The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit...The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.展开更多
Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a sin...Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.展开更多
Recently,researchers have proposed an emitter localization method based on passive synthetic aperture.However,the unknown residual frequency offset(RFO)between the transmit-ter and the receiver causes the received Dop...Recently,researchers have proposed an emitter localization method based on passive synthetic aperture.However,the unknown residual frequency offset(RFO)between the transmit-ter and the receiver causes the received Doppler signal to shift,which affects the localization accu-racy.To solve this issue,this paper proposes a RFO estimation method based on range migration fitting.Due to the high frequency modulation slope of the linear frequency modulation(LFM)-mod-ulation radar signal,it is not affected by RFO in range compression.Therefore,the azimuth time can be estimated by fitting the peak value position of the pulse compression in range direction.Then,the matched filters are designed under different RFOs.When the zero-Doppler time obtained by the matched filters is consistent with the estimated azimuth time,the given RFO is the real RFO between the transceivers.The simulation results show that the estimation error of azimuth distance does not exceed 20 m when the received signal duration is not less than 3 s,the pulse repe-tition frequency(PRF)of the transmitter radar signal is not less than 1 kHz,the range detection is not larger than 1000 km,and the signal noise ratio(SNR)is not less than-5 dB.展开更多
In recent years,it has been demonstrated that thelow-level jet streams(LLJs)developed in thesouth of the Meiyu(Baiu)front play a critical role inthe overseas migrations of the planthoppers intoJapan and Korea. However...In recent years,it has been demonstrated that thelow-level jet streams(LLJs)developed in thesouth of the Meiyu(Baiu)front play a critical role inthe overseas migrations of the planthoppers intoJapan and Korea. However, the involement of theLLJs during the process of sequential displacements展开更多
The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_...The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.展开更多
Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF)...Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.展开更多
Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MB...Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.展开更多
Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform v...Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented. Analyzing the motion relationship of transmitter and receiver, the formula of azimuth spacevariant is derived in time domain. Via Taylor polynomial expansions, the azimuth space-variant is factorized by four terms: zero-order, first-order, second-order, and third-order term. And, their impacts on impulse response are illuminated. Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments, and these simulated results are coincident with the formulae of azimuth space-variant.展开更多
Long-time coherent integration(LTCI)can remarkably improve the detection ability of radar for moving target.To increase the processing efficiency,this paper proposes a novel LTCI method based on segment time reversing...Long-time coherent integration(LTCI)can remarkably improve the detection ability of radar for moving target.To increase the processing efficiency,this paper proposes a novel LTCI method based on segment time reversing transform(STRT)and chirp z-transform(CZT).In this method,STRT operation is first presented to estimate the Doppler ambiguity factor,and keystone transform(KT)is used to correct the whole range migration(RM).Then,CZT and non-uniform fast Fourier transform(NUFFT)are used to estimate the parameters as well as correct the second and third order Doppler frequency migration(DFM).Compared with the existing methods,the proposed method can achieve RM correction and DFM correction without repetitive operation.The effectiveness of the proposed method is validated by both simulated and real data.展开更多
In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) ...In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.展开更多
Large range cell migration is a severe challenge to imaging algorithm for spaceborne SAR. Based on design of Finite Impulse Response (FIR) filter and Range Doppler (RD) algorithm, a realization of quick-look imaging f...Large range cell migration is a severe challenge to imaging algorithm for spaceborne SAR. Based on design of Finite Impulse Response (FIR) filter and Range Doppler (RD) algorithm, a realization of quick-look imaging for large range cell migration is proposed. It realized quick-look imaging of 8 times reduced resolution with parallel processing on memory shared 8 CPU SGI server. According to simulation experiment, this quick-look imaging algorithm with parallel processing can image 16384x16384 SAR raw data within 6 seconds. It reaches the requirement of real-time imaging.展开更多
An algorithm was developed to accurately estimate the Doppler centroid,which is needed for high-quality synthetic aperture radar(SAR)image formation by resolving the SAR pulse repetition frequency(PRF)ambiguity.The al...An algorithm was developed to accurately estimate the Doppler centroid,which is needed for high-quality synthetic aperture radar(SAR)image formation by resolving the SAR pulse repetition frequency(PRF)ambiguity.The algorithm uses the SAR range migration to resolve the PRF-ambiguity by searching for a PRF-ambiguity number that minimizes the intensity contrast in the range-Doppler domain.Experimental results show that the approach,compared with traditional methods for resolving the SAR PRF ambiguity,is more suitable for both high contrast scenes such as urban areas and low contrast scenes such as mountains.Moreover,the approach is more computationally efficient for there are no time-consuming correlations or fast Fourier transform(FFT)operations needed in the range-Doppler domain and only part of the range cells are used in the calculation.展开更多
A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and ...A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.展开更多
A principle for choosing the coherent integration number and an improved Doppler beam sharpening(DBS)imaging algorithm for mechanic scanning radar are pre-sented in this paper.By compensating the range migration in wi...A principle for choosing the coherent integration number and an improved Doppler beam sharpening(DBS)imaging algorithm for mechanic scanning radar are pre-sented in this paper.By compensating the range migration in wideband airborne mechanic scanning radar,the proposed DBS imaging algorithm can efficiently improve the resolu-tion of a DBS image.In addition,based on the characteristic that the echo from the moving target will be modulated by the antenna pattern,a novel method used to locate the mov-ing target is also presented,which begins with the sub-aperture moving target detection followed by the sliding window detection.Proper location can be achieved by using this method.Finally,the results on real radar data are pro-vided to demonstrate the effectiveness of these proposed methods.展开更多
基金supported by the National Natural Science Foundation of China(62101099)the Chinese Postdoctoral Science Foundation(2021M690558,2022T150100,2018M633352,2019T120825)+3 种基金the Young Elite Scientist Sponsorship Program(YESS20200082)the Aeronautical Science Foundation of China(2022Z017080001)the Open Foundation of Science and Technology on Electronic Information Control Laboratorythe Natural Science Foundation of Sichuan Province(2023NSFSC1386)。
文摘The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT.
基金supported by the National Natural Science Foun-dation of China(No.62027801)。
文摘Traditional single-satellite passive localization algorithms are influenced by frequency and angle measurement accuracies,resulting in error estimation of emitter position on the order of kilometers.Subsequently,a single-satellite localization algorithm based on passive synthetic aper-ture(PSA)was introduced,enabling high-precision positioning.However,its estimation of azimuth and range distance is considerably affected by the residual frequency offset(RFO)of uncoopera-tive system transceivers.Furthermore,it requires data containing a satellite flying over the radia-tion source for RFO search.After estimating the RFO,an accurate estimation of azimuth and range distance can be carried out,which is difficult to achieve in practical situations.An LFM radar source passive localization algorithm based on range migration is proposed to address the dif-ficulty in estimating frequency offset.The algorithm first provides a rough estimate of the pulse repetition time(PRT).It processes intercepted signals through range compression,range interpola-tion,and polynomial fitting to obtain range migration observations.Subsequently,it uses the changing information of range migration and an accurate PRT to formulate a system of nonlinear equations,obtaining the emitter position and a more accurate PRT through a two-step localization algorithm.Frequency offset only induces a fixed offset in range migration,which does not affect the changing information.This algorithm can also achieve high-precision localization in squint scenar-ios.Finally,the effectiveness of this algorithm is verified through simulations.
基金supported in part by the National Natural Foundation of China(No.62027801).
文摘Recently,researchers have proposed an emitter localization method based on passive synthetic aperture.However,the unknown residual frequency offset(RFO)between the transmit-ter and the receiver causes the received Doppler signal to shift,which affects the localization accu-racy.To solve this issue,this paper proposes a RFO estimation method based on range migration fitting.Due to the high frequency modulation slope of the linear frequency modulation(LFM)-mod-ulation radar signal,it is not affected by RFO in range compression.Therefore,the azimuth time can be estimated by fitting the peak value position of the pulse compression in range direction.Then,the matched filters are designed under different RFOs.When the zero-Doppler time obtained by the matched filters is consistent with the estimated azimuth time,the given RFO is the real RFO between the transceivers.The simulation results show that the estimation error of azimuth distance does not exceed 20 m when the received signal duration is not less than 3 s,the pulse repe-tition frequency(PRF)of the transmitter radar signal is not less than 1 kHz,the range detection is not larger than 1000 km,and the signal noise ratio(SNR)is not less than-5 dB.
文摘In recent years,it has been demonstrated that thelow-level jet streams(LLJs)developed in thesouth of the Meiyu(Baiu)front play a critical role inthe overseas migrations of the planthoppers intoJapan and Korea. However, the involement of theLLJs during the process of sequential displacements
基金Supported by the Science and Technology Research Project of China Petroleum&Chemical Corporation (No. P22175)。
文摘The geological storage of carbon dioxide(CO_(2)) is a crucial technology for mitigating climate change. Offshore deep saline aquifers have elicited increased attention due to their remarkable potential for storing CO_(2). During long-term storage, CO_(2) migration in a deep saline aquifer needs special attention to prevent it from reaching risk points and leading to security issues. In this paper, a mechanism model is established according to the geological characteristics of saline aquifers in an offshore sedimentary basin in China. The CO_(2) migration over 100 years is simulated considering geological changes such as permeability, dip angle, thickness, and salinity. The effects of injection conditions on the CO_(2) migration range are also investigated. Results reveal that the migration range of CO_(2) in the injection period exceeds 70%, even if the postinjection period's duration is five times longer than that of the injection period. As the values of the above geological parameters increase, the migration range of CO_(2) increases, and permeability has a particularly substantial influence. Moreover, the influences of injection rate and well type are considerable. At high injection rates, CO_(2) has a greater likelihood of displacing brine in a piston-like scheme. CO_(2) injected by long horizontal wells migrates farther compared with that injected by vertical wells. In general, the plane migration range is within 3 000 m, although variations in the reservoir and injection parameters of the studied offshore saline aquifers are considered. This paper can offer references for the site selection and injection well deployment of CO_(2) saline aquifer storage. According to the studied offshore aquifers, a distance of at least 3 000 m from potential leakage points, such as spill points, active faults, and old abandoned wells, must be maintained.
基金Supported by the National Science Fund for Distinguished Young Scholars (Grant No. 60725103)the National Natural Science Foundation ofChina (Grant No. 60602015)+1 种基金the National Key Laboratory Foundation (Grant No. 9140C1903030603)the Knowledge Innovation Programof Chinese Academy of Sciences (Grant No. 07QNCX-1154)
文摘Based on the general geometric model of multi-baseline Synthetic Aperture Radar Tomography (TomoSAR), the three-dimensional (3-D) sampling criteria, the analytic expression of the 3-D Point Spread Function (PSF) and the 3-D resolution are derived in the 3-D wavenumber domain in this paper. Considering the relationship between the observation geometry and the size of illuminated scenario, a 3-D Range Migration Algorithm with Elevation Digital Spotlighting (RMA-EDS) is proposed. With this algorithm 3-D images of the area of interest can be directly and accurately reconstructed in the 3-D space avoiding the complex operations of 3-D geometric correction. Finally, theoretical analyses and simulation results are presented to demonstrate the shift-varying property of the 3-D PSF and the spatialvarying property of the 3-D resolution and to demonstrate the validity of the 3-D RMA-EDS.
基金National Natural Science Foundation of China(No.62293493)。
文摘Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.
基金Sichuan Provincial Youth Science and Technology Foundation (06ZQ026-006)
文摘Bistatic SAR possesses characteristic of the azimuth space-variant when the velocities of transmitter and receiver are not equal. The geometric model of BiSAR with the parallel trajectories and the nonequal platform velocities is presented. Analyzing the motion relationship of transmitter and receiver, the formula of azimuth spacevariant is derived in time domain. Via Taylor polynomial expansions, the azimuth space-variant is factorized by four terms: zero-order, first-order, second-order, and third-order term. And, their impacts on impulse response are illuminated. Some characteristics about azimuth space-variant of airborne BiSAR case are exhibited by simulation experiments, and these simulated results are coincident with the formulae of azimuth space-variant.
基金the National Natural Foundation of China(Nos.61771046,61731023 and 62171029).
文摘Long-time coherent integration(LTCI)can remarkably improve the detection ability of radar for moving target.To increase the processing efficiency,this paper proposes a novel LTCI method based on segment time reversing transform(STRT)and chirp z-transform(CZT).In this method,STRT operation is first presented to estimate the Doppler ambiguity factor,and keystone transform(KT)is used to correct the whole range migration(RM).Then,CZT and non-uniform fast Fourier transform(NUFFT)are used to estimate the parameters as well as correct the second and third order Doppler frequency migration(DFM).Compared with the existing methods,the proposed method can achieve RM correction and DFM correction without repetitive operation.The effectiveness of the proposed method is validated by both simulated and real data.
基金supported by the National Natural Science Foundation of China (61102143)the Fundamentl Research Funds for the Central Universities (ZYGX2011x003)
文摘In the spaceborne/airborne forward-looking bistatic syn- thetic aperture radar (SA-FBSAR), due to the system platforms' remarkable velocity difference and the forward-looking mode, the range cell migration (RCM) not only depends on the target's two- dimensional location, but also varies with the range location non- linearly. And the nonlinearity is not just the slight deviation from the linear part, but exhibits evident nonlinear departure in the RCM trajectory. If the RCM is not properly corrected, nonlinear image distortions would occur. Based on the RCM model, a modified two-step RCM compensation (RCMC) method for SA-FBSAR is proposed. In this method, firstly the azimuth-dependent RCM is compensated by the scaling Fourier transform and the phase multi- plication. And then the range-dependent RCM is removed through interpolation. The effectiveness of the proposed RCMC method is verified by the simulation results of both point scatterers and area targets.
文摘Large range cell migration is a severe challenge to imaging algorithm for spaceborne SAR. Based on design of Finite Impulse Response (FIR) filter and Range Doppler (RD) algorithm, a realization of quick-look imaging for large range cell migration is proposed. It realized quick-look imaging of 8 times reduced resolution with parallel processing on memory shared 8 CPU SGI server. According to simulation experiment, this quick-look imaging algorithm with parallel processing can image 16384x16384 SAR raw data within 6 seconds. It reaches the requirement of real-time imaging.
基金supported by the China National Ministry (No.J01-2005078)the National Natural Science Foundation of China (Grant No.60502012).
文摘An algorithm was developed to accurately estimate the Doppler centroid,which is needed for high-quality synthetic aperture radar(SAR)image formation by resolving the SAR pulse repetition frequency(PRF)ambiguity.The algorithm uses the SAR range migration to resolve the PRF-ambiguity by searching for a PRF-ambiguity number that minimizes the intensity contrast in the range-Doppler domain.Experimental results show that the approach,compared with traditional methods for resolving the SAR PRF ambiguity,is more suitable for both high contrast scenes such as urban areas and low contrast scenes such as mountains.Moreover,the approach is more computationally efficient for there are no time-consuming correlations or fast Fourier transform(FFT)operations needed in the range-Doppler domain and only part of the range cells are used in the calculation.
文摘A space-based bistatic radar system composed of two space-based radars as the transmitter and the receiver respectively has a wider surveillance region and a better early warning capability for high-speed targets,and it can detect focused space targets more flexibly than the monostatic radar system or the ground-based radar system.However,the target echo signal is more difficult to process due to the high-speed motion of both space-based radars and space targets.To be specific,it will encounter the problems of Range Cell Migration(RCM)and Doppler Frequency Migration(DFM),which degrade the long-time coherent integration performance for target detection and localization inevitably.To solve this problem,a novel target detection method based on an improved Gram Schmidt(GS)-orthogonalization Orthogonal Matching Pursuit(OMP)algorithm is proposed in this paper.First,the echo model for bistatic space-based radar is constructed and the conditions for RCM and DFM are analyzed.Then,the proposed GS-orthogonalization OMP method is applied to estimate the equivalent motion parameters of space targets.Thereafter,the RCM and DFM are corrected by the compensation function correlated with the estimated motion parameters.Finally,coherent integration can be achieved by performing the Fast Fourier Transform(FFT)operation along the slow time direction on compensated echo signal.Numerical simulations and real raw data results validate that the proposed GS-orthogonalization OMP algorithm achieves better motion parameter estimation performance and higher detection probability for space targets detection.
文摘A principle for choosing the coherent integration number and an improved Doppler beam sharpening(DBS)imaging algorithm for mechanic scanning radar are pre-sented in this paper.By compensating the range migration in wideband airborne mechanic scanning radar,the proposed DBS imaging algorithm can efficiently improve the resolu-tion of a DBS image.In addition,based on the characteristic that the echo from the moving target will be modulated by the antenna pattern,a novel method used to locate the mov-ing target is also presented,which begins with the sub-aperture moving target detection followed by the sliding window detection.Proper location can be achieved by using this method.Finally,the results on real radar data are pro-vided to demonstrate the effectiveness of these proposed methods.