The effect of rare earths (RE) on fractionation and transformation of available nitrogen in a yellow cinnamon soil was studied with soil cultivation. The results show that under the dry condition, when the extraneous...The effect of rare earths (RE) on fractionation and transformation of available nitrogen in a yellow cinnamon soil was studied with soil cultivation. The results show that under the dry condition, when the extraneous RE are added to the soil, both concentrations of soil ammonium N and hydrolysable N increase, and the concentrations of soil nitric N decrease. The concentrations of soil available N increase with the increase of RE concentrations in soils when the RE concentrations are low, but it decreases with the increase of high RE concentrations in soils. The NOEC (no observed effect concentration) of the extraneous RE to available N in the soils is 443.8 mg·kg -1 . Under the inundated condition, low RE concentrations in soil has no significant effect on soil ammonium N and hydrolysable N. However, when the soil RE concentrations are high, both of them decrease with the increase of RE concentrations. The NOEC of the extraneous RE to soil ammonium N and hydrolysable N are 171.2 and 256.9 mg·kg -1 , respectively.展开更多
By means of inoculating, the effects of rare earths, N and RE N joint inoculants on the content and surface morphology of graphite of high CE gray cast irons were studied The results indicate that RE, N, and espec...By means of inoculating, the effects of rare earths, N and RE N joint inoculants on the content and surface morphology of graphite of high CE gray cast irons were studied The results indicate that RE, N, and especially RE N joint inoculants make the content of graphite decrease; N and RE N joint inoculants could make the surface of graphite rougher and the heads of graphite flake passive展开更多
A new medium-temperature (200-400 °C) adsorbent material for oxygen removal and air separation, YBaCo4O7+δ, was prepared by the solid-state reaction method. This new adsorbent could adsorb a large quantity of ox...A new medium-temperature (200-400 °C) adsorbent material for oxygen removal and air separation, YBaCo4O7+δ, was prepared by the solid-state reaction method. This new adsorbent could adsorb a large quantity of oxygen in the temperature range of 200-370 °C. Adsorbed oxygen could be released by raising temperature over 400 °C or by switching the atmosphere from oxygen to nitrogen. This oxygen adsorption and desorption process had good reproducibility. Taking advantage of this unique oxygen intake/release behavior, a nitrogen purification process was investigated. The results showed that YBaCo4O7+δ material was a promising candidate for the oxygen sorption process and could be used to produce high-purity nitrogen or to remove trace oxygen from other gases.展开更多
The effect of NdCl_3 on the rooting and nitrogen metabolism of loquat in vitro was studied when NdCl_3 was added to the rooted medium. The results show that 0.4 μmol·L^(-1) NdCl_3 in the rooted medium can obviou...The effect of NdCl_3 on the rooting and nitrogen metabolism of loquat in vitro was studied when NdCl_3 was added to the rooted medium. The results show that 0.4 μmol·L^(-1) NdCl_3 in the rooted medium can obviously increase the rooting rate, length of root and fresh weight of roots, and enhance the activities of nitrate reductase, glutamine synthetase, glutamate dehydrogenase in the root system and in the leaves. The transformation of NO_3^- to NH_4^+ in root system and leaves are promoted and the nitrogen metabolism is accelerated with 0.4 μmol·L^(-1) NdCl_3 treatment.展开更多
Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectro...Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectrometer, transmission electron microscopy, and nitrogen adsorption-desorption isotherm measurements. Lanthanum doping could increase the doping content of nitrogen in the sample. The sample prepared with 0.2 mol% La_2O_3, 22 mol% urea and 77.8 mol% SrTiO_3 by mechanochemical reaction, which has nearly the same nitrogen and lanthanum doping fractions, exhibited high photocatalytic activities. Under the irradiation of light with wavelength larger than 400, and 290 nm, the photocatalytic activity of nitrogen and lanthanum co-doped SrTiO_3 were 2.6 and 2 times greater than that of pure SrTiO_3.展开更多
文摘The effect of rare earths (RE) on fractionation and transformation of available nitrogen in a yellow cinnamon soil was studied with soil cultivation. The results show that under the dry condition, when the extraneous RE are added to the soil, both concentrations of soil ammonium N and hydrolysable N increase, and the concentrations of soil nitric N decrease. The concentrations of soil available N increase with the increase of RE concentrations in soils when the RE concentrations are low, but it decreases with the increase of high RE concentrations in soils. The NOEC (no observed effect concentration) of the extraneous RE to available N in the soils is 443.8 mg·kg -1 . Under the inundated condition, low RE concentrations in soil has no significant effect on soil ammonium N and hydrolysable N. However, when the soil RE concentrations are high, both of them decrease with the increase of RE concentrations. The NOEC of the extraneous RE to soil ammonium N and hydrolysable N are 171.2 and 256.9 mg·kg -1 , respectively.
文摘By means of inoculating, the effects of rare earths, N and RE N joint inoculants on the content and surface morphology of graphite of high CE gray cast irons were studied The results indicate that RE, N, and especially RE N joint inoculants make the content of graphite decrease; N and RE N joint inoculants could make the surface of graphite rougher and the heads of graphite flake passive
基金Project supported by the Science and Technology Foundation of Henan Province (082300440140, 092102210263) and the Natural Science Foundation of Department of Education, lien,an Province (2009B430003)
文摘A new medium-temperature (200-400 °C) adsorbent material for oxygen removal and air separation, YBaCo4O7+δ, was prepared by the solid-state reaction method. This new adsorbent could adsorb a large quantity of oxygen in the temperature range of 200-370 °C. Adsorbed oxygen could be released by raising temperature over 400 °C or by switching the atmosphere from oxygen to nitrogen. This oxygen adsorption and desorption process had good reproducibility. Taking advantage of this unique oxygen intake/release behavior, a nitrogen purification process was investigated. The results showed that YBaCo4O7+δ material was a promising candidate for the oxygen sorption process and could be used to produce high-purity nitrogen or to remove trace oxygen from other gases.
文摘The effect of NdCl_3 on the rooting and nitrogen metabolism of loquat in vitro was studied when NdCl_3 was added to the rooted medium. The results show that 0.4 μmol·L^(-1) NdCl_3 in the rooted medium can obviously increase the rooting rate, length of root and fresh weight of roots, and enhance the activities of nitrate reductase, glutamine synthetase, glutamate dehydrogenase in the root system and in the leaves. The transformation of NO_3^- to NH_4^+ in root system and leaves are promoted and the nitrogen metabolism is accelerated with 0.4 μmol·L^(-1) NdCl_3 treatment.
文摘Lanthanum and nitrogen co-doped SrTiO_3 was prepared by a mechanochemical reaction using SrTiO_3, urea and La_2O_3 as the raw materials. The samples were characterized by X-ray diffraction, X-ray photoelectron spectrometer, transmission electron microscopy, and nitrogen adsorption-desorption isotherm measurements. Lanthanum doping could increase the doping content of nitrogen in the sample. The sample prepared with 0.2 mol% La_2O_3, 22 mol% urea and 77.8 mol% SrTiO_3 by mechanochemical reaction, which has nearly the same nitrogen and lanthanum doping fractions, exhibited high photocatalytic activities. Under the irradiation of light with wavelength larger than 400, and 290 nm, the photocatalytic activity of nitrogen and lanthanum co-doped SrTiO_3 were 2.6 and 2 times greater than that of pure SrTiO_3.