Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reserv...Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.展开更多
The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by...The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by thermogravimetry(TG) and differential thermogravimetry(DTG), and differential scanning calorimetry(DSC) under the high-pressure dynamic ambience. The results show that the thermal decomposition processes of the mixed nitric ester gun propellants have two mass-loss stages. Nitric ester evaporates and decomposes in the first stage, and nitrocellulose and centralite II(C2) decompose in the second stage. The mass loss, the DTG peak points, and the terminated temperatures of the two stages are changeable with the difference of the mass ratio of TEGDN to NG. There is only one obvious exothermic peak in the DSC curves under the different pressures. With the increase in the furnace pressure, the peak temperature decreases, and the decomposition heat increases. With the increase in the content of TEGDN, the decomposition heat decreases at 0.1 MPa and rises at high pressure. The variety of mass ratio of TEGDN to NG makes few effect on the exothermic peak temperatures in the DSC curves at different pressures. The kinetic equation of the main exothermal decomposition reaction of the gun propellant TG0601 was determined as: dα/dt=1021.59(1-α)3e-2.60×104/T. The reaction mechanism of the process can be classified as chemical reaction. The critical temperatures of the thermal explosion(Tbe and Tbp) obtained from the onset temperature(Te) and the peak temperature(Tp) are 456.46 and 473.40 K, respectively. ΔS≠, ΔH≠, and ΔG≠ of the decomposition reaction are 163.57 J·mol^-1·K^-1, 209.54 kJ·mol^-1, and 133.55 kJ·mol^-1, respectively.展开更多
Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction ra...Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction rate parameters were considered.Two types of undetermined functions were used to compensate for the intrinsic variation of the reaction rate,and two types of correction methods are provided.The model was explained and verified using published experimental data of different polymer thermal reaction systems,and its effectiveness and wide adaptability were confirmed.For the given kinetic model,only one parameter needs to be determined.The proposed empirical model is expected to be used in the numerical simulation of polymer thermal reaction process.展开更多
Toluene-2,4-bisurea (TBU) is an important intermediate for urea route to dimethyl toluene-2,4-dicarbamate and the study on TBU synthesis via the reaction of 2,4-toluene diamine (TDA) and urea is of great significance....Toluene-2,4-bisurea (TBU) is an important intermediate for urea route to dimethyl toluene-2,4-dicarbamate and the study on TBU synthesis via the reaction of 2,4-toluene diamine (TDA) and urea is of great significance. Firstly, thermodynamic analysis shows that the reaction is exothermic and a high equilibrium conversion of TDA is expected due to its large reaction equilibrium constant. Secondly, under the suitable reaction conditions, 130 °C, 7 h, and molar ratio of TDA/zinc acetate/urea/sulfolane 1/0.05/3.5/10, TDA conversion is 54.3%, and TBU yield and selectivity are 39.8% and 73.3% respectively. Lastly, the synthesis of TBU is a 1st order reaction with respect to TDA and the reaction kinetics model is established. This work will provide useful information for commercializing the urea route to toluene-2,4-dicarbamate (TDC).展开更多
High energy density Li-CO_(2)batteries have attracted much attention owing to the"two birds with one stone"feature in fixing greenhouse gas CO_(2)and providing renewable energy.However,poor reversibility of ...High energy density Li-CO_(2)batteries have attracted much attention owing to the"two birds with one stone"feature in fixing greenhouse gas CO_(2)and providing renewable energy.However,poor reversibility of the discharge product Li_(2)CO_(3)is one of the main problems that limit its application,resulting in poor cycling stability and severe polarization.Herein,copper indium sulfide(CIS),a semiconducting non-precious metal sulfide,is fabricated as cathode catalysts for high-performance Li-CO_(2)batteries.Combined with the synergistic effect of bimetallic valence bonding and coordinated electron transfer,Li-CO_(2)batteries using CIS cathodes exhibit high full specific discharge capacity,excellent rate capability and cycle stability,namely it delivers a high specific full discharge capacity of 8878μAh cm^(-2),runs steadily from 10 to 100μA cm^(-2),and performs a stable long-term cycling behavior(>1050 h)under a high energy efficiency of 84%and a low charge voltage of approximately 3.4 V at 20μA cm^(-2)within 100μAh cm^(-2).In addition,a flexible Li-CO_(2)pouch cell is constructed to reveal the potential of employing CIS to fabricate flexible high energy storage devices in practical applications.This work shows a promising development pathway toward next-generation sustainable energy storage devices.展开更多
As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective...As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.展开更多
Baotou RE concentrate was decomposed with concentrated sulfuric acid by controlling the roasting temperature below 500℃.Thermogravimetry-differential thermal analysis(TG-DTA) and chemical analytical methods were us...Baotou RE concentrate was decomposed with concentrated sulfuric acid by controlling the roasting temperature below 500℃.Thermogravimetry-differential thermal analysis(TG-DTA) and chemical analytical methods were used to study the thermal decomposition process and the thermal decomposition effect.The Freeman-Carroll method was applied to analyze the TG-DTA curves.The activation energy, reaction order, and reaction frequency factor at different stages were calculated.The Satava method was used to deduce the reaction mechanism and the relative reaction rate during the thermal decomposition process.展开更多
In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was elimin...In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was eliminated by adjusting the stirring rate. The results showed that the two-step reaction followed a tetrahedral mechanism and conformed to second-order reaction kinetics. Nucleophilic attack on the carbonyl carbon afforded an intermediate, containing a tetrahedral carbon center. The intermediate ultimately decomposed by elimination of the leaving group, affording isopropyl palmitate. The experimental data were analyzed at different temperatures by the integral method. The kinetic equations of the each step were deduced, and the activation energy and frequency factor were obtained. Experiments were performed to verify the feasibility of kinetic equations, and the result showed that the kinetic equations were reliable. This study could be very signi ficant to both industrial application and determining the continuous production of isopropyl palmitate.展开更多
The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The example...The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.展开更多
The reaction kinetics of the heterogeneous oxidation of toluene with Mn 3+ was studied by considering the effects of disproportionation of Mn 3+ in reaction system, a 'parallel' modulus was set up. A...The reaction kinetics of the heterogeneous oxidation of toluene with Mn 3+ was studied by considering the effects of disproportionation of Mn 3+ in reaction system, a 'parallel' modulus was set up. And then the concentration of Mn 3+ in disproportionation and the concentration of benzaldehyde in oxidation were respectively determined in turn, the rate constant, order and pseudo activation energy of the heterogeneous oxidation were obtained by mathematical deduction and the kinetic equation was concluded. In addition, the reaction mechanism was analyzed. It shows that the results are completely consistent with modulus.展开更多
Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity(~1166 mAh·g^(-1)),low reduction potential(-2.71 V compared to standard hydrogen electrodes...Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity(~1166 mAh·g^(-1)),low reduction potential(-2.71 V compared to standard hydrogen electrodes),and low cost.However,the unstable solid electrolyte interphase,uncontrolled dendrite growth,and inevitable volume expansion hinder the practical application of sodium metal anodes.At present,many strategies have been developed to achieve stable sodium metal anodes.Here,we systematically summarize the latest strategies adopted in interface engineering,current collector design,and the emerging methods to improve the reaction kinetics of sodium deposition processes.First,the strategies of constructing protective layers are reviewed,including inorganic,organic,and mixed protective layers through electrolyte additives or pretreatments.Then,the classification of metal-based,carbon-based,and composite porous frames is discussed,including their function in reducing local deposition current density and the effect of introducing sodiophilic sites.Third,the recent progress of alloys,nanoparticles,and single atoms in improving Na deposition kinetics is systematically reviewed.Finally,the future research direction and the prospect of high-performance sodium metal batteries are proposed.展开更多
Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of ...Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of coal are laden with high CO_(2) footprints.Recently,methane(CH_(4))pyrolysis has emerged as a potential technology to generate low-carbon H_(2) and solid carbon.In this review,the current state-of-art and recent progress of H_(2) production from CH_(4) pyrolysis are reviewed in detail.Aspects such as funda-mental mechanism and chemistry involved,effect of process parameters on the conversion efficiency and reaction kinetics for various reaction media and catalysts are elucidated and critically discussed.Temper-ature,among other factors,plays the most critical influence on the methane pyrolysis reaction.Molten metal/salt could lower the operating temperature of methane pyrolysis to<1000℃,whereas plasma technology usually operates in the regime of>1000℃.Based on the reaction kinetics,metal-based cata-lysts were more efficient in lowering the activation energy of the reaction to 29.5-88 kJ/mol from that of uncatalyzed reaction(147-420.7 kJ/mol).Besides,the current techno-economic performance of the pro-cess reveals that the levelized cost of H_(2) is directly influenced by the sales price of carbon(by-product)generated,which could offset the overall cost.Lastly,the main challenges of reactor design for efficient product separation and retrieval,as well as catalyst deactivation/poisoning need to be debottlenecked.展开更多
Highly active and low-cost oxygen evolution reaction(OER)catalytic electrodes are extremely essential for exploration of green hydrogen via water splitting.Herein,an advanced Fe-Ni-F electrocatalyst is fabricated by a...Highly active and low-cost oxygen evolution reaction(OER)catalytic electrodes are extremely essential for exploration of green hydrogen via water splitting.Herein,an advanced Fe-Ni-F electrocatalyst is fabricated by a facile annealing strategy using ammonium fluoride,of which the structure feature is unveiled by XRD,FESEM,TEM,EDS,BET,and XPS measurements.The as-prepared Fe-Ni-F addresses a low overpotential of 277 mV and a small Tafel slope of 49 mV dec^(-1)at a current density of 10 mA cm^(-2),significantly outperforming other control samples as well as the state-of-the-art RuO_(2).The advanced nature of our Fe-Ni-F catalyst could also be further evidenced from the robust stability in KOH alkaline solution,showing as 5.41%degradation after 24 h continuous working.Upon analysis,it suggests that the decent catalytic activity should be attributed to the formed bimetallic(oxy)hydroxides because of the introduction of fluoride and the synergistic effect of iron and nickel towards oxygen generation.This work represents the potential of Fe-and/or Ni-based fluoride as efficient catalyst for low-energy consumption oxygen generation.展开更多
The ozonation of Cationic Red X-GRL in a semi-batch reactor was studied with variation of the gas flow rate, initial Cationic Red X-GRL concentration, temperature, and pH value. By the evaluation of the liquid mass tr...The ozonation of Cationic Red X-GRL in a semi-batch reactor was studied with variation of the gas flow rate, initial Cationic Red X-GRL concentration, temperature, and pH value. By the evaluation of the liquid mass transfer coefficient, the interfacial area, and the stoichiometric ratio between ozone and Cationic Red X-GRL, the rate constants and the kinetic regime of the reaction between ozone and Cationic Red X-GRL were investigated by applying the experimental data to a model based on the film mass transfer theory. The results obtained support a second order overall reaction, first order with respect to both ozone and dye, and the rate constants were correlated by a modified Arrhenius Equation of temperature and pH value with activation energy of 18.06kJ·mol-1. Hatta number of the reaction was found to be between 0.026 and 0.041, it indicates that the reaction occurs in the liquid bulk, corresponding to the slow kinetic regime.展开更多
The prepolymerization and curing reaction kinetics of polyurethane/montmorillonite have been studied with end group analysis and FTIR respectively. It was found that the prepolymerization and curing reaction followed ...The prepolymerization and curing reaction kinetics of polyurethane/montmorillonite have been studied with end group analysis and FTIR respectively. It was found that the prepolymerization and curing reaction followed the 2nd-order kinetics. But the activation energy of prepolymerization increased from 42.7 kJ/mol to 56.5 kJ/rnol after the montmorillonite was added in the reaction system, and activation energy of curing reaction decreased from 64.4 kJ/mol to 17.5 kJ/mol. 2007 Bing Liao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Based on the measurement of the released hydrogen gas pressure (PH2), the reaction kinetics between TiH2 powder and pure aluminum melt was studied at various temperatures. After cooling the samples, the interface of...Based on the measurement of the released hydrogen gas pressure (PH2), the reaction kinetics between TiH2 powder and pure aluminum melt was studied at various temperatures. After cooling the samples, the interface of TiH2 powder and aluminum melt was studied. The results show that the-time curves have three regions; in the first and second regions, the rate of reaction conforms zero and one order, respectively; in the third region, the hydrogen gas pressure remains constant and the rate of reaction reaches zero. The main factors that control the rate of reaction in the first and second regions are the penetration of hydrogen atoms in the titanium lattice and the chemical reaction between molten aluminum and titanium, respectively. According to the main factors that control the rate of reaction, three temperature ranges are considered for the reaction mechanism: (a) 700-750°C, (b) 750-800°C, and (c) 800-1000°C. In the first temperature range, the reaction is mostly under the control of chemical reaction; at the temperature range of 750 to 800°C, the reaction is controlled by the diffusion and chemical reaction; at the third temperature range (800-1000°C), the dominant controlling mechanism is diffusion.展开更多
One-sixth of the currently known natural products containα,β-unsaturated carbonyl groups.Our previous studies reported a rare C-sulfonate metabolic pathway.Sulfonate groups were linked to theβ-carbon ofα,β-unsatu...One-sixth of the currently known natural products containα,β-unsaturated carbonyl groups.Our previous studies reported a rare C-sulfonate metabolic pathway.Sulfonate groups were linked to theβ-carbon ofα,β-unsaturated carbonyl-based natural compounds through this pathway.However,the mechanism of this type of metabolism is still not fully understood,especially whether it is formed through enzyme-mediated biotransformation or direct sulfite addition.In this work,the enzyme-mediated and non-enzymatic pathways were studied.First,the sulfite content in rat intestine was determined by LC-MS/MS.The results showed that the amount of sulfite in rat intestinal contents was from 41.5 to 383μg·g^(-1),whereas the amount of sulfite in rat feed was lower than the lower limit of quantitation(20μg·g^(-1)).Second,the reaction kinetics of sulfite-andrographolide reactions in phosphate buffer solutions(pH 6-8)was studied.The half-lives of andrographolide ranged from minutes to hours.This was suggested that the C-sulfonate reaction of andrographolide was very fast.Third,the C-sulfonate metabolites of andrographolide were both detected when andrographolide and L-cysteine-S-conjugate andrographolide were incubated with the rat small intestine contents or sulfite,indicating that the sulfite amount in rat intestine contents was high enough to react with andrographolide,which assisted a significant portion of andrographolide metabolism.Finally,the comparison of andrographolide metabolite profiles among liver homogenate(with NADPH),liver S9(with NADPH),small intestine contents homogenate(with no NADPH),and sulfite solution incubations showed that the C-sulfonate metabolites were predominantly generated in the intestinal tract by non-enzymatic pathway.In summary,sulfite can serve as a substrate for C-sulfonate metabolism,and these results identified non-enzymatically nucleophilic addition as the potential mechanism for C-sulfonate metabolism of compounds containingα,β-unsaturated carbonyl moiety.展开更多
The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation...The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.展开更多
Cure and decomposition reaction kinetics of typical organic materials in aerospace applications are introduced.From the data of dynamic differential scanning calorimetry(DSC)experiments,and based on changes of the pea...Cure and decomposition reaction kinetics of typical organic materials in aerospace applications are introduced.From the data of dynamic differential scanning calorimetry(DSC)experiments,and based on changes of the peak temperatures(T_(p))with different heating rates(β),a linear equation,T_(p)=T_(1)+△Tlnβ,has been obtained more reasonably.The above equation can be used to explain some laws of higher or lower of apparent activation energies(E_(a)),by which the apparent activation energy(E_(a))is nearly equal to RT^(2)_(1)/△T.A number of kinetic investigations of typical thermosetting resins and energetic materials in aerospace applications were chosen to validate the above equations.展开更多
The experimental results on adsorption of ions pb2+, Zn2+ and Ag+ onto mineral surfaces in a mix system show that the reaction kinetics of adions adsorbed onto mineral surfaces was mainly controlled by their diffusion...The experimental results on adsorption of ions pb2+, Zn2+ and Ag+ onto mineral surfaces in a mix system show that the reaction kinetics of adions adsorbed onto mineral surfaces was mainly controlled by their diffusion rates in solution. The concentration variations can be fit for the second-order rate equation with good determined coefficients r = 0.800 5—0.979 7. In the near neutral solution, the concentration of exchanged ions K+ and Na+ related to reaction time can be described by the fint-order rate equation with r = 0.855 7–0.997 7. Meanwhile, the complex diffusionexchange rate equation is suitable for describing the ca2 + concentration variation, as ions Pb2 + and Zn2+ were adions. Experimental data show that the amount of ions K+, Na+and Ca2+ release is much more than that of adion decrement in solution. This fact may suggest that the complexstion reaction of adions Pb2+, Z2+ and Ag+ with the mineral surfaces was the major reaction process while adions were not entering the phyllosilicate interlayers or CaCO3 lattice to exchange the ions K+, Na+ and Ca2+ at room temperature.展开更多
基金supported by the National Key Research and Development Program(2021YFB2400300)National Natural Science Foundation of China(22379013 and 22209010)the Beijing Institute of Technology“Xiaomi Young Scholars”program。
文摘Lithium(Li)metal is regarded as a promising anode candidate for high-energy-density rechargeable batteries.Nevertheless,Li metal is highly reactive against electrolytes,leading to rapid decay of active Li metal reservoir.Here,alloying Li metal with low-content magnesium(Mg)is proposed to mitigate the reaction kinetics between Li metal anodes and electrolytes.Mg atoms enter the lattice of Li atoms,forming solid solution due to the low amount(5 wt%)of Mg.Mg atoms mainly concentrate near the surface of Mg-alloyed Li metal anodes.The reactivity of Mg-alloyed Li metal is mitigated kinetically,which results from the electron transfer from Li to Mg atoms due to the electronegativity difference.Based on quantitative experimental analysis,the consumption rate of active Li and electrolytes is decreased by using Mgalloyed Li metal anodes,which increases the cycle life of Li metal batteries under demanding conditions.Further,a pouch cell(1.25 Ah)with Mg-alloyed Li metal anodes delivers an energy density of 340 Wh kg^(-1)and a cycle life of 100 cycles.This work inspires the strategy of modifying Li metal anodes to kinetically mitigate the side reactions with electrolytes.
基金the National Natural Science Foundation of China(No.20573098)the Foundation of Key Laboratory of Science and Technology for National Defence of Propellant and Explosive of China(No.9140C3503020605).
文摘The thermal decomposition behavior and nonisothermal reaction kinetics of the double-base gun propellants containing the mixed ester of triethyleneglycol dinitrate(TEGDN) and nitroglycerin(NG) were investigated by thermogravimetry(TG) and differential thermogravimetry(DTG), and differential scanning calorimetry(DSC) under the high-pressure dynamic ambience. The results show that the thermal decomposition processes of the mixed nitric ester gun propellants have two mass-loss stages. Nitric ester evaporates and decomposes in the first stage, and nitrocellulose and centralite II(C2) decompose in the second stage. The mass loss, the DTG peak points, and the terminated temperatures of the two stages are changeable with the difference of the mass ratio of TEGDN to NG. There is only one obvious exothermic peak in the DSC curves under the different pressures. With the increase in the furnace pressure, the peak temperature decreases, and the decomposition heat increases. With the increase in the content of TEGDN, the decomposition heat decreases at 0.1 MPa and rises at high pressure. The variety of mass ratio of TEGDN to NG makes few effect on the exothermic peak temperatures in the DSC curves at different pressures. The kinetic equation of the main exothermal decomposition reaction of the gun propellant TG0601 was determined as: dα/dt=1021.59(1-α)3e-2.60×104/T. The reaction mechanism of the process can be classified as chemical reaction. The critical temperatures of the thermal explosion(Tbe and Tbp) obtained from the onset temperature(Te) and the peak temperature(Tp) are 456.46 and 473.40 K, respectively. ΔS≠, ΔH≠, and ΔG≠ of the decomposition reaction are 163.57 J·mol^-1·K^-1, 209.54 kJ·mol^-1, and 133.55 kJ·mol^-1, respectively.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB2001002)。
文摘Based on the theory of first-order reaction kinetics,a thermal reaction kinetic model in integral form has been derive.To make the model more applicable,the effects of time and the conversion degree on the reaction rate parameters were considered.Two types of undetermined functions were used to compensate for the intrinsic variation of the reaction rate,and two types of correction methods are provided.The model was explained and verified using published experimental data of different polymer thermal reaction systems,and its effectiveness and wide adaptability were confirmed.For the given kinetic model,only one parameter needs to be determined.The proposed empirical model is expected to be used in the numerical simulation of polymer thermal reaction process.
基金Supported by the National Natural Science Foundation of China (20976035, 21076059) the Natural Science Foundation of Hebei Province (B2010000019)
文摘Toluene-2,4-bisurea (TBU) is an important intermediate for urea route to dimethyl toluene-2,4-dicarbamate and the study on TBU synthesis via the reaction of 2,4-toluene diamine (TDA) and urea is of great significance. Firstly, thermodynamic analysis shows that the reaction is exothermic and a high equilibrium conversion of TDA is expected due to its large reaction equilibrium constant. Secondly, under the suitable reaction conditions, 130 °C, 7 h, and molar ratio of TDA/zinc acetate/urea/sulfolane 1/0.05/3.5/10, TDA conversion is 54.3%, and TBU yield and selectivity are 39.8% and 73.3% respectively. Lastly, the synthesis of TBU is a 1st order reaction with respect to TDA and the reaction kinetics model is established. This work will provide useful information for commercializing the urea route to toluene-2,4-dicarbamate (TDC).
基金supports by the National Natural Science Foundation of China(No.52072352,21875226,U20A2072,52102320)the Foundation for the Youth S&T Innovation Team of Sichuan Province(2020JDTD0035)+1 种基金Tianfu Rencai Plan,the Science Foundation for Distinguished Young Scholars of Sichuan Province(2017JQ0036)the Chengdu Talent plan,Science and Technology Projects for Administration for Market Regulation of Sichuan Province(SCSJ2020016).
文摘High energy density Li-CO_(2)batteries have attracted much attention owing to the"two birds with one stone"feature in fixing greenhouse gas CO_(2)and providing renewable energy.However,poor reversibility of the discharge product Li_(2)CO_(3)is one of the main problems that limit its application,resulting in poor cycling stability and severe polarization.Herein,copper indium sulfide(CIS),a semiconducting non-precious metal sulfide,is fabricated as cathode catalysts for high-performance Li-CO_(2)batteries.Combined with the synergistic effect of bimetallic valence bonding and coordinated electron transfer,Li-CO_(2)batteries using CIS cathodes exhibit high full specific discharge capacity,excellent rate capability and cycle stability,namely it delivers a high specific full discharge capacity of 8878μAh cm^(-2),runs steadily from 10 to 100μA cm^(-2),and performs a stable long-term cycling behavior(>1050 h)under a high energy efficiency of 84%and a low charge voltage of approximately 3.4 V at 20μA cm^(-2)within 100μAh cm^(-2).In addition,a flexible Li-CO_(2)pouch cell is constructed to reveal the potential of employing CIS to fabricate flexible high energy storage devices in practical applications.This work shows a promising development pathway toward next-generation sustainable energy storage devices.
基金supported by the National Key Research and Development Program of China(2019YFA0210302)the National Natural Science Foundation of China(21878009).
文摘As one of the few renewable aromatic resources,the research of depolymerization of lignin into highvalue chemicals has attracted extensive attention in recent years.Catalytic wet aerobic oxidation(CWAO)is an effective technology to convert lignin like sodium lignosulfonate(SL),a lignin derivative,into aromatic aldehydes such as vanillin and syringaldehyde.However,how to improve the yield of aromatic aldehyde and conversion efficiency is still a challenge,and many operating conditions that significantly affect the yield of these aromatic compounds have rarely been investigated systematically.In this work,we adopted the stirred tank reactor(STR)for the CWAO process with nano-CuO as catalyst to achieve the conversion of SL into vanillin and syringaldehyde.The effect of operating conditions including reaction time,oxygen partial pressure,reaction temperature,SL concentration,rotational speed,catalyst amount,and NaOH concentration on the yield of single phenolic compound was systematically investigated.The results revealed that all these operating conditions exhibit a significant effect on the aromatic aldehyde yield.Therefore,they should be regulated in an optimal value to obtain high yield of these aldehydes.More importantly,the reaction kinetics of the lignin oxidation was explored.This work could provide basic data for the optimization and design of industrial operation of lignin oxidation.
基金supported by the National Natural Science Foundation of China (No. 20877008)the Program for New Century Excellent Telents in University of the Ministry of Education of China (No. 20407003)
文摘Baotou RE concentrate was decomposed with concentrated sulfuric acid by controlling the roasting temperature below 500℃.Thermogravimetry-differential thermal analysis(TG-DTA) and chemical analytical methods were used to study the thermal decomposition process and the thermal decomposition effect.The Freeman-Carroll method was applied to analyze the TG-DTA curves.The activation energy, reaction order, and reaction frequency factor at different stages were calculated.The Satava method was used to deduce the reaction mechanism and the relative reaction rate during the thermal decomposition process.
文摘In this study, the kinetics of isopropyl palmitate synthesis including the reaction mechanism was studied based on the two-step noncatalytic method. The liquid-phase diffusion effect on the reaction process was eliminated by adjusting the stirring rate. The results showed that the two-step reaction followed a tetrahedral mechanism and conformed to second-order reaction kinetics. Nucleophilic attack on the carbonyl carbon afforded an intermediate, containing a tetrahedral carbon center. The intermediate ultimately decomposed by elimination of the leaving group, affording isopropyl palmitate. The experimental data were analyzed at different temperatures by the integral method. The kinetic equations of the each step were deduced, and the activation energy and frequency factor were obtained. Experiments were performed to verify the feasibility of kinetic equations, and the result showed that the kinetic equations were reliable. This study could be very signi ficant to both industrial application and determining the continuous production of isopropyl palmitate.
文摘The time integration method with four-order accuracy, self-starting and implicit for the diffuse chemical reaction kinetics equation or the transient instantaneous temperature filed equation was presented. The examples show that both accuracy and stability are better than Runge-Kutta method with four-order. The coefficients of the equation are stored with sparse matrix pattern, so an algorithm is presented which combines a compact storage scheme with reduced computation cost. The computation of the competitive and consecutive reaction in the rotating packed bed, taken as examples, shows that the method is effective.
文摘The reaction kinetics of the heterogeneous oxidation of toluene with Mn 3+ was studied by considering the effects of disproportionation of Mn 3+ in reaction system, a 'parallel' modulus was set up. And then the concentration of Mn 3+ in disproportionation and the concentration of benzaldehyde in oxidation were respectively determined in turn, the rate constant, order and pseudo activation energy of the heterogeneous oxidation were obtained by mathematical deduction and the kinetic equation was concluded. In addition, the reaction mechanism was analyzed. It shows that the results are completely consistent with modulus.
基金supports from the National Natural Science Foundation of China(No.52002358)high-level talent internationalization training project of Henan province,and scientific and technological activities of Henan Province for scholars with overseas study experience(No.002004025)+1 种基金G.X.W.and B.S.would like to thank the support of the Australian Research Council(ARC)through the ARC Discovery Project(No.DP210101389)ARC Future Fellowship(No.FT220100561).
文摘Sodium metal is one of the ideal anodes for high-performance rechargeable batteries because of its high specific capacity(~1166 mAh·g^(-1)),low reduction potential(-2.71 V compared to standard hydrogen electrodes),and low cost.However,the unstable solid electrolyte interphase,uncontrolled dendrite growth,and inevitable volume expansion hinder the practical application of sodium metal anodes.At present,many strategies have been developed to achieve stable sodium metal anodes.Here,we systematically summarize the latest strategies adopted in interface engineering,current collector design,and the emerging methods to improve the reaction kinetics of sodium deposition processes.First,the strategies of constructing protective layers are reviewed,including inorganic,organic,and mixed protective layers through electrolyte additives or pretreatments.Then,the classification of metal-based,carbon-based,and composite porous frames is discussed,including their function in reducing local deposition current density and the effect of introducing sodiophilic sites.Third,the recent progress of alloys,nanoparticles,and single atoms in improving Na deposition kinetics is systematically reviewed.Finally,the future research direction and the prospect of high-performance sodium metal batteries are proposed.
基金support by the Education University of Hong Kong to perform this project under International Grant(UMT/International Grant/2020/53376).
文摘Hydrogen(H_(2))is a promising renewable energy which finds wide applications as the world gears toward low-carbon economy.However,current H_(2) production via steam methane reforming of natural gas or gasification of coal are laden with high CO_(2) footprints.Recently,methane(CH_(4))pyrolysis has emerged as a potential technology to generate low-carbon H_(2) and solid carbon.In this review,the current state-of-art and recent progress of H_(2) production from CH_(4) pyrolysis are reviewed in detail.Aspects such as funda-mental mechanism and chemistry involved,effect of process parameters on the conversion efficiency and reaction kinetics for various reaction media and catalysts are elucidated and critically discussed.Temper-ature,among other factors,plays the most critical influence on the methane pyrolysis reaction.Molten metal/salt could lower the operating temperature of methane pyrolysis to<1000℃,whereas plasma technology usually operates in the regime of>1000℃.Based on the reaction kinetics,metal-based cata-lysts were more efficient in lowering the activation energy of the reaction to 29.5-88 kJ/mol from that of uncatalyzed reaction(147-420.7 kJ/mol).Besides,the current techno-economic performance of the pro-cess reveals that the levelized cost of H_(2) is directly influenced by the sales price of carbon(by-product)generated,which could offset the overall cost.Lastly,the main challenges of reactor design for efficient product separation and retrieval,as well as catalyst deactivation/poisoning need to be debottlenecked.
基金supported by the National Natural Science Foundation of China(No.51804223,52272202)the Innovation Foundation of Key Laboratory of Green Chemical Process of Ministry of Education(No.GCX202113)+1 种基金Bintuan Science and Technology Program(No.2020DB002,2022DB009)the Shenzhen Science and Technology Innovation Committee(No.JCYJ20200109141412308).
文摘Highly active and low-cost oxygen evolution reaction(OER)catalytic electrodes are extremely essential for exploration of green hydrogen via water splitting.Herein,an advanced Fe-Ni-F electrocatalyst is fabricated by a facile annealing strategy using ammonium fluoride,of which the structure feature is unveiled by XRD,FESEM,TEM,EDS,BET,and XPS measurements.The as-prepared Fe-Ni-F addresses a low overpotential of 277 mV and a small Tafel slope of 49 mV dec^(-1)at a current density of 10 mA cm^(-2),significantly outperforming other control samples as well as the state-of-the-art RuO_(2).The advanced nature of our Fe-Ni-F catalyst could also be further evidenced from the robust stability in KOH alkaline solution,showing as 5.41%degradation after 24 h continuous working.Upon analysis,it suggests that the decent catalytic activity should be attributed to the formed bimetallic(oxy)hydroxides because of the introduction of fluoride and the synergistic effect of iron and nickel towards oxygen generation.This work represents the potential of Fe-and/or Ni-based fluoride as efficient catalyst for low-energy consumption oxygen generation.
基金Partly supported by Returnee Foundation of China Education Ministry (No. 2002-247).
文摘The ozonation of Cationic Red X-GRL in a semi-batch reactor was studied with variation of the gas flow rate, initial Cationic Red X-GRL concentration, temperature, and pH value. By the evaluation of the liquid mass transfer coefficient, the interfacial area, and the stoichiometric ratio between ozone and Cationic Red X-GRL, the rate constants and the kinetic regime of the reaction between ozone and Cationic Red X-GRL were investigated by applying the experimental data to a model based on the film mass transfer theory. The results obtained support a second order overall reaction, first order with respect to both ozone and dye, and the rate constants were correlated by a modified Arrhenius Equation of temperature and pH value with activation energy of 18.06kJ·mol-1. Hatta number of the reaction was found to be between 0.026 and 0.041, it indicates that the reaction occurs in the liquid bulk, corresponding to the slow kinetic regime.
文摘The prepolymerization and curing reaction kinetics of polyurethane/montmorillonite have been studied with end group analysis and FTIR respectively. It was found that the prepolymerization and curing reaction followed the 2nd-order kinetics. But the activation energy of prepolymerization increased from 42.7 kJ/mol to 56.5 kJ/rnol after the montmorillonite was added in the reaction system, and activation energy of curing reaction decreased from 64.4 kJ/mol to 17.5 kJ/mol. 2007 Bing Liao. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
文摘Based on the measurement of the released hydrogen gas pressure (PH2), the reaction kinetics between TiH2 powder and pure aluminum melt was studied at various temperatures. After cooling the samples, the interface of TiH2 powder and aluminum melt was studied. The results show that the-time curves have three regions; in the first and second regions, the rate of reaction conforms zero and one order, respectively; in the third region, the hydrogen gas pressure remains constant and the rate of reaction reaches zero. The main factors that control the rate of reaction in the first and second regions are the penetration of hydrogen atoms in the titanium lattice and the chemical reaction between molten aluminum and titanium, respectively. According to the main factors that control the rate of reaction, three temperature ranges are considered for the reaction mechanism: (a) 700-750°C, (b) 750-800°C, and (c) 800-1000°C. In the first temperature range, the reaction is mostly under the control of chemical reaction; at the temperature range of 750 to 800°C, the reaction is controlled by the diffusion and chemical reaction; at the third temperature range (800-1000°C), the dominant controlling mechanism is diffusion.
基金supported by the National Natural Science Foundation of China(No.81873079)。
文摘One-sixth of the currently known natural products containα,β-unsaturated carbonyl groups.Our previous studies reported a rare C-sulfonate metabolic pathway.Sulfonate groups were linked to theβ-carbon ofα,β-unsaturated carbonyl-based natural compounds through this pathway.However,the mechanism of this type of metabolism is still not fully understood,especially whether it is formed through enzyme-mediated biotransformation or direct sulfite addition.In this work,the enzyme-mediated and non-enzymatic pathways were studied.First,the sulfite content in rat intestine was determined by LC-MS/MS.The results showed that the amount of sulfite in rat intestinal contents was from 41.5 to 383μg·g^(-1),whereas the amount of sulfite in rat feed was lower than the lower limit of quantitation(20μg·g^(-1)).Second,the reaction kinetics of sulfite-andrographolide reactions in phosphate buffer solutions(pH 6-8)was studied.The half-lives of andrographolide ranged from minutes to hours.This was suggested that the C-sulfonate reaction of andrographolide was very fast.Third,the C-sulfonate metabolites of andrographolide were both detected when andrographolide and L-cysteine-S-conjugate andrographolide were incubated with the rat small intestine contents or sulfite,indicating that the sulfite amount in rat intestine contents was high enough to react with andrographolide,which assisted a significant portion of andrographolide metabolism.Finally,the comparison of andrographolide metabolite profiles among liver homogenate(with NADPH),liver S9(with NADPH),small intestine contents homogenate(with no NADPH),and sulfite solution incubations showed that the C-sulfonate metabolites were predominantly generated in the intestinal tract by non-enzymatic pathway.In summary,sulfite can serve as a substrate for C-sulfonate metabolism,and these results identified non-enzymatically nucleophilic addition as the potential mechanism for C-sulfonate metabolism of compounds containingα,β-unsaturated carbonyl moiety.
文摘The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.
文摘Cure and decomposition reaction kinetics of typical organic materials in aerospace applications are introduced.From the data of dynamic differential scanning calorimetry(DSC)experiments,and based on changes of the peak temperatures(T_(p))with different heating rates(β),a linear equation,T_(p)=T_(1)+△Tlnβ,has been obtained more reasonably.The above equation can be used to explain some laws of higher or lower of apparent activation energies(E_(a)),by which the apparent activation energy(E_(a))is nearly equal to RT^(2)_(1)/△T.A number of kinetic investigations of typical thermosetting resins and energetic materials in aerospace applications were chosen to validate the above equations.
基金Project supported by the National Natural Science Foundation of China (Grant No. 49773206)the Natural Science Foundation of Guangdong Province (Grant No. 960504).
文摘The experimental results on adsorption of ions pb2+, Zn2+ and Ag+ onto mineral surfaces in a mix system show that the reaction kinetics of adions adsorbed onto mineral surfaces was mainly controlled by their diffusion rates in solution. The concentration variations can be fit for the second-order rate equation with good determined coefficients r = 0.800 5—0.979 7. In the near neutral solution, the concentration of exchanged ions K+ and Na+ related to reaction time can be described by the fint-order rate equation with r = 0.855 7–0.997 7. Meanwhile, the complex diffusionexchange rate equation is suitable for describing the ca2 + concentration variation, as ions Pb2 + and Zn2+ were adions. Experimental data show that the amount of ions K+, Na+and Ca2+ release is much more than that of adion decrement in solution. This fact may suggest that the complexstion reaction of adions Pb2+, Z2+ and Ag+ with the mineral surfaces was the major reaction process while adions were not entering the phyllosilicate interlayers or CaCO3 lattice to exchange the ions K+, Na+ and Ca2+ at room temperature.