A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and t...A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface.展开更多
This rain water samples harvested for drinking and agriculture from Gaza collected in November 2012 were analyzed for different rare metals (Rb, Zr, Ti, Tl, Sb, Sc, Y), and rare earth metals (La, and Ce). These metals...This rain water samples harvested for drinking and agriculture from Gaza collected in November 2012 were analyzed for different rare metals (Rb, Zr, Ti, Tl, Sb, Sc, Y), and rare earth metals (La, and Ce). These metals usually have no maximum acceptable limits as there is no sufficient data about their toxicity to human health. Their control should be therefore controlled in water to monitor their concentration in water (ground, harvested, etc.). This study was conducted to determine the water quality of harvested water which is used for drinking in the study area. 43 water samples were collected in November 2012 during the first rain from house wells and rain water pools. The concentrations of the metals detected in the collected harvested rainwater vary significantly between the 43 samples, and all of them were detected in all water samples analyzed in this study. The results obtained from this study suggest a possible risk to the population of the study area given the high concentration of some metals that have no maximum allowed concentration, and the fact that for many people in the study area, harvested rain water is a main source of their water supply.展开更多
Water electrolysis is considered as the most capable and old technology for <span style="font-family:Verdana;">hydrogen fuel preparation. Electrolysis needs external electrical energy through </span...Water electrolysis is considered as the most capable and old technology for <span style="font-family:Verdana;">hydrogen fuel preparation. Electrolysis needs external electrical energy through </span><span style="font-family:Verdana;">electrodes to split water into hydrogen and oxygen. An efficient electrolysis requires suitable electrodes to minimize potential drop. In this study Aluminium and Copper Coated Aluminium were used as different combination of Anodes and Cathodes to find out more efficient electrodes combination. NaCl solution in rain water was taken as electrolyte. Rain water was taken to avoid ionic impedance of tap water and expenses of distilled water. In this study, the most efficient electrode combination was Copper Coated Aluminium (anode)</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Aluminium (cathode) and gave the highest efficiency of hydrogen production to about 11% at normal temperature for very low concentration of NaCl (0.051</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">M) which increased with temperature, up to 29% upon rising of temp to 60<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">C. It was showed that higher concentration of electrolyte would surge the efficiency significantly. If the supplied heat could be provided from any waste heat sources then this study would be more efficient. However, current research evaluated the technical feasibility of this electrode combination for producing hydrogen with electrolysis of rain water utilizing electricity and modified electrodes.</span></span></span></span>展开更多
The method of utilizing rain water has been well developed in foreign countries to realize the sustainable development of water recourse while the method is still at the initial level in China. When considering the in...The method of utilizing rain water has been well developed in foreign countries to realize the sustainable development of water recourse while the method is still at the initial level in China. When considering the increasing of water shortage and urban flood, the awareness of utilizing rain water, as an inevitable trend, has been applied to various engineering technologies. This article has analyzed the principle of conventional road drainage system and the application of artificial wetland technology, also proposed to combine the road drainage system and artificial wetland, as a complex drainage system, to utilize the urban rain water, decrease urban flood pressure, and improve urban micro environment. The calculation principle and method for the complex drainage system are included as well.展开更多
The atmospheric pollution in Baghdad was investigated by using rainwater as a media for monitoring of pollution and also compared with the atmosphere pollution at reference stations of Al-Sulaimaniya in north of Iraq ...The atmospheric pollution in Baghdad was investigated by using rainwater as a media for monitoring of pollution and also compared with the atmosphere pollution at reference stations of Al-Sulaimaniya in north of Iraq and Al-Rutbah in Western Desert of Iraq. Rainwater sampling carried out at period extended from Nov.2007 to April 2008.Thirty five samples of rainwater were collected at seven monitoring展开更多
In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large num...In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large number of RWH methods that are available in the literature are demand specific and site specific, since RWH system depends on the topography, land use, land cover, rainfall and demand pattern. Thus for each and every case, a detailed evaluation of RWH structures is required for implementation, including the analy-sis of hydrology, topography and other aspects like site availability and economics, however a common methodology could be evolved. The present study was aimed at evaluation of various RWH techniques in order to identify the most appropriate technique suitable for a large scale industrial area to meet its daily wa-ter demand. An attempt is made to determine the volume of water to be stored using mass balance method, Ripple diagram method, analytical method, and sequent peak algorithm method. Based on various satisfying criteria, analytical hierarchy process (AHP) is employed to determine the most appropriate type of RWH method and required number of RWH structures in the study area. If economy alone is considered along with hydrological and site specific parameters, recharging the aquifer has resulted as a better choice. However other criteria namely risk, satisfaction in obtaining required volume of water for immediate utilization etc. has resulted in opting for concrete storage structures method. From the results it is found that AHP, if used with all possible criteria can result in a better tool for evaluation of RWH methods and structures. This RWH structures not only meets the demand but saves transportation cost of water and reduces the dependability of the industry on irrigation reservoir. Besides monetary benefits it is hoped that the micro environment inside the industry will improve due to the cooling effect of the stored water.展开更多
This paper compares monthly and seasonal rain rates derived from the Version 5 (V5) and Version 6 (V6) TRMM Precipitation Radar (TPR, TSDIS reference 2A25), TRMM Microwave Imager (TMI, 2A12), TRMM Combined Ins...This paper compares monthly and seasonal rain rates derived from the Version 5 (V5) and Version 6 (V6) TRMM Precipitation Radar (TPR, TSDIS reference 2A25), TRMM Microwave Imager (TMI, 2A12), TRMM Combined Instrument (TCI, 2B31), TRMM calibrated IR rain estimates (3B42) and TRMM merged gauge and satellite analysis (3B43) algorithms over New Mexico (NM) with rain gauge analyses provided by the New Mexico water districts (WD). The average rain rates over the NM region for 1998- 2002 are 0.91 mm d^-1 for WD and 0.75, 1.38, 1.49, 1.27, and 1.07 mm d^-1 for V5 3B43, 3B42, TMI, PR and TCA; and 0.74, 1.38, 0.87 and 0.97 mm d^-1 for V6 3B43, TMI, TPR and TCA, respectively. Comparison of V5 3B43 with WD rain rates and the daily TRMM mission index (TPR and TMI) suggests that the low bias of V5 3B43 for the wet months (summer to early fall) may be due to the non-inclusion of some rain events in the operational gauge analyses that. are used in the production of V5 3B43. Correlation analyses show that the WD rain rates vary in phase, with higher correlation between neighboring WDs. High temporal correlations (〉0.8) exist between WD and the combined algorithms (3B42, 3B43 and TCA for both V5 and V6) while satellite instrument algorithms (PR, TMI and TCI) are correlated best among themselves at the monthly scale. Paired t-tests of the monthly time series show that V5 3B42 and TMI are statistically different from the WD rain rates while no significant difference exists between WD and the other products. The agreements between the TRMM satellite and WD gauge estimates are best for the spring and fall and worst for winter and summer. The reduction in V6 TMI (-7.4%) and TPR (-31%) rain rates (compared to V5) results in better agreement between WD estimates and TMI in winter and TPR during summer.展开更多
Enhancing water use efficiencies of rain-fed maize is a requirement for sustainable maize production, particularly in areas prone to low/drought and erratic rainfall patterns. This study was conducted to assess the re...Enhancing water use efficiencies of rain-fed maize is a requirement for sustainable maize production, particularly in areas prone to low/drought and erratic rainfall patterns. This study was conducted to assess the relationship between total biomass/grain yield and water use efficiencies of three maize cultivars (Golden Crystal, Mamaba and Obatanpa) grown under rain-fed conditions in a coastal savannah agro-ecological environment of Ghana. Results of the study showed that a unified linear model, WUETDM = 0.03TDM with R2 = 0.765 and P ≤ 0.001, described adequately the relation between wa-ter use efficiency and total biomass (dry matter), which is applicable for the three maize cultivars for both the major and minor cropping seasons. A linear model could only, however, describe adequately well the relation between WUEGY and GY for the major (WUEGY = 0.001GY – 0.67;R2 = 0.996;P ≤ 0.001) and minor (WUEGY = 0.002GY + 0.289;R2 = 0.992;P ≤ 0.001) cropping seasons for all the maize cultivars. The linear models developed for the maize cultivars, re-lating WUEGY to GY, are specific to each of the crop growing seasons, indicating that seasonal rainfall impacts significantly on harvest index of the maize cultivars but differently in each of the crop growing seasons as a results of dif-ferences in seasonal rainfall. However, the models could be used to estimate water use efficiencies of each of the three maize cultivars given the appropriate TDM and GY as inputs for the environment under which the study was conducted.展开更多
In the hydrological watershed, some natural processes take place in which the interaction of water, soil, climate and vegetation favors the capture of water. The present study aimed to evaluate preliminary information...In the hydrological watershed, some natural processes take place in which the interaction of water, soil, climate and vegetation favors the capture of water. The present study aimed to evaluate preliminary information regarding the hydrological response and the water balance in a small research watershed with tropical forest cover (15°01'44''N and 92°13'55''W, 471 m, 2.3 has). Events of precipitation, direct runoff, infiltration rate and baseflow were performed. The amount, duration and intensity of rainfall events were recorded with the use of a pluviograph. Surface runoff was quantified with an established gauging station, an H-type gauging device and a horizontal mechanical gauging limnograph. Runoff base flow was measured at the gauging station using the volume-time method. Infiltration was measured using a triple ring infiltrometer, taking two measurements in the upper part and two in the lower part of the microbasin. Evapotranspiration was measured with the amount of rainfall entering and runoff leaving the watershed. In the study period, annual rainfall of 4417.6 mm distributed over 181 events were recorded;about 70% of the storms showed lower intensities at 20 mm·h<sup>-1</sup>. The total runoff was 345.8 mm caused by half of the rainfall events, which represents 7.8% of the total rain;77% of runoff events showed lower sheets of 5 mm and an average specific rate of 20.7 L·s<sup>-1</sup>·ha<sup>-1</sup> with a maximum of 113.6 L·s<sup>-1</sup>·ha<sup>-1</sup>. Three runoff events were greater than 20.1 mm and caused the 22.5% of the total runoff depth in the study period showing the equilibrium conditions in the hydrological response of the forest. Water outputs like baseflow was 669.5 mm. In this way, 90% of the rainfall is infiltrated every year in the micro-watershed, which shows the importance of the plant cover in the hydrological regulation and the groundwater recharge.展开更多
In this paper, some distinctive features of the vertical profile of precipitable liquid water content (LWC) with considerable respect to rain rates (R) and radar reflectivity (Z) obtained in a tropical location are pr...In this paper, some distinctive features of the vertical profile of precipitable liquid water content (LWC) with considerable respect to rain rates (R) and radar reflectivity (Z) obtained in a tropical location are presented. Assessment of LWC allows applications in the specific area of flight icing severity, aviation safety as well as signals traversing through the atmosphere. The parameters were typically measured using vertically-pointing Micro Rain Radar (MRR) over a period of 2 years (2011-2012) at Akure, a tropical location of Nigeria. The radar scanned at every 10 seconds and integrated over one minute samples to reduce event logging error associated with the instrument. The vertical profile of the LWC typically reveals a prominent seasonal variation. However, majority of the LWC profiles has low LWC, less than 0.1 gm?3 while the maximum observed LWC is about 3.18 gm?3. A strong like hood relation was observed between the melting layer height and the LWC, with the LWC reaches peak at the considerable height of about 4160 m which coincides precisely with the freezing height level (rain height of ~4520 m) of the study location. Good correlation was also observed between the LWC and R in most of the heights considered. The results obtained will assist system engineers to assess the level of absorption, reflection and attenuation of electromagnetic signals as a result of precipitable LWC along the transmitting paths. The novelty of the present work is in the area of linking LWC and Z as against usual relation between Z and R.展开更多
National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, Chi...National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, China on August 7, 2018. The result shows that the strong convective weather occurred in peripheral subtropical high over west pacific, being caused by short wave disturbance, and surface convergence lines with positive pressure variation are corresponding to areas of short-time heavy precipitation. The degree of temperature change in cold pool caused by thunderstorm may decide the intensity of a short-time rainfall, and local topography plays an important role in extreme precipitation. Local water vapour accumulation and water vapour flux convergence in the middle and lower layers support adequate moisture condition in the process. Moving direction and development direction of mesocale convective cloud are in a line to develop the train effect, leading to local short-time heavy rain in Yulin city, Shaanxi, China.展开更多
Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the ...Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area.展开更多
The importance of water on rattan is described in the paper. Up to date, some researches have witnessed that rain determines the distribution and the number of species of rattan in wild, and is helpful to dispersal of...The importance of water on rattan is described in the paper. Up to date, some researches have witnessed that rain determines the distribution and the number of species of rattan in wild, and is helpful to dispersal of rattan seeds with slope. Rattan plays a role in intercepting the splash effect of rain and improves the water holding capacity of soil. The viability of rattan seed decreases quickly with the decrease of water content of seeds, hence to reduce the germination rate of seeds. With enough water, rattan grows more quickly in terms of leaf, leaf area, and stem. Water stress improves the ratio of root to shoot of rattan, and humidity plays a role in the distribution and growth of rattan.展开更多
In Chiapas highlands to southeast of Mexico, the scarcity of water is worrying, according to technical reports of the IPCC the runoff will less between 150 to 250 mm per year in the southeast of Mexico, this situation...In Chiapas highlands to southeast of Mexico, the scarcity of water is worrying, according to technical reports of the IPCC the runoff will less between 150 to 250 mm per year in the southeast of Mexico, this situation will increase the problems of water availability in Chiapas highlands in the future. For actually more of 18,160 small rural indigenous communities (SRIC) in Chiapas there is not drinking water. In order to contribute a given solution to scarcity of drinking water in the SRIC, The Autonomous University of Chiapas (UNACH in its Spanish acronym) and Mexican Institute of Water Technology (IMTA in its Spanish acronym) designed and constructed in 1999 the Rain Water Harvesting (RWH) in Yalentay municipality of Zinacantan in Chiapas, Mexico. The scientific and technical contributions of RWH are: The design guarantee the water quality for a prolonged time of storage avoiding the photosynthesis inside the system;Not emitted greenhouse gasses because it doesn’t need any kind of fossil fuels;Not produces anything kind of damage to the environment;It has to be inexpensive, using in its construction manpower and materials from de region;Store the maximum quantity of water in the minimum space. The RWH has increased the standard of living of the habitants from Yalentay and improving their health conditions.展开更多
In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5...In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5.6,and then,the photosynthetic parameters of spring wheat leaf was monitored.The results indicated that the pH value of simulated acid rain was positively and very significantly correlated with the net photosynthetic rate,stomata conductance,transpiration rate,water use efficiency and the chlorophyll relative content,whereas very significantly and negatively correlated with intercellular CO2 concentration.Due to acid rain,the net photosynthetic rate,stomata conductance,transpiration rate and the chlorophyll relative content decreased by 4.08%-67.04%,17.44%-58.44%,12.08%-48.08% and 12.16%-37.23% respectively,while intercellular CO2 concentration increased by 9.01%-14.29%.After simulated treatment with acid rain,the net photosynthetic rate had high significant positive correlation with stomata conductance,transpiration rate,water use efficiency,and the chlorophyll relative content,but high significant negative correlation with intercellular CO2 concentration.At the same time,transpiration rate was observed to be very significantly and positively correlated to stomata conductance and chlorophyll relative content,being significantly and positively correlated with water use efficiency,and very significantly and negatively correlated with intercellular CO2 concentration.In a word,the influence of simulated acid rain on photosynthetic characteristics of spring wheat leaf became more and more obvious with the increase of hydrogen ion concentration.展开更多
文摘A model based on the non-linear artificial neural network (ANN) is established to predict the thickness of the water film on road surfaces. The weight and the threshold can be determined by training test data, and the water film thickness on the road surface can be accurately predicted by the empirical verification based on sample data. Results show that the proposed ANN model is feasible to predict the water film thickness of the road surface.
文摘This rain water samples harvested for drinking and agriculture from Gaza collected in November 2012 were analyzed for different rare metals (Rb, Zr, Ti, Tl, Sb, Sc, Y), and rare earth metals (La, and Ce). These metals usually have no maximum acceptable limits as there is no sufficient data about their toxicity to human health. Their control should be therefore controlled in water to monitor their concentration in water (ground, harvested, etc.). This study was conducted to determine the water quality of harvested water which is used for drinking in the study area. 43 water samples were collected in November 2012 during the first rain from house wells and rain water pools. The concentrations of the metals detected in the collected harvested rainwater vary significantly between the 43 samples, and all of them were detected in all water samples analyzed in this study. The results obtained from this study suggest a possible risk to the population of the study area given the high concentration of some metals that have no maximum allowed concentration, and the fact that for many people in the study area, harvested rain water is a main source of their water supply.
文摘Water electrolysis is considered as the most capable and old technology for <span style="font-family:Verdana;">hydrogen fuel preparation. Electrolysis needs external electrical energy through </span><span style="font-family:Verdana;">electrodes to split water into hydrogen and oxygen. An efficient electrolysis requires suitable electrodes to minimize potential drop. In this study Aluminium and Copper Coated Aluminium were used as different combination of Anodes and Cathodes to find out more efficient electrodes combination. NaCl solution in rain water was taken as electrolyte. Rain water was taken to avoid ionic impedance of tap water and expenses of distilled water. In this study, the most efficient electrode combination was Copper Coated Aluminium (anode)</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">Aluminium (cathode) and gave the highest efficiency of hydrogen production to about 11% at normal temperature for very low concentration of NaCl (0.051</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">M) which increased with temperature, up to 29% upon rising of temp to 60<span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°</span></span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">C. It was showed that higher concentration of electrolyte would surge the efficiency significantly. If the supplied heat could be provided from any waste heat sources then this study would be more efficient. However, current research evaluated the technical feasibility of this electrode combination for producing hydrogen with electrolysis of rain water utilizing electricity and modified electrodes.</span></span></span></span>
文摘The method of utilizing rain water has been well developed in foreign countries to realize the sustainable development of water recourse while the method is still at the initial level in China. When considering the increasing of water shortage and urban flood, the awareness of utilizing rain water, as an inevitable trend, has been applied to various engineering technologies. This article has analyzed the principle of conventional road drainage system and the application of artificial wetland technology, also proposed to combine the road drainage system and artificial wetland, as a complex drainage system, to utilize the urban rain water, decrease urban flood pressure, and improve urban micro environment. The calculation principle and method for the complex drainage system are included as well.
文摘The atmospheric pollution in Baghdad was investigated by using rainwater as a media for monitoring of pollution and also compared with the atmosphere pollution at reference stations of Al-Sulaimaniya in north of Iraq and Al-Rutbah in Western Desert of Iraq. Rainwater sampling carried out at period extended from Nov.2007 to April 2008.Thirty five samples of rainwater were collected at seven monitoring
文摘In India, with ever increasing population and stress on natural resources, especially water, rejuvenation of rainwater harvesting (RWH) technique which was forgotten over the days is becoming very essential. Large number of RWH methods that are available in the literature are demand specific and site specific, since RWH system depends on the topography, land use, land cover, rainfall and demand pattern. Thus for each and every case, a detailed evaluation of RWH structures is required for implementation, including the analy-sis of hydrology, topography and other aspects like site availability and economics, however a common methodology could be evolved. The present study was aimed at evaluation of various RWH techniques in order to identify the most appropriate technique suitable for a large scale industrial area to meet its daily wa-ter demand. An attempt is made to determine the volume of water to be stored using mass balance method, Ripple diagram method, analytical method, and sequent peak algorithm method. Based on various satisfying criteria, analytical hierarchy process (AHP) is employed to determine the most appropriate type of RWH method and required number of RWH structures in the study area. If economy alone is considered along with hydrological and site specific parameters, recharging the aquifer has resulted as a better choice. However other criteria namely risk, satisfaction in obtaining required volume of water for immediate utilization etc. has resulted in opting for concrete storage structures method. From the results it is found that AHP, if used with all possible criteria can result in a better tool for evaluation of RWH methods and structures. This RWH structures not only meets the demand but saves transportation cost of water and reduces the dependability of the industry on irrigation reservoir. Besides monetary benefits it is hoped that the micro environment inside the industry will improve due to the cooling effect of the stored water.
文摘This paper compares monthly and seasonal rain rates derived from the Version 5 (V5) and Version 6 (V6) TRMM Precipitation Radar (TPR, TSDIS reference 2A25), TRMM Microwave Imager (TMI, 2A12), TRMM Combined Instrument (TCI, 2B31), TRMM calibrated IR rain estimates (3B42) and TRMM merged gauge and satellite analysis (3B43) algorithms over New Mexico (NM) with rain gauge analyses provided by the New Mexico water districts (WD). The average rain rates over the NM region for 1998- 2002 are 0.91 mm d^-1 for WD and 0.75, 1.38, 1.49, 1.27, and 1.07 mm d^-1 for V5 3B43, 3B42, TMI, PR and TCA; and 0.74, 1.38, 0.87 and 0.97 mm d^-1 for V6 3B43, TMI, TPR and TCA, respectively. Comparison of V5 3B43 with WD rain rates and the daily TRMM mission index (TPR and TMI) suggests that the low bias of V5 3B43 for the wet months (summer to early fall) may be due to the non-inclusion of some rain events in the operational gauge analyses that. are used in the production of V5 3B43. Correlation analyses show that the WD rain rates vary in phase, with higher correlation between neighboring WDs. High temporal correlations (〉0.8) exist between WD and the combined algorithms (3B42, 3B43 and TCA for both V5 and V6) while satellite instrument algorithms (PR, TMI and TCI) are correlated best among themselves at the monthly scale. Paired t-tests of the monthly time series show that V5 3B42 and TMI are statistically different from the WD rain rates while no significant difference exists between WD and the other products. The agreements between the TRMM satellite and WD gauge estimates are best for the spring and fall and worst for winter and summer. The reduction in V6 TMI (-7.4%) and TPR (-31%) rain rates (compared to V5) results in better agreement between WD estimates and TMI in winter and TPR during summer.
文摘Enhancing water use efficiencies of rain-fed maize is a requirement for sustainable maize production, particularly in areas prone to low/drought and erratic rainfall patterns. This study was conducted to assess the relationship between total biomass/grain yield and water use efficiencies of three maize cultivars (Golden Crystal, Mamaba and Obatanpa) grown under rain-fed conditions in a coastal savannah agro-ecological environment of Ghana. Results of the study showed that a unified linear model, WUETDM = 0.03TDM with R2 = 0.765 and P ≤ 0.001, described adequately the relation between wa-ter use efficiency and total biomass (dry matter), which is applicable for the three maize cultivars for both the major and minor cropping seasons. A linear model could only, however, describe adequately well the relation between WUEGY and GY for the major (WUEGY = 0.001GY – 0.67;R2 = 0.996;P ≤ 0.001) and minor (WUEGY = 0.002GY + 0.289;R2 = 0.992;P ≤ 0.001) cropping seasons for all the maize cultivars. The linear models developed for the maize cultivars, re-lating WUEGY to GY, are specific to each of the crop growing seasons, indicating that seasonal rainfall impacts significantly on harvest index of the maize cultivars but differently in each of the crop growing seasons as a results of dif-ferences in seasonal rainfall. However, the models could be used to estimate water use efficiencies of each of the three maize cultivars given the appropriate TDM and GY as inputs for the environment under which the study was conducted.
文摘In the hydrological watershed, some natural processes take place in which the interaction of water, soil, climate and vegetation favors the capture of water. The present study aimed to evaluate preliminary information regarding the hydrological response and the water balance in a small research watershed with tropical forest cover (15°01'44''N and 92°13'55''W, 471 m, 2.3 has). Events of precipitation, direct runoff, infiltration rate and baseflow were performed. The amount, duration and intensity of rainfall events were recorded with the use of a pluviograph. Surface runoff was quantified with an established gauging station, an H-type gauging device and a horizontal mechanical gauging limnograph. Runoff base flow was measured at the gauging station using the volume-time method. Infiltration was measured using a triple ring infiltrometer, taking two measurements in the upper part and two in the lower part of the microbasin. Evapotranspiration was measured with the amount of rainfall entering and runoff leaving the watershed. In the study period, annual rainfall of 4417.6 mm distributed over 181 events were recorded;about 70% of the storms showed lower intensities at 20 mm·h<sup>-1</sup>. The total runoff was 345.8 mm caused by half of the rainfall events, which represents 7.8% of the total rain;77% of runoff events showed lower sheets of 5 mm and an average specific rate of 20.7 L·s<sup>-1</sup>·ha<sup>-1</sup> with a maximum of 113.6 L·s<sup>-1</sup>·ha<sup>-1</sup>. Three runoff events were greater than 20.1 mm and caused the 22.5% of the total runoff depth in the study period showing the equilibrium conditions in the hydrological response of the forest. Water outputs like baseflow was 669.5 mm. In this way, 90% of the rainfall is infiltrated every year in the micro-watershed, which shows the importance of the plant cover in the hydrological regulation and the groundwater recharge.
文摘In this paper, some distinctive features of the vertical profile of precipitable liquid water content (LWC) with considerable respect to rain rates (R) and radar reflectivity (Z) obtained in a tropical location are presented. Assessment of LWC allows applications in the specific area of flight icing severity, aviation safety as well as signals traversing through the atmosphere. The parameters were typically measured using vertically-pointing Micro Rain Radar (MRR) over a period of 2 years (2011-2012) at Akure, a tropical location of Nigeria. The radar scanned at every 10 seconds and integrated over one minute samples to reduce event logging error associated with the instrument. The vertical profile of the LWC typically reveals a prominent seasonal variation. However, majority of the LWC profiles has low LWC, less than 0.1 gm?3 while the maximum observed LWC is about 3.18 gm?3. A strong like hood relation was observed between the melting layer height and the LWC, with the LWC reaches peak at the considerable height of about 4160 m which coincides precisely with the freezing height level (rain height of ~4520 m) of the study location. Good correlation was also observed between the LWC and R in most of the heights considered. The results obtained will assist system engineers to assess the level of absorption, reflection and attenuation of electromagnetic signals as a result of precipitable LWC along the transmitting paths. The novelty of the present work is in the area of linking LWC and Z as against usual relation between Z and R.
文摘National Centers for Environment Prediction (NCEP) reanalysis data, automatic observation data, FY-2E satellite data and Doppler radar data are used to analyze a short-time local heavy rain in Yulin city, Shaanxi, China on August 7, 2018. The result shows that the strong convective weather occurred in peripheral subtropical high over west pacific, being caused by short wave disturbance, and surface convergence lines with positive pressure variation are corresponding to areas of short-time heavy precipitation. The degree of temperature change in cold pool caused by thunderstorm may decide the intensity of a short-time rainfall, and local topography plays an important role in extreme precipitation. Local water vapour accumulation and water vapour flux convergence in the middle and lower layers support adequate moisture condition in the process. Moving direction and development direction of mesocale convective cloud are in a line to develop the train effect, leading to local short-time heavy rain in Yulin city, Shaanxi, China.
文摘Bangladesh is a south Asian Monsoonal Country and the recent precipitation pattern in the Cox’s Bazar area of Bangladesh is changing and increasing the number of monsoonal slope failures and landslide hazards in the Kutubpalong & Balukhali Rohingya camp area. An attempt has been made to see the influence of seasonal variation of ground water level (G.W.L.) fluctuations on the stability of the eco hills and forests of Ukhiya Teknaf region. Ukhiya hills are in great danger because of cutting trees from the hill slopes and it is well established that due to recent change of climate, short term rainfall for few consecutive days during monsoon might show an influence on the factor of safety (Fs) values of the camp hill slopes. A clear G.W.L. variation between dry and wet seasons has an influence on the stability (Fs) values indicating that climate has a strong influence on the stability and threatening sustainable development. A stable or marginally stable slope might be unstable during raining and show a variation of ground water level (G.W.L.). The generation of pore water pressure (P.W.P.) is also influenced by seasonal variation of ground water level. During wet season negative P.W.P. called suction plays an important role to occur slope failures in the Ukhiya hills. Based on all calculated factor of safety values (Fs) at different locations, four (4) susceptible landslide risk zones are identified. They are very high risk (Fs = 0.18 to 0.46), high risk (Fs = 0.56 to 0.75), medium risk (Fs = 0.76 to 1.0) and marginally stable areas (Fs ≈ 1). Proper geo-engineering measures must be taken by the concerned authorizes to reduce P.W.P. during monsoon by installing rain water harvesting system, allowing sufficient drainage & other geotechnical measures to reduce the risk of slope failures in the Ukhiya hills. Based on the stability factor (Fs) at different slope locations of the camp hills, a risk map of the investigated area has been produced for the local community for their safety and to build up awareness & to motivate them to evacuate the site during monsoonal slope failures. The established “Risk Maps” can be used for future geological engineering works as well as for sustainable planning, design and construction purposes relating to adaptation and mitigation of landslide risks in the investigated area.
文摘The importance of water on rattan is described in the paper. Up to date, some researches have witnessed that rain determines the distribution and the number of species of rattan in wild, and is helpful to dispersal of rattan seeds with slope. Rattan plays a role in intercepting the splash effect of rain and improves the water holding capacity of soil. The viability of rattan seed decreases quickly with the decrease of water content of seeds, hence to reduce the germination rate of seeds. With enough water, rattan grows more quickly in terms of leaf, leaf area, and stem. Water stress improves the ratio of root to shoot of rattan, and humidity plays a role in the distribution and growth of rattan.
文摘In Chiapas highlands to southeast of Mexico, the scarcity of water is worrying, according to technical reports of the IPCC the runoff will less between 150 to 250 mm per year in the southeast of Mexico, this situation will increase the problems of water availability in Chiapas highlands in the future. For actually more of 18,160 small rural indigenous communities (SRIC) in Chiapas there is not drinking water. In order to contribute a given solution to scarcity of drinking water in the SRIC, The Autonomous University of Chiapas (UNACH in its Spanish acronym) and Mexican Institute of Water Technology (IMTA in its Spanish acronym) designed and constructed in 1999 the Rain Water Harvesting (RWH) in Yalentay municipality of Zinacantan in Chiapas, Mexico. The scientific and technical contributions of RWH are: The design guarantee the water quality for a prolonged time of storage avoiding the photosynthesis inside the system;Not emitted greenhouse gasses because it doesn’t need any kind of fossil fuels;Not produces anything kind of damage to the environment;It has to be inexpensive, using in its construction manpower and materials from de region;Store the maximum quantity of water in the minimum space. The RWH has increased the standard of living of the habitants from Yalentay and improving their health conditions.
基金Supported by Scientific Research Special Fund for Public Welfare Industry (Meteorology) (GY-HY200806021)Drought Fund Project of Lanzhou Arid Meteorology Institute,China Meteorological Administration (IAM200921)
文摘In order to investigate the effect of acid rain on photosynthetic characteristics of spring wheat,spring wheat at the jointing stage was sprayed with simulated acid rain at different pH levels of 1.5,2.5,3.5,4.5 and 5.6,and then,the photosynthetic parameters of spring wheat leaf was monitored.The results indicated that the pH value of simulated acid rain was positively and very significantly correlated with the net photosynthetic rate,stomata conductance,transpiration rate,water use efficiency and the chlorophyll relative content,whereas very significantly and negatively correlated with intercellular CO2 concentration.Due to acid rain,the net photosynthetic rate,stomata conductance,transpiration rate and the chlorophyll relative content decreased by 4.08%-67.04%,17.44%-58.44%,12.08%-48.08% and 12.16%-37.23% respectively,while intercellular CO2 concentration increased by 9.01%-14.29%.After simulated treatment with acid rain,the net photosynthetic rate had high significant positive correlation with stomata conductance,transpiration rate,water use efficiency,and the chlorophyll relative content,but high significant negative correlation with intercellular CO2 concentration.At the same time,transpiration rate was observed to be very significantly and positively correlated to stomata conductance and chlorophyll relative content,being significantly and positively correlated with water use efficiency,and very significantly and negatively correlated with intercellular CO2 concentration.In a word,the influence of simulated acid rain on photosynthetic characteristics of spring wheat leaf became more and more obvious with the increase of hydrogen ion concentration.