Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determin...Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.展开更多
The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the su...The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.展开更多
A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis...A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis will perform analysis of specific network node performance, correlation analysis of relative network nodes performance and evolutionary mathematical modeling of long-term network performance measurements. The online real-time network performance forecast will be based on one so-called hybrid prediction modeling approach for short-term network, performance prediction and trend analysis. Based on the module design, the system proposed has good intelligence, scalability and self-adaptability, which will offer highly effective network performance analysis and forecast tools for network managers, and is one ideal support platform for network performance analysis and forecast effort.展开更多
电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基...电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基GNSS和全球电离层无线电观测站(Global Ionospheric Radio Observatory,GIRO)数字测高仪的实时数据,以国际参考电离层(International Reference Ionosphere,IRI)模型为背景模型,采用高斯-马尔可夫-限带卡尔曼滤波同化技术,结合超大规模矩阵稀疏存储与处理方法,在云计算平台上构建完成了近实时全球电离层数据同化和预报系统(near-Real-Time Global Ionospheric Data AssiMilation and forecasting system,RT-GIDAM)。该系统具备了全球电离层TEC和电子密度的近实时(延时约5 min)、较高空间(5°×2.5°)和时间分辨率(15 min)的同化和预报功能,可为空间物理研究及相关无线电系统应用提供数据支撑。展开更多
A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising i...A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.展开更多
Accurate and reliable flood forecast is crucial for efficient real-time river management, including flood control, flood warning, reservoir operation and river regulation. In order to improve the estimate of the initi...Accurate and reliable flood forecast is crucial for efficient real-time river management, including flood control, flood warning, reservoir operation and river regulation. In order to improve the estimate of the initial state of the forecasting system and to reduce the errors in the forecast period a data assimilation procedure was often need. The Kalman filter was proven to be an efficient method to adjust real-time flood series and improve the initial conditions before the forecast. A new model integrating the hydraulic model with the Kalman filter for real-time correction of flood forecast was developed and applied in the Three Gorges interzone of the Yangtze River. The method was calibrated and verified against the observed flood stage and discharge during Three Gorges Dam construction periods (2004). The results demonstrate that the new model incorporates an accurate and fast updating technique can improve the reliability of the flood forecast.展开更多
Real-time crime forecasting is important.However,accurate prediction of when and where the next crime will happen is difficult.No known physical model provides a reasonable approximation to such a complex system.Histo...Real-time crime forecasting is important.However,accurate prediction of when and where the next crime will happen is difficult.No known physical model provides a reasonable approximation to such a complex system.Historical crime data are sparse in both space and time and the signal of interests is weak.In this work,the authors first present a proper representation of crime data.The authors then adapt the spatial temporal residual network on the well represented data to predict the distribution of crime in Los Angeles at the scale of hours in neighborhood-sized parcels.These experiments as well as comparisons with several existing approaches to prediction demonstrate the superiority of the proposed model in terms of accuracy.Finally,the authors present a ternarization technique to address the resource consumption issue for its deployment in real world.This work is an extension of our short conference proceeding paper[Wang,B.,Zhang,D.,Zhang,D.H.,et al.,Deep learning for real time Crime forecasting,2017,ar Xiv:1707.03340].展开更多
基金National Natural Science Foundation of China(41475060,41275067,41405060)
文摘Using real-time correction technology for typhoons, this paper discusses real-time correction for forecasting the track of four typhoons during 2009 and 2010 in Japan, Beijing, Guangzhou, and Shanghai. It was determined that the short-time forecast effect was better than the original objective mode. By selecting four types of integration schemes after multiple mode path integration for those four objective modes, the forecast effect of the multi-mode path integration is better, on average, than any single model. Moreover, multi-mode ensemble forecasting has obvious advantages during the initial 36 h.
基金supported by the National Natural Science Foundation of China (Grant No. 50479017)the Program for Changjiang Scholars and Innovative Research Teams in Universities (Grant No. IRT071)
文摘The main purpose of this study was to forecast the inflow to Hongze Lake using the Xin'anjiang rainfall-runoff model. The upper area of Hongze Lake in the Huaihe Basin was divided into 23 sub-basins, including the surface of Hongze Lake. The influence of reservoirs and gates on flood forecasting was considered in a practical and simple way. With a one-day time step, the linear and non-linear Muskingum method was used for channel flood routing, and the least-square regression model was used for real-time correction in flood forecasting. Representative historical data were collected for the model calibration. The hydrological model parameters for each sub-basin were calibrated individually, so the parameters of the Xin'anjiang model were different for different sub-basins. This flood forecasting system was used in the real-time simulation of the large flood in 2005 and the results are satisfactory when compared with measured data from the flood.
基金the National 863 High-Tech Project (863 -3 0 0 -0 2 -0 9-99) and Key Research Project of Hubei Province(991P110 )
文摘A system designed for supporting the network performance analysis and forecast effort is presented, based on the combination of offline network analysis and online real-time performance forecast. The off-line analysis will perform analysis of specific network node performance, correlation analysis of relative network nodes performance and evolutionary mathematical modeling of long-term network performance measurements. The online real-time network performance forecast will be based on one so-called hybrid prediction modeling approach for short-term network, performance prediction and trend analysis. Based on the module design, the system proposed has good intelligence, scalability and self-adaptability, which will offer highly effective network performance analysis and forecast tools for network managers, and is one ideal support platform for network performance analysis and forecast effort.
文摘电离层天气变化正成为目前空间天气预报最重要的内容之一,建立一个可靠的、精确的电离层特征参量现报和预报系统对空间科学研究及军民用无线电信息系统保障均具有重要价值。基于国际GNSS服务组织(International GNSS Service,IGS)的地基GNSS和全球电离层无线电观测站(Global Ionospheric Radio Observatory,GIRO)数字测高仪的实时数据,以国际参考电离层(International Reference Ionosphere,IRI)模型为背景模型,采用高斯-马尔可夫-限带卡尔曼滤波同化技术,结合超大规模矩阵稀疏存储与处理方法,在云计算平台上构建完成了近实时全球电离层数据同化和预报系统(near-Real-Time Global Ionospheric Data AssiMilation and forecasting system,RT-GIDAM)。该系统具备了全球电离层TEC和电子密度的近实时(延时约5 min)、较高空间(5°×2.5°)和时间分辨率(15 min)的同化和预报功能,可为空间物理研究及相关无线电系统应用提供数据支撑。
文摘A real-time forecasting method coupled with the I-D unsteady flow model with the recursive least-square method was developed. The 1-D unsteady flow model was modified by using the time-variant parameter and revising it dynamically through introducing a variable weighted forgetting factor, such that the output of the model could be adjusted for the real time forecasting of floods. The application of the new real time forecasting model in the reach from Yichang to Luoshan of the Yangtze River was demonstrated. Computational result shows that the forecasting accuracy of the new model is much higher than that of the original 1-D unsteady flow model. The method developed is effective for flood forecasting, and can be used for practical operation in the flood forecasting.
基金the National Science and Technology Planning (Grant No. 2006BAC05B02)
文摘Accurate and reliable flood forecast is crucial for efficient real-time river management, including flood control, flood warning, reservoir operation and river regulation. In order to improve the estimate of the initial state of the forecasting system and to reduce the errors in the forecast period a data assimilation procedure was often need. The Kalman filter was proven to be an efficient method to adjust real-time flood series and improve the initial conditions before the forecast. A new model integrating the hydraulic model with the Kalman filter for real-time correction of flood forecast was developed and applied in the Three Gorges interzone of the Yangtze River. The method was calibrated and verified against the observed flood stage and discharge during Three Gorges Dam construction periods (2004). The results demonstrate that the new model incorporates an accurate and fast updating technique can improve the reliability of the flood forecast.
基金supported by ONR Grants N00014-16-1-2119,N000-14-16-1-2157NSF Grants DMS-1417674,DMS-1522383,DMS-1737770 and IIS-1632935
文摘Real-time crime forecasting is important.However,accurate prediction of when and where the next crime will happen is difficult.No known physical model provides a reasonable approximation to such a complex system.Historical crime data are sparse in both space and time and the signal of interests is weak.In this work,the authors first present a proper representation of crime data.The authors then adapt the spatial temporal residual network on the well represented data to predict the distribution of crime in Los Angeles at the scale of hours in neighborhood-sized parcels.These experiments as well as comparisons with several existing approaches to prediction demonstrate the superiority of the proposed model in terms of accuracy.Finally,the authors present a ternarization technique to address the resource consumption issue for its deployment in real world.This work is an extension of our short conference proceeding paper[Wang,B.,Zhang,D.,Zhang,D.H.,et al.,Deep learning for real time Crime forecasting,2017,ar Xiv:1707.03340].