) imaging approaches, the quality of final image significantly depends on the number of measurements and the noise level. In this paper, we propose an improved version of CSbased method for inverse synthetic aperture radar(ISAR) imaging. Different from the traditional l1 norm based CS ISAR imaging method, our method explores the use of Gini index to measure the sparsity of ISAR images to improve the imaging quality. Instead of simultaneous perturbation stochastic approximation(SPSA), we use weighted l1 norm as the surrogate functional and successfully develop an iteratively re-weighted algorithm to reconstruct ISAR images from compressed echo samples. Experimental results show that our approach significantly reduces the number of measurements needed for exact reconstruction and effectively suppresses the noise. Both the peak sidelobe ratio(PSLR) and the reconstruction relative error(RE) indicate that the proposed method outperforms the l1 norm based method.
文摘With the extension of the application domains for laser imaging radar, it is necessary to find a new technical way to obtain high technical performance and adaptive ability. In this paper, A new concept of digital receiver of laser imaging radar system is presented. This digital receiver is defined as a time varying parameter receiver which possesses large dynamics region and time domain filter. The receiver’s mode, component structure as well as every function of its processing are described. The results and laboratorial data show the feasibility of digital reception. Also, it can exploit the inherent nature of laser imaging radar to obtain high probability of detection.
基金Supported by Electronic Science Research Institute of China (No. BD02371)
文摘Rotorcraft in low-level flight is endangered by power lines or telephone wires. The development of automation tools that can detect obstacles in the flight path and warn the crew would significantly reduce pilot workload and increase safety. Therefore, a cable detection radar system is developed The real-time dynamic imaging synchronizing with radar space scanning has been implemented in developed ladar system. The requirements of the flight mission to prevent "wire strike" are analyzed and estimated, the advantages and disadvantages of the millimeter wave system with the laser system are weighted The result shows that Laser system is the best suited for helicopter avoidance obstacle. In addition, several design gist of detecting wire radar that was used in the developed ladar system is proposed and the developed zero backlash imaging technology and several advanced warning function are described. The detailed results of system ground tests and the performances description are presented The ground test of the developed ladar system has demonstrated that the developed imaging ladar system performance can achieve and satisfy the requirements of the mission to prevent "wire strike".
基金supported by the Na‑tional Natural Science Foundation of China Joint Fund(No.U21B2028)the National Key R&D Program of China(No.2021YFC 2100100)the Shanghai Science and Technology Project(Nos.21JC1403400,23JC1402300).
文摘This study presents an innovative approach to improving the performance of YOLO-v8 model for small object detection in radar images.Initially,a local histogram equalization technique was applied to the original images,resulting in a notable enhancement in both contrast and detail representation.Subsequently,the YOLO-v8 backbone network was augmented by incorporating convolutional kernels based on a multidimensional attention mechanism and a parallel processing strategy,which facilitated more effective feature information fusion.At the model’s head,an upsampling layer was added,along with the fusion of outputs from the shallow network,and a detection head specifically tailored for small object detection,thereby further improving accuracy.Additionally,the loss function was modified to incorporate focal-intersection over union(IoU)in conjunction with scaled-IoU,which enhanced the model’s performance.A weighting strategy was also introduced,effectively improving detection accuracy for small targets.Experimental results demonstrate that the customized model outperforms traditional approaches across various evaluation metrics,including recall,precision,F1-score,and the receiver operating characteristic(ROC)curve,validating its efficacy and innovation in small object detection within radar imagery.The results indicate a substantial improvement in accuracy compared to conventional methods such as image segmentation and standard convolutional neural networks.
文摘The detection and ima ging of moving targets based on airborne synthetic aperture radar (SAR) is a cru cial technique for the modern radar. Firstly, the mathematical model of SAR ech o signal which comes from moving targets is constructed. Based on this model, th e features of moving target imaging are introduced and the effects of target mov ement to SAR imaging are analyzed. Then the development and the status of this t echnique are reviewed in detail. Finally, some frontiers of this field are point ed out.
基金supported by the National Natural Science Foundation of China (Grant No.90305026)
文摘Based on the high frequency (HF) integrated radar cross section (RCS) calculation approach, a technique of detecting major scattering source is developed by using an appropriate arithmetic for scattering distribution and scattering source detection. For the perfect adaptability to targets and the HF of the HF integrated RCS calculation platform, this technique is suitable to solve large complex targets and has lower requirement to the target modeling. A comparison with the result of 2-D radar imaging confirms the accuracy and reliability of this technique in recognition of the major scattering source on complex targets. This technique provides the foundation for rapid integrated evaluation of the scattering performance and 3-D scattering model reconstruction of large complex targets.
基金supported by the National Natural Science Foundation of China(61471149)the Program for New Century Excellent Talents in University(NCET-12-0149)+2 种基金the National Science Foundation for Postdoctoral Scientists of China(2013M540292)the postdoctoral scienceresearch developmental foundation of Heilongjiang province(LBHQ11092)the Heilongjiang Postdoctoral Specialized Research Fund
文摘In traditional inverse synthetic aperture radar (ISAR) imaging of moving targets with rotational parts, the micro-Doppler (m-D) effects caused by the rotational parts influence the quality of the radar images. Recently, L. Stankovic proposed an m-D removal method based on L-statistics, which has been proved effective and simple. The algorithm can extract the m-D effects according to different behaviors of signals induced by rotational parts and rigid bodies in time-frequency (T-F) domain. However, by removing m-D effects, some useful short time Fourier transform (STFT) samples of rigid bodies are also extracted, which induces the side lobe problem of rigid bodies. A parameter estimation method for rigid bodies after m-D removal is proposed, which can accurately re- cover rigid bodies and avoid the side lobe problem by only using m-D removal. Simulations are given to validate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(6089007261301292)the Ph.D.Program Foundation of Ministry of Education of China(20130203120007)
文摘In the composed system of a target and rough surface, the electromagnetic scattering mechanism, especially the multipath scattering, is investigated. Using physical optics double bouncing algorithm, the multipath scattering model of the system has been established. Simulated by a wide-band radar signal and based on fractal rough surface, the artificial echo of the target has been obtained in virtue of the established multipath scattering model. By simulating to image the target in one dimension using the artificial echo, two kinds of range profiles are attained. It is found that one is from the target and the other is from the multipath scattering effect. Key words multipath scattering - radar imaging - rough surface scattering CLC number O 451 Foundation item: Supported by the Key Laboratory Foundation of National Defense Science and Technology (99JS93. 1. 2. JW1204)Biography: Yang Chun-hua(1978-), male, Ph. D candidate, research direction: radio wave propagation and wiresless communication.