The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersiv...The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.展开更多
The mechanical properties of Al-Cu-Mn casting alloy mainly depend on the morphology, distribution, size, and number ofθ′(Al2Cu) precipitates. In this study, we have analyzed the effect of rare earth samarium (Sm...The mechanical properties of Al-Cu-Mn casting alloy mainly depend on the morphology, distribution, size, and number ofθ′(Al2Cu) precipitates. In this study, we have analyzed the effect of rare earth samarium (Sm) addition on the kinetics of precipitation in the Al-Cu-Mn casting alloy by using differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy. Thermal ef-fect peaks that are attributed to the formation and the dissolution of Guinier-Preston (GP) zone andθ′phase were identified from the DSC curves. The activation energy ofθ′formation was calculated by using both the Kissinger method and the analytical model, and the corre-sponding results were compared. Results suggest that the activation energy ofθ′formation in Al-Cu-Mn alloy is dramatically higher than that in Al-Cu-Mn-Sm alloy. Accordingly, it is concluded that the addition of rare earth Sm decreases the activation energy ofθ′formation and promotes the formation ofθ′precipitates.展开更多
Rare earth resources in China are the most abundant, the production capability ranks second in the world. The first generation of rare earth-transition group permanent magnet alloy RECo5 developed in 1970's starte...Rare earth resources in China are the most abundant, the production capability ranks second in the world. The first generation of rare earth-transition group permanent magnet alloy RECo5 developed in 1970's started using rare earths as substantial components. Because of the need of product diversity and to utilize rich resources of mixed rare earth metals, researchers are working on substitution of expensive elemental rare earth metals with cheaper cerium or mixed rare earths (rich in cerium, lanthanum or neodymium) to make lower cost permanent - magnet such as CeCo5. Ce[CoCuFe]5. etc.展开更多
The microstructure and mechanical properties of Mg-Zn-Ho-Zr alloys have been investigated in detail. The grain size of the as-cast Mg-Zn-Ho-Zr alloy was greatly decreased by the addition of Ho, and the grain growth du...The microstructure and mechanical properties of Mg-Zn-Ho-Zr alloys have been investigated in detail. The grain size of the as-cast Mg-Zn-Ho-Zr alloy was greatly decreased by the addition of Ho, and the grain growth during solution treatment was suppressed by Mg-Zn-Ho phases formed at grain boundaries. These thermally stable Mg-Zn-Ho phases could not completely dissolve into the matrix dur- ing solution treatment, and the strengthening effect of solution-plus-ageing treatment weakened. The addition of Ho can greatly enhance the high-temperature elongation of the Mg-Zn-Ho-Zr alloy, but the increase of high-temperature tensile strength was just a little.展开更多
The effects of La addition on the microstructure and tensile properties of B-refmed and Sr-modified A1-1 1Si-1.5Cu-0.3Mg cast- ing alloys were investigated. With a trace addition of La (0.05wt%-0. lwt%), the mutual ...The effects of La addition on the microstructure and tensile properties of B-refmed and Sr-modified A1-1 1Si-1.5Cu-0.3Mg cast- ing alloys were investigated. With a trace addition of La (0.05wt%-0. lwt%), the mutual poisoning effect between B and Sr can be neutral- ized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined ct-A1 grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetal- lics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.展开更多
To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) allo...To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) alloys in a 5wt% NaCl solution was investigated using immersion test and electrochemical measurements. The results of immersion test show that Mg-5Zn-0.3Zr-2Nd alloy exhibits the best corrosion resistance among the tested alloys. Electrochemical measurements show that secondary phases in RE-containing Mg-5Zn-0.3Zr alloys behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. The additions of Nd and Y into Mg-5Zn-0.3Zr alloy also improve the compactness of the corrosion product film and are beneficial to the corrosion resistance.展开更多
This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of m...This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.展开更多
This paper presents a comparative study of the influence of nanometer-CeO_2(nano-CeO_2) and temperature on tribological and lubricating properties of lithium grease. The morphology and structure of nanocrystals were...This paper presents a comparative study of the influence of nanometer-CeO_2(nano-CeO_2) and temperature on tribological and lubricating properties of lithium grease. The morphology and structure of nanocrystals were characterized by means of transmission electron microscopy(TEM) and X-ray diffraction(XRD), respectively. Friction and wear tests were conducted on the friction and wear tester.Results show that the lithium grease with addition of nanometer-CeO_2 has much better friction-reducing and anti-wear performance than that of base grease. When the additive in grease is 0.6 wt%, the friction coefficient(COF) and wear scar diameter(WSD) decrease by 28% and 13% comparing with base grease,respectively. The base grease and grease with 0.6 wt% nanometer-CeO_2 both possess the lowest average COF and wear width at 50 ℃. The worn surface morphology after friction test was analyzed by scanning electron microscopy(SEM) and NANOVEA three-dimensional profilometer. Under the lubrication of the lithium grease containing 0.6 wt% nano-CeO_2. few shallow furrows can be observed on the quite smoothed surface and the WSD decreased. Moreover, It was found that the nano-CeO_2 has been incorporated into the surface protective and lubricious layer by energy dispersive spectrometer(EDS) analysis.展开更多
Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additiv...Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additive was discussed in details. It was speculated that the low coercivity of Ce-Fe-B sintered magnet was related to the irregular sharps and relatively low magneto-anisotropy field of the matrix phase. After introducing a 20 wt.% Nd-based intergranular additive, the coercivity markedly increased from 108 Oe to 2560 Oe due to the formation of thin and continuous grain boundary layers and the surface modification of the matrix phase grains. Additionally, the formation of the high anisotropy field(Nd,Ce)_2Fe_(14)B shell was beneficial to the increase of the coercivity as well. This work suggested that adding low-melting point intergranular additives was effective to fabricate the practical Ce-Fe-B sintered magnets.展开更多
Phase locking for two ytterbium-doped large-core fiber lasers has been demonstrated by using a selfimaging confocal resonator with a spatial filter. Steady high-contrast interference stripes are observed. The visibili...Phase locking for two ytterbium-doped large-core fiber lasers has been demonstrated by using a selfimaging confocal resonator with a spatial filter. Steady high-contrast interference stripes are observed. The visibilities of coherent and incoherent stripes are 59% and 6%, respectively. The measured width of the central strip is in good agreement with the calculated result. For in-phase mode, the output power of the phase-locked fiber laser array is up to 113 W and corresponding slope efficiency is 38.5%.展开更多
By solving a set of time-dependent equations, the characteristics of the ytterbium-doped double-clad fiber amplifier are presented. Besides the steady state in the fiber of the upper-state population, pump power and a...By solving a set of time-dependent equations, the characteristics of the ytterbium-doped double-clad fiber amplifier are presented. Besides the steady state in the fiber of the upper-state population, pump power and amplified spontaneous emission without the input signal, the dynamic characteristics of the high power Gaussian pulse amplification like the evolution of pulse waveform distortion, upper-state population distribution and stored energy and pulse energy of the amplifier under the forward and backward pump, are simulated. The relations between the output pulse energy of the amplifier and the different input pulse peak power or pump power are also discussed. The models and results can provide important guide for the design and optimization of the high power pulse amplification.展开更多
A strongly pumped Yb-doped large-mode-area photonic crystal fiber (LMA-PCF) laser is analyzed. The lasing characteristics of an improved Fabry-Perot (F-P) cavity fiber laser using LMA-PCF are studied theoretically...A strongly pumped Yb-doped large-mode-area photonic crystal fiber (LMA-PCF) laser is analyzed. The lasing characteristics of an improved Fabry-Perot (F-P) cavity fiber laser using LMA-PCF are studied theoretically based on a rate equation model and the exact numerical solution of the rate equations is in excellent agreement with the experimental result.展开更多
The output characteristics of Yb^3+-doped fiber laser at different temperatures are investigated. When temperature is increased from 13 to 95 ℃, the center wavelength of laser changes from 1084.9 to 1096.3 nm, the o...The output characteristics of Yb^3+-doped fiber laser at different temperatures are investigated. When temperature is increased from 13 to 95 ℃, the center wavelength of laser changes from 1084.9 to 1096.3 nm, the output laser power decreases from 0.95 to 0.58 W, and the slope efficiency drops from 30.7% to 25.5%.展开更多
A high power cryogenic cooling Tin-doped (2%) GdVO4 laser double-end-pumped by fiber-coupled-diode: with the center wavelength of 804.5 nm at 21 ℃ is reported. The highest continuous-wave (CW) power of 2.35 W at...A high power cryogenic cooling Tin-doped (2%) GdVO4 laser double-end-pumped by fiber-coupled-diode: with the center wavelength of 804.5 nm at 21 ℃ is reported. The highest continuous-wave (CW) power of 2.35 W at 1903 nm is attained at pump power of 24 W. The slope efficiency is 12.5% and the tt, reshoht is 3.2 W. Single- and double-end-pumped types are investigated.展开更多
Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only o...Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.展开更多
Different up-conversion luminescent spectra of Er^3+ ions were observed in the oxyfluoride glass-ceramics. The ratio of two fluorides in the original compositions was modified in order to form different nanocrystals....Different up-conversion luminescent spectra of Er^3+ ions were observed in the oxyfluoride glass-ceramics. The ratio of two fluorides in the original compositions was modified in order to form different nanocrystals. The intensity of up-conversion luminescence increased sharply when the ratio of PbF2 and CdF2 was 40:10. The data of differential thermal analysis and X-ray diffraction were used to explain the optimization fluoride ratio. The intensity of up-conversion luminescence is not only decided by the crystallizability but also mainly related with the stoiehiometric proportion of fluoride nanocrystals in the glass-ceramics.展开更多
Transitions of laser diode (LD) pumped Er^3+-yb^3+ co-doped glass laser are rather complicated. Considering energy transfer between Er^3+ and Yb^3+ ions, cross-relaxation, upconversion luminescence, and other tr...Transitions of laser diode (LD) pumped Er^3+-yb^3+ co-doped glass laser are rather complicated. Considering energy transfer between Er^3+ and Yb^3+ ions, cross-relaxation, upconversion luminescence, and other transition processes, rate equations of quasi-three energy-level-system of the Er^3+-yb^3+ co-doped laser are presented. The output characteristics are also calculated and analyzed in detail. The results show that Er^3+-yb^3+ co-doped phosphate waveguide lasers with high slope efficiency and low threshold can be achieved.展开更多
The xNb2O5-(15-x)La2O3-40B2O3-45BaO (x = 5, 7.5, 12.5 mol%) glasses doped with Eu^3+ ions in 1 mol% are fabricated by the melting method. The Fourier transform infrared (FTIR) spectra, phonon sideband spectra, ...The xNb2O5-(15-x)La2O3-40B2O3-45BaO (x = 5, 7.5, 12.5 mol%) glasses doped with Eu^3+ ions in 1 mol% are fabricated by the melting method. The Fourier transform infrared (FTIR) spectra, phonon sideband spectra, emission and excitation spectra of the glasses are measured. The crystal field parameter and coordination number of Eu^3+ ions in the glasses are obtained according to the splitting of their ^5D0 - ^7F1 levels. The intensity parameters Ω2 and Ω4 of Eu^3+ ions for optical transition are calculated from their emission spectra in terms of reduced matrix U^(t) (λ= 2, 4, 6) character for optical transitions. The results indicate that the intensity parameters Ω2 and Ω4 increase with the increase of Nb2O5 content, suggesting that the symmetry becomes lower, the band of Eu and O atoms becomes stronger and the covalence increases with the increase of Nb2O5 content.展开更多
A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO ...A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.展开更多
The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the unia...The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.展开更多
基金Project(51965040)supported by the National Natural Science Foundation of ChinaProject(20181BAB206026)supported by the Natural Science Foundation of Jiangxi Province,China。
文摘The effects of rare earth ytterbium(Yb)addition and hot extrusion on the microstructure and corrosion behavior of as-cast ADC12 were studied by optical microscopy(OM),scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS)and X-ray diffraction(XRD).The experimental results demonstrate that both the Si phase andβ-Al5FeSi phase in the alloy with 0.9 wt%Yb have been remarkably refined,and the Al3Yb intermetallic compound has also been obtained.The Si,β-Al5FeSi,and rare earth phases are further refined in the alloy at 0.9 wt%Yb and hot extrusion.The results of the immersion corrosion tests and electrochemical experiments show that the corrosion current density(8.56μA/cm2)of the alloy with 0.9 wt%Yb addition and hot extrusion is 50.6%lower than the untreated alloy(17.33μA/cm2),and the polarization resistance(9252Ω·cm2)was 71.3%higher than the untreated alloy(2654Ω·cm2).The corrosion in the cathode phase in the micro-battery was refined to varying degrees attributable to the addition of Yb and hot extrusion,where the cathode reaction in the corrosion process caused a decrease of the corrosion rate.
基金financially supported by the Aeronautical Science Foundation of China(No.2012ZF53080)the Shaanxi Province Science and Technology Research and Development Program of China(No.2013K08-11)+1 种基金the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University(No.SKLSP201009)the 111 Project of China(No.B08040)
文摘The mechanical properties of Al-Cu-Mn casting alloy mainly depend on the morphology, distribution, size, and number ofθ′(Al2Cu) precipitates. In this study, we have analyzed the effect of rare earth samarium (Sm) addition on the kinetics of precipitation in the Al-Cu-Mn casting alloy by using differential scanning calorimetry (DSC) and high-resolution transmission electron microscopy. Thermal ef-fect peaks that are attributed to the formation and the dissolution of Guinier-Preston (GP) zone andθ′phase were identified from the DSC curves. The activation energy ofθ′formation was calculated by using both the Kissinger method and the analytical model, and the corre-sponding results were compared. Results suggest that the activation energy ofθ′formation in Al-Cu-Mn alloy is dramatically higher than that in Al-Cu-Mn-Sm alloy. Accordingly, it is concluded that the addition of rare earth Sm decreases the activation energy ofθ′formation and promotes the formation ofθ′precipitates.
文摘Rare earth resources in China are the most abundant, the production capability ranks second in the world. The first generation of rare earth-transition group permanent magnet alloy RECo5 developed in 1970's started using rare earths as substantial components. Because of the need of product diversity and to utilize rich resources of mixed rare earth metals, researchers are working on substitution of expensive elemental rare earth metals with cheaper cerium or mixed rare earths (rich in cerium, lanthanum or neodymium) to make lower cost permanent - magnet such as CeCo5. Ce[CoCuFe]5. etc.
基金supported by the National Natural Science Foundation of China (No.51074106)the International Cooperation Fund of Shanghai Science and Technology Committee:Shanghai/Rhone-Alpes Science and Technology Cooperation Fund (No. 06SR07104)+1 种基金the National High-Tech Research and Development Program of China (No.2009AA033501)the National High-Tech Research and Development Program of China (No.2006BAE04B01-2)
文摘The microstructure and mechanical properties of Mg-Zn-Ho-Zr alloys have been investigated in detail. The grain size of the as-cast Mg-Zn-Ho-Zr alloy was greatly decreased by the addition of Ho, and the grain growth during solution treatment was suppressed by Mg-Zn-Ho phases formed at grain boundaries. These thermally stable Mg-Zn-Ho phases could not completely dissolve into the matrix dur- ing solution treatment, and the strengthening effect of solution-plus-ageing treatment weakened. The addition of Ho can greatly enhance the high-temperature elongation of the Mg-Zn-Ho-Zr alloy, but the increase of high-temperature tensile strength was just a little.
基金supported by the Industry, Education, and Research Prospective Project of Jiangsu Province, China (No. BY2012191)the Open Research of Jiangsu Key Laboratory of Advanced Metallic Materials (No. AMM201202)
文摘The effects of La addition on the microstructure and tensile properties of B-refmed and Sr-modified A1-1 1Si-1.5Cu-0.3Mg cast- ing alloys were investigated. With a trace addition of La (0.05wt%-0. lwt%), the mutual poisoning effect between B and Sr can be neutral- ized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined ct-A1 grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetal- lics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.
基金supported by the Program of Shanghai Subject Chief Scientist (No.08XD14020)the Science and Technology Commission of Shanghai Municipality (No.08JC1412200)China Postdoctoral Science Foundation (No.20080430657)
文摘To improve the corrosion resistance of wrought magnesium alloys through rare earth (RE) additions, the corrosion behaviour of Mg-5Zn-0.3Zr-xNd (x=0, 1, and 2; wt%) and Mg-5Zn-0.3Zr-2Nd-yY (y=0.5 and 1; wt%) alloys in a 5wt% NaCl solution was investigated using immersion test and electrochemical measurements. The results of immersion test show that Mg-5Zn-0.3Zr-2Nd alloy exhibits the best corrosion resistance among the tested alloys. Electrochemical measurements show that secondary phases in RE-containing Mg-5Zn-0.3Zr alloys behave as less noble cathodes in micro-galvanic corrosion and suppress the cathodic process. The additions of Nd and Y into Mg-5Zn-0.3Zr alloy also improve the compactness of the corrosion product film and are beneficial to the corrosion resistance.
基金financially supported by Guangdong Innovative and Entrepreneurial Research Team Program ( No. 2013G061)the National Natural Science Foundation of China ( No. 51402055)
文摘This paper reviewed the effect of powder characteristics and additives including metals,rare earth oxides,and ZrO2 on nitridation of Si powder.The decrease of particle size of Si powder increased nitridation.Most of metal additives inhibited nitridation,while some metal additives such as Fe,Cu,Cr,and Ca increased nitrida—tion.Otherwise,the addition of metals might lead to the degradation of physical and mechanical properties of Si3N4.All the rare earth oxides,especially CeO2 and Eu2O3,showed nitridation enhancing effect.In addition,ZrO2 with small particle size showed a stronger enhancing effect.
基金Project supported by the Natural Science Foundation of the Henan Province(152102210196)the Foundation of the Henan Educational Committee(16A460001)
文摘This paper presents a comparative study of the influence of nanometer-CeO_2(nano-CeO_2) and temperature on tribological and lubricating properties of lithium grease. The morphology and structure of nanocrystals were characterized by means of transmission electron microscopy(TEM) and X-ray diffraction(XRD), respectively. Friction and wear tests were conducted on the friction and wear tester.Results show that the lithium grease with addition of nanometer-CeO_2 has much better friction-reducing and anti-wear performance than that of base grease. When the additive in grease is 0.6 wt%, the friction coefficient(COF) and wear scar diameter(WSD) decrease by 28% and 13% comparing with base grease,respectively. The base grease and grease with 0.6 wt% nanometer-CeO_2 both possess the lowest average COF and wear width at 50 ℃. The worn surface morphology after friction test was analyzed by scanning electron microscopy(SEM) and NANOVEA three-dimensional profilometer. Under the lubrication of the lithium grease containing 0.6 wt% nano-CeO_2. few shallow furrows can be observed on the quite smoothed surface and the WSD decreased. Moreover, It was found that the nano-CeO_2 has been incorporated into the surface protective and lubricious layer by energy dispersive spectrometer(EDS) analysis.
基金Project supported by Plan of National Key Research and Development(2016YFB0700903)Program of Ningbo International Corporation(2015D10019)+1 种基金Program of Ningbo Innovation Team(2012B81001)Zhejiang Provincial Nature Science Foundation for Youth under Grant(LQ15E010004)
文摘Ce-Fe-B sintered magnets with enhanced coercivity were prepared by the powder metallurgy method. The mechanism of the coercivity enhancement in Ce-Fe-B sintered magnets with the low-melting point intergranular additive was discussed in details. It was speculated that the low coercivity of Ce-Fe-B sintered magnet was related to the irregular sharps and relatively low magneto-anisotropy field of the matrix phase. After introducing a 20 wt.% Nd-based intergranular additive, the coercivity markedly increased from 108 Oe to 2560 Oe due to the formation of thin and continuous grain boundary layers and the surface modification of the matrix phase grains. Additionally, the formation of the high anisotropy field(Nd,Ce)_2Fe_(14)B shell was beneficial to the increase of the coercivity as well. This work suggested that adding low-melting point intergranular additives was effective to fabricate the practical Ce-Fe-B sintered magnets.
基金This work was supported by the National Major Fundamental Research Program(973)of China(No.61359020103)the National High Technology Research and Development Program(863)of China(No.2005AA802030).
文摘Phase locking for two ytterbium-doped large-core fiber lasers has been demonstrated by using a selfimaging confocal resonator with a spatial filter. Steady high-contrast interference stripes are observed. The visibilities of coherent and incoherent stripes are 59% and 6%, respectively. The measured width of the central strip is in good agreement with the calculated result. For in-phase mode, the output power of the phase-locked fiber laser array is up to 113 W and corresponding slope efficiency is 38.5%.
文摘By solving a set of time-dependent equations, the characteristics of the ytterbium-doped double-clad fiber amplifier are presented. Besides the steady state in the fiber of the upper-state population, pump power and amplified spontaneous emission without the input signal, the dynamic characteristics of the high power Gaussian pulse amplification like the evolution of pulse waveform distortion, upper-state population distribution and stored energy and pulse energy of the amplifier under the forward and backward pump, are simulated. The relations between the output pulse energy of the amplifier and the different input pulse peak power or pump power are also discussed. The models and results can provide important guide for the design and optimization of the high power pulse amplification.
基金This work was supported by the National Natural Science Foundation of China under Grant No.60537060 and 10390160.
文摘A strongly pumped Yb-doped large-mode-area photonic crystal fiber (LMA-PCF) laser is analyzed. The lasing characteristics of an improved Fabry-Perot (F-P) cavity fiber laser using LMA-PCF are studied theoretically based on a rate equation model and the exact numerical solution of the rate equations is in excellent agreement with the experimental result.
基金This work was supported by Foundation of China Academy of Engineering Physics under Grant No.2004R0205.
文摘The output characteristics of Yb^3+-doped fiber laser at different temperatures are investigated. When temperature is increased from 13 to 95 ℃, the center wavelength of laser changes from 1084.9 to 1096.3 nm, the output laser power decreases from 0.95 to 0.58 W, and the slope efficiency drops from 30.7% to 25.5%.
文摘A high power cryogenic cooling Tin-doped (2%) GdVO4 laser double-end-pumped by fiber-coupled-diode: with the center wavelength of 804.5 nm at 21 ℃ is reported. The highest continuous-wave (CW) power of 2.35 W at 1903 nm is attained at pump power of 24 W. The slope efficiency is 12.5% and the tt, reshoht is 3.2 W. Single- and double-end-pumped types are investigated.
基金This work was supported by National Science Fund for Distinguished Young Scholars of China (Project 60125513)the Jiangsu Province Natural Science Foundation of China (No. BK2004207).
文摘Using a fiber Bragg grating (FBG) and a Fabry-Perot cavity composed of two fiber Bragg gratings (FBGFP) as its frequency-selective components, a type of single frequency all-fiber ring laser permits oscillation only on one longitudinal mode of the main cavity without modehopping while the cavity length can be up to tens of meters. The salient feature is due to the single narrowband resonance of the FBGFP filter. Such a fiber ring laser is achieved experimentally, and the laser mode is limited inside the single resonance of the FBGFP.
基金This work was supported by the National NaturalScience Foundation of China (No. 60178024) and theCultivation Fund of the Key Scientific and TechnicalInnovation Project, Ministry of Education of China (No.704012)
文摘Different up-conversion luminescent spectra of Er^3+ ions were observed in the oxyfluoride glass-ceramics. The ratio of two fluorides in the original compositions was modified in order to form different nanocrystals. The intensity of up-conversion luminescence increased sharply when the ratio of PbF2 and CdF2 was 40:10. The data of differential thermal analysis and X-ray diffraction were used to explain the optimization fluoride ratio. The intensity of up-conversion luminescence is not only decided by the crystallizability but also mainly related with the stoiehiometric proportion of fluoride nanocrystals in the glass-ceramics.
基金This work was supported by the National Natural Science Foundation of China under Grant No.90201011,10174057.
文摘Transitions of laser diode (LD) pumped Er^3+-yb^3+ co-doped glass laser are rather complicated. Considering energy transfer between Er^3+ and Yb^3+ ions, cross-relaxation, upconversion luminescence, and other transition processes, rate equations of quasi-three energy-level-system of the Er^3+-yb^3+ co-doped laser are presented. The output characteristics are also calculated and analyzed in detail. The results show that Er^3+-yb^3+ co-doped phosphate waveguide lasers with high slope efficiency and low threshold can be achieved.
基金This work was supported by the Natural Science Foundation of Zhejiang Province (No. 502164) the Doctoral Science Foundation of Ningbo (No. 2005A610010).
文摘The xNb2O5-(15-x)La2O3-40B2O3-45BaO (x = 5, 7.5, 12.5 mol%) glasses doped with Eu^3+ ions in 1 mol% are fabricated by the melting method. The Fourier transform infrared (FTIR) spectra, phonon sideband spectra, emission and excitation spectra of the glasses are measured. The crystal field parameter and coordination number of Eu^3+ ions in the glasses are obtained according to the splitting of their ^5D0 - ^7F1 levels. The intensity parameters Ω2 and Ω4 of Eu^3+ ions for optical transition are calculated from their emission spectra in terms of reduced matrix U^(t) (λ= 2, 4, 6) character for optical transitions. The results indicate that the intensity parameters Ω2 and Ω4 increase with the increase of Nb2O5 content, suggesting that the symmetry becomes lower, the band of Eu and O atoms becomes stronger and the covalence increases with the increase of Nb2O5 content.
基金Project supported by the National Key Research and Development Program of China(2016YFC0205500)National Natural Science Foundation of China(51772149)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘A series of Mn-Mo-W-O_x/TiO_2-SiO_2 catalysts was modified with CeO_2 using an extrusion molding method. The catalytic activities of the obtained catalysts were tested for the synergistic catalytic removals of CO, NO and C_3H_8. The ratio of catalyst composition on catalytic activities for NH_3-SCR was optimized, which reveals that the molar ratio of Ti/Si was 9:1 and the catalyst containing 1.5 wt% CeO_2 and 12 wt% Mn-Mo-W-O_x exhibits the best catalytic performances. These samples were characterized by XRD, N_2-BET, Py-IR, NH_3-TPD, SEM/element mapping, H_2-TPR and XPS, respectively. Results show that the optimal catalyst exhibits more than 99% NO conversion, 86% CO conversion and 100% C_3H_8 conversion under GHSV of 5000 h^(-1). In addition, the GHSV has little influence on removal of NO when it is less than 15,000 h^(-1). Furthermore, the addition of CeO_2 will enhance the surface acidity, increase Mn^(4+)concentration and inhibit the grain growth, which are favorable for the excellent catalytic performance.Anyway,the 1.5 wt% CeO_2-12 wt% Mn-Mo-W-O_x/TiO_2-SiO_2 possesses outstanding redox properties,abundant acid sites and high Mn^(4+) concentration, which provide a guarantee for synergistic catalytic removal of CO, NO and HC.
基金supported by the Education Department of Shaanxi Province(14JK1351)the Principal Fund of Xi’an Technological University(0852-302021407)
文摘The high temperature deformation behaviors and thermal workability of Cu_(43)Zr_(48)Al_9 and(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glasses in the supercooled liquid region were investigated by the uniaxial compression tests. The results showed that the high temperature deformation behaviors were highly sensitive to strain rate and temperature, and the flow stress decreased with the increase of temperature, as well as with the decrease of strain rate. Additionally, the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass displayed smaller flow stress under the same condition. The flow behavior changed from Newtonian to non-Newtonian with increase of the strain rate, as well as the decrease of temperature, which could be explained by the transition state theory. We found that(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass had better flow behavior than the Cu_(43)Zr_(48)Al_9 bulk metallic glass in the supercooled liquid region. In addition, the processing maps of the two bulk metallic glasses were constructed considering the power dissipation efficiency. The optimum domain for thermal workability of the bulk metallic glass was located using the processing map, where the power dissipation efficiency was larger than 0.8. It was shown that the(Cu_(43)Zr_(48)Al_9)_(98)Y_2 bulk metallic glass, which had larger area of optimum domain, had excellent thermoplastic forming.