期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Low-carbon building heating system coupled with semiconductor radiation heating and distributed PV:A simulation analysis in two Chinese climate zones
1
作者 Yan Zhang Kai Han +3 位作者 Yongzhen Wang Wenjie Ji Lanlan Zhang Wei Zhang 《Building Simulation》 SCIE EI CSCD 2023年第7期1059-1079,共21页
Building is an important scenario for achieving global carbon peak and carbon neutrality goals,accounting for approximately 37%of global energy-related CO_(2) emissions in 2020.In the meanwhile,the construction and op... Building is an important scenario for achieving global carbon peak and carbon neutrality goals,accounting for approximately 37%of global energy-related CO_(2) emissions in 2020.In the meanwhile,the construction and operation of buildings was responsible for 36%of global energy consumption,of which 30%energy was used for space heating.Therefore,this paper proposes a low-carbon building heating system that is coupled to a new semiconductor radiation heating unit and distributed rooftop photovoltaic to reduce carbon emissions.To reveal its building heating characteristics,a dynamic model of heat transfer based on semiconductor low-temperature radiant heating is first established by analyzing the heat conduction,convection,and radiation models,and the uncertainty from both the distributed rooftop photovoltaic and building heating demand is considered in the building heating operation strategy.Then,a simulation model of a low-carbon building heating system is built in MATLAB/SIMULINK for two different climate zones in China(Beijing and Wuhan).When building and using the low-carbon building heating system stable for 30 years,the payback period is 5.2–8.2 years in Beijing and 6.4–11.6 years in Wuhan.Compared with the traditional grid-powered heating system,the simulation revealed that the carbon emissions of Beijing and Wuhan during the heating season are reduced by 44.9%and 44.3%,respectively,and the corresponding building heating cost is saved by 62.1%and 57.8%. 展开更多
关键词 radiation heating low-carbon building heating SEMICONDUCTOR distributed photovoltaic simulation optimization
原文传递
Characteristics of radiation and convection heat transfer in indirect near-infrared-ray heating chamber 被引量:1
2
作者 CHOI Hoon-ki YOO Geun-jong KIM Churl-hwan 《Journal of Central South University》 SCIE EI CAS 2011年第3期731-738,共8页
Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design pa... Numerical study was performed to evaluate the characteristics of combined heat transfer of radiation, conduction and convection in indirect near infrared ray (N/R) heating chamber. The effects of important design parameters such as the shape of heat absorbing cylinder and heat releasing fin on the pressure drop and heat transfer coefficient were analyzed with different Reynolds numbers. The Reynolds numbers were varied from 103 to 3x106, which was defined based on the hydraulic diameter of the heat absorbing cylinder. Analyses were performed to obtain the inner and outer flow and the temperature distributions in the heat absorbing cylinder and the rates of radiation heat transfer and convection heat transfer. As the Reynolds number increases, the convection heat transfer rate is increased while the radiation heat transfer rate is decreased. The average convection heat transfer rate follows a power rule of the Reynolds number. Addition of three-dimensional heat releasing fin to the outside of the heat absorbing cylinder enhances the convection heat transfer. 展开更多
关键词 near infrared ray indirect near infrared ray heater absorbing cylinder heat releasing fin radiation heat transfer convection heat transfer Reynolds number
下载PDF
Preparation of CaS:Eu^(2+) Phosphor by Microwave Heating Method and its Luminescence
3
作者 Peng Jun LIU Ying Liang LIU Department of Chemistry, Jinan University, Guangzhou 510632 Department of Chemistry, Hainan Normal College, Haikou 571158 《Chinese Chemical Letters》 SCIE CAS CSCD 2000年第9期843-846,共4页
This is the first report of using the microwave heating technique to synthesize calcium sulphide activated by europium whose structure is determined as the face-centered cubic by conventional X-ray powder diffraction ... This is the first report of using the microwave heating technique to synthesize calcium sulphide activated by europium whose structure is determined as the face-centered cubic by conventional X-ray powder diffraction method. The phosphor has maximum excitation peaks located at 280 urn and 560 urn and the maximum emission of the phosphor is 630 nm. When the concentration of Eu^(2+) in CaS increases from I .0 × 10^(-5) to l.0 × 10^(-2) mole per mole host, the body colour of the calcium sulphide activated with europium changes from white, through light-red to pink to deep-red. The phosphor obtains the longest afterglow at the concentration of 0.1% Eu^(2+)doped and is a kind of good material excited by sunlight. 展开更多
关键词 Microwave radiation heating calcium sulphide EUROPIUM luminescence.
下载PDF
SEASONAL VARIATIONS OF NET RADIATIVE HEATING IN THE EARTH-ATMOSPHERIC SYSTEM AND ITS RELATIONS TOASIAN SUMMER MONSOON
4
作者 黎伟标 罗会邦 《Journal of Tropical Meteorology》 SCIE 1999年第2期171-178,共8页
Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net... Satellite-derived data of the outgoing longwave radiation (OLR), net shortwave radiation at thetropopause (SRT) and circulation information as predicted by NCEP are used in the work to study seasonal variations of net radiative heating in the earth-atmospheric system and its relationship with the Asian summer monsoon. As is shown in the result, the zonal deviations of the zonal deviations of the heating, manifested as mutations in direction between land and sea with seasons, is an indication of the thermal difference between them.Being a month earlier than that in the general circulation from spring to summer, the seasonal reversal of directionmay be playing an essential role in triggering the onset and withdrawal of summer monsoon in Asia. 展开更多
关键词 net radiation heating in the earth-atmospheric system difference between land and sea: seasonal variations Asian summer monsoon
下载PDF
A new hybrid method—combined heat flux method with Monte-Carlo method to analyze thermal radiation 被引量:2
5
作者 Zengwu Zhao Daqiang Cang +2 位作者 Wenfei Wu Yike Li Baowei Li 《Journal of University of Science and Technology Beijing》 CSCD 2006年第1期25-28,共4页
A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo meth... A new hybrid method, Monte-Carlo-Heat-Flux (MCHF) method, was presented to analyze the radiative heat transfer of participating medium in a three-dimensional rectangular enclosure using combined the Monte-Carlo method with the heat flux method. Its accuracy and reliability was proved by comparing the computational results with exact results from classical "Zone Method". 展开更多
关键词 radiation heat transfer SCATTERING numerical simulation Monte-Carlo method heat flux method
下载PDF
Coupling model for unsteady MHD flow of generalized Maxwell fluid with radiation thermal transform* 被引量:1
6
作者 Yaqing LIU Boling GUO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第2期137-150,共14页
This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fr... This paper introduces a new model for the Fourier law of heat conduction with the time-fractional order to the generalized Maxwell fluid. The flow is influenced by magnetic field, radiation heat, and heat source. A fractional calculus approach is used to establish the constitutive relationship coupling model of a viscoelastic fluid. We use the Laplace transform and solve ordinary differential equations with a matrix form to obtain the velocity and temperature in the Laplace domain. To obtain solutions from the Laplace space back to the original space, the numerical inversion of the Laplace transform is used. According to the results and graphs, a new theory can be constructed. Comparisons of the associated parameters and the corresponding flow and heat transfer characteristics are presented and analyzed in detail. 展开更多
关键词 Maxwell fluid fractional derivative radiation heat heat source Laplacetransform
下载PDF
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:4
7
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
下载PDF
Study on the Influence of Piloti on Mean Radiant Temperature in Residential Blocks by 3-D Unsteady State Heat Balance Radiation Calculation 被引量:1
8
作者 Tian-Yu Xi Jian-Hua Ding Hong Jin 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第4期91-95,共5页
Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reve... Piloti is commonly used in tropical and subtropical climate zones to get high wind velocity and create shadowed areas in order to optimize the living environment of residential blocks,but there are few studies to reveal the influence of piloti on the radiant environment of residential blocks systematically. Taking the city of Guangzhou as an example,using 3-D Unsteady State Heat Balance Radiation Calculation Method,this paper shows that the mean radiant temperature( MRT) under piloti area increases with the increase of piloti ratio,and especially when piloti ratio is equal to 100%,the MRT increase trend becomes sharp. The MRT of exposed area decreases with the increase of piloti ratio,especially when piloti ratio reaches 100%,the decrease trend of MRT becomes sharp,which offers the reference for the study on piloti design in subtropical climate zones and further research on living environment by CFD simulation in residential blocks. 展开更多
关键词 piloti mean radiant temperature 3-D unsteady state heat balance radiation calculation residential block
下载PDF
Calculations of Heat Transfer in Torch Furnaces by Gas Volume Radiation Laws 被引量:1
9
作者 A. N. Makarov 《World Journal of Engineering and Technology》 2016年第3期488-503,共17页
The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas vo... The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies. 展开更多
关键词 Heat Transfer Gas Volumes Heat radiation Laws TORCH FURNACE
下载PDF
A New Method for Computing Radiation Heat Flow of In-Cylinder Soot of Diesel Engines
10
作者 向长虎 张卫正 原彦鹏 《Journal of Beijing Institute of Technology》 EI CAS 2009年第3期293-297,共5页
A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot parti... A concise formula for computing radiation heat flow of in-cylinder soot is presented, based on the assumptions that in-cylinder heat transfer of diesel engines is a quasi-equilibrium process and in-cylinder soot particles are spherical. That in this formula there consist neither constants needing adjustments nor variables related to engine types or operating conditions makes it universal and easy to use. Also it can be seen from the formula that radiation heat transfer is proportional to the quotient of in-cylinder soot mass over the average radius of primary particles. Besides, with the help of different algorithms it can be used for predicting cylinders' global as well as local radiation heat flows. As a demonstrative application on its global facet, a three-dimension simulation study about the soot-radiation-related heat flow in the combustion chamber of a diesel engine is carried out. Results show that the range of the soot-radiation-related heat flow computed by this formula agrees well with other researcher's earlier theoretic reasoning and experimental measurements. 展开更多
关键词 radiation heat flow in-cylinder soot diesel engine
下载PDF
The Impact of Soil Moisture Availability upon the Partition of Net Radiation into Sensible and Latent Heat Fluxes
11
作者 叶卓佳 贾新媛 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1991年第3期339-350,共12页
The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a re... The impact of soil moisture availability on the Bowen ratio and on the partition of net radiation flux into sensible, latent and soil heat fluxes was investigated by using one-dimensional primitive equations with a refined soil parameterization scheme. Simulation results presented that as soil moisture availability increases, the Bowen ratio and the partition of net radiation flux into sensible and soil heat fluxes decrease. The partition of net radiation flux into latent heat flux, however, increases. Quantitative relationships between Bowen ratio and the partitions with soil moisture availability were also given in this study. 展开更多
关键词 heat The Impact of Soil Moisture Availability upon the Partition of Net radiation into Sensible and Latent Heat Fluxes
下载PDF
Thermal energy storage inside the chamber with a brick wall using the phase change process of paraffinic materials:A numerical simulation 被引量:2
12
作者 M.Javidan M.Asgari +3 位作者 M.Gholinia M.Nozari A.Asgari D.D.Ganji 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第3期197-206,共10页
Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent h... Phase change materials are one of the potential resources to replace fossil fuels in regards of supplying the energy of buildings.Basically,these materials absorb or release heat energy with the help of their latent heat.Phase change materials have low thermal conductivity and this makes it possible to use the physical properties of these materials in the tropical regions where the solar radiation is more direct and concentrated over a smaller area.In this theoretical work,an attempt has been made to study the melting process of these materials by applying constant heat flux and temperature.It was found that by increasing the thickness of phase change materials’layers,due to the melting,more thermal energy is stored.Simultaneously it reduces the penetration of excessive heat into the chamber,so that by increasing the thickness of paraffin materials up to 20 mm,the rate of temperature reduction reaches more than 18%.It was also recognized that increasing the values of constant input heat flux increases buoyancy effects.Increasing the Stefan number from 0.1 to 0.3,increases the temperature by 6%. 展开更多
关键词 Thermal energy storage Heat transfer fluid radiation heat transfer Phase change material
下载PDF
Effect of anisotropy on thermoelastic contact problem 被引量:2
13
作者 Sakti Pada Barik M.Kanoria P.K.Chaudhuri 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第4期501-510,共10页
This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact regio... This paper is concerned with the stationary plane contact of an insulated rigid punch and a half-space which is elastically anisotropic but thermally conducting. The frictional heat generation inside the contact region due to the sliding of the punch over the half-space surface and the heat radiation outside the contact region are taken into account. With the help of Fourier integral transform, the problem is reduced to a system of two singular integral equations. The equations are solved numerically by using Gauss-Jacobi and trapezoidal-rule quadratures. The effects of anisotropy and thermal effects are shown graphically. 展开更多
关键词 transversely isotropic medium Fourier transform frictional heating PUNCH heat radiation singular integral equation Fredholm integral equation
下载PDF
Thermal analysis of an innovative flat heat pipe radiator 被引量:1
14
作者 寇志海 白敏丽 杨洪武 《Journal of Central South University》 SCIE EI CAS 2011年第2期568-572,共5页
An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. Th... An innovative flat heat pipe radiator was put forward, and it has the features of high efficiency of heat dissipation, compact construction, low thermal resistance, light weight, low cost, and anti-dust-deposition. The thermal analysis of the flat heat pipe radiator for cooling high-power light emitting diode (LED) array was conducted. The thermal characteristics of the flat heat pipe radiator under the different heat loads and incline angles were investigated experimentally in natural convection. An electro-thermal conversion method was used to measure the junction temperature of the LED chips. It is found that the integral temperature distribution of the flat heat pipe radiator is reasonable and uniform. The total thermal resistance of the flat heat pipe radiator varies in the range of 0.38-0.45 K/W. The junction temperatures of LED chips with the flat heat pipe radiator and with the aluminum board at the same forward current of 0.35 A are 52.5 and 75.2 ℃, respectively. 展开更多
关键词 energy technology thermal analysis flat heat pipe radiator thermal characteristics
下载PDF
Thermally Induced Vibration Analysis of Flexible Beams Based on Isogeometric Analysis
15
作者 Jianchen Wu Yujie Guo Fangli Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第9期1007-1031,共25页
Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in a... Spacecraft flexible appendages may experience thermally induced vibrations(TIV)under sudden heating loads,which in consequence will be unable to complete their intended missions.Isogeometric analysis(IGA)utilizes,in an isoparametric concept,the same high order and high continuity non-uniform rational B-splines(NURBS)to represent both the geometry and the physical field of the structure.Compared to the traditional Lagrange polynomial based finite element method where only C0-continuity across elements can be achieved,IGA is geometrically exact and naturally fulfills the C1-continuity requirement of Euler–Bernoulli(EB)beam elements,therefore,does not need extra rotational degrees-of-freedom.In this paper,we present a thermally induced vibration analysis framework based on the isogeometric method where thermal and structural behaviors are coupled.We fully exploited the higher order,higher continuous and geometric exactness of the NURBS basis with both benchmarks and sophisticated problems.In particular,we studied the thermally induced vibrations of the Hubble Space Telescope(HST)solar panel where main factors influencing thermal flutters are studied,and where possible improvements of the analytical reference methods are discussed.Additionally,thermally induced vibrations of the thin-walled lenticular tubes are studied and two new configurations of the tube are proposed to effectively suppress the thermally induced vibrations.Numerical examples of both benchmarks and sophisticated problems confirm the accuracy and efficiency of the isogeometric analysis framework for thermally induced vibration analysis of space structures. 展开更多
关键词 Thermally induced vibration thermal flutter radiation heat transfer isogeometric analysis thermal structural coupling
下载PDF
Variations mechanism in entropy of wave height field and its relation with thermodynamic entropy
16
作者 郭佩芳 侯一筠 +1 位作者 钱成春 周良民 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2006年第1期65-68,共4页
This paper gives a brief description of annual period and seasonal variation in the wave height field entropy in the northeastern Pacific. A calculation of the quantity of the, received by lithosphere systems in the n... This paper gives a brief description of annual period and seasonal variation in the wave height field entropy in the northeastern Pacific. A calculation of the quantity of the, received by lithosphere systems in the northern hemisphere is introduced. The wave heat field entropy is compared with the difference in the quantity of the sun's radiation heat. Analysis on the transfer method, period and lag of this seasonal variation led to the conclusion that the annual period and seasonal variation in the entropy of the wave height field in the Northwestern Pacific is due to the seasonal variation of the sun's radiation heat. Furthermore, the inconsistency between thermodynamic entropy and information entropy was studied. 展开更多
关键词 wave height field ENTROPY sun radiation heat
下载PDF
Radiative Cooling in Northern Europe Using a Skylight 被引量:1
17
作者 M. Falt R. Zevenhoven 《Journal of Energy and Power Engineering》 2011年第8期692-702,共11页
The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could a... The purpose of this paper is to present the design and performance of a skylight using a mathematical model. This model uses weather data from the Finnish city Helsinki to assess its performance. This skylight could act as a radiative cooler or as a thermal insulator depending on the need. This versatile usage would thus decrease the need for traditional air-conditioning and hence save electricity. The skylight would consist of one normal silica glass window and of two polymer windows with a grcenhousc gas trapped in the spaces between the windows. The skylight would be in its cooling mode when the two spaces would be connected to each other and insulating when disconnected. Thus when cooling, a natural convective flow transports heat from the 1o~ er part of the skylight to the upper part of the skylight where the greenhouse gas is cooled by radiative heat exchange with the sky. 展开更多
关键词 Radiative cooling SKYLIGHT heat radiation in participating media resistance network
下载PDF
STUDY ON LOCATION OF HOT SPOT AT TUBE WALL FOR FIRED CYLINDRICAL FURNACE COMBUSTION
18
作者 WangTaiyong LuShizhong XüZhixue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2004年第2期170-172,176,共4页
Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The pro... Based on the analysis of heat radiation intensity from flame, a new mathematical model ofthe tube-wall temperatmp of heated tubes is developed by taking down-fired, upright-tube cylindricalfurnace for example. The proposed mathematical model can be employed to indicate both the positionand size of the hot spot at fire-facing wall of heated tube of combustion chamber, and is characteristicof simplicity and efficiency If coupled with thermoelectric couple or infrared viewer, the presentedlocation method of combustion hot spot can offer engineers very valuable proposal to keep furnacerunning more safely The same is true for any other type of tubular furnaces. 展开更多
关键词 Cylindrical fumace COMBUSTION Heat radiation intensity Tube-wall temperature Hot spot
下载PDF
Thermal Design and Optimization of Heat Pipe Radiator for Satellites 被引量:1
19
作者 HUNG Sam Kien Fan Cesar 《Computer Aided Drafting,Design and Manufacturing》 2010年第1期56-64,共9页
Satellite's thermal control subsystem (TCS) has to maintain components and structure within their specified temperature limits during satellite service life. TCS designers have to face the challenge of reducing bot... Satellite's thermal control subsystem (TCS) has to maintain components and structure within their specified temperature limits during satellite service life. TCS designers have to face the challenge of reducing both the weight of the system and required heater power while keeping components temperature within their design range. For a space based heat pipe radiator system, several researchers have published different approaches to reach such goal. This paper presents a thermal design and optimization of a heat pipe radiator applied to a practical engineering design application. For this study, a prospective communication satellite payload panel with applied passive thermal control techniques was considered. The thermal passive techniques used in this design mainly include multilayer insulation (MLI) blankets, optical solar reflectors (OSR), selected thermal coatings, interface fillers and constant conductance heat pipes. The heat pipe network is comprised of some heat pipes embedded in the panel and some mounted on inner surface of the panel. Embedded heat pipes are placed under high heat dissipation equipments and their size is fixed; minimum weight of the radiator is achieved by a minimum weight of the mounted heat pipes. Hence, size of the mounted heat pipes is optimized. A thermal model was built and parameterized for transient thermal analysis and optimization. Temperature requirements of components in both worst case conditions (Hot case and cold case) were satisfied under optimal sizing of mounted heat pipes. 展开更多
关键词 satellite heat pipe radiator thermal design OPTIMIZATION satellite thermal control heat pipes
下载PDF
Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
20
作者 Caihong Jia Min Cao +2 位作者 Tingting Ji Dawei Jiang Chunxiao Gao 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期219-224,共6页
Investigating the thermal transport properties of materials is of great importance in the field of earth science and for the development of materials under extremely high temperatures and pressures.However,it is an en... Investigating the thermal transport properties of materials is of great importance in the field of earth science and for the development of materials under extremely high temperatures and pressures.However,it is an enormous challenge to characterize the thermal and physical properties of materials using the diamond anvil cell(DAC)platform.In the present study,a steady-state method is used with a DAC and a combination of thermocouple temperature measurement and numerical analysis is performed to calculate the thermal conductivity of the material.To this end,temperature distributions in the DAC under high pressure are analyzed.We propose a three-dimensional radiative-conductive coupled heat transfer model to simulate the temperature field in the main components of the DAC and calculate in situ thermal conductivity under high-temperature and high-pressure conditions.The proposed model is based on the finite volume method.The obtained results show that heat radiation has a great impact on the temperature field of the DAC,so that ignoring the radiation effect leads to large errors in calculating the heat transport properties of materials.Furthermore,the feasibility of studying the thermal conductivity of different materials is discussed through a numerical model combined with locally measured temperature in the DAC.This article is expected to become a reference for accurate measurement of in situ thermal conductivity in DACs at high-temperature and high-pressure conditions. 展开更多
关键词 thermal conductivity heat radiation effect temperature field diamond anvil cell
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部