期刊文献+
共找到79,768篇文章
< 1 2 250 >
每页显示 20 50 100
Metabotropic glutamate receptors(mGluRs)in epileptogenesis:an update on abnormal mGluRs signaling and its therapeutic implications
1
作者 Leyi Huang Wenjie Xiao +7 位作者 Yan Wang Juan Li Jiaoe Gong Ewen Tu Lili Long Bo Xiao Xiaoxin Yan Lily Wan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期360-368,共9页
Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Meta... Epilepsy is a neurological disorder characterized by high morbidity,high recurrence,and drug resistance.Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy.Metabotropic glutamate receptors(mGluRs)are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity.Dysregulated mGluR signaling has been associated with various neurological disorders,and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy.In this review,we first introduce the three groups of mGluRs and their associated signaling pathways.Then,we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis.In addition,strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized.We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs. 展开更多
关键词 antiepileptic drugs EPILEPTOGENESIS metabotropic glutamate receptors(mGluRs) signal pathways therapeutic potentials
下载PDF
Characterization of Domeless receptors and the role of Bd Domeless3 in anti-symbiont-like virus defense in Bactrocera dorsalis
2
作者 Wei Zhang Shaoyang Li +2 位作者 Rong Li Jinzhi Niu Jinjun Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第4期1274-1284,共11页
The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this... The Janus kinase/signal transducers and activators of transcription(JAK/STAT)signaling pathway play a pivotal role in innate immunity.Among invertebrates,Domeless receptors serve as the key upstream regulators of this pathway.In our study on Bactrocera dorsalis,we identified three cytokine receptors:BdDomeless1,BdDomeless2,and BdDomeless3.Each receptor encompasses five fibronectin-type-III-like(FN III)extracellular domains and a transmembrane domain.Furthermore,these receptors exhibit the increased responsiveness to diverse pathogenic challenges.Notably,only BdDomeless3 is upregulated during symbiont-like viral infections.Moreover,silencing BdDomeless3 enhanced the infectivity of Bactrocera dorsalis cripavirus(BdCV)and B.dorsalis picorna-like virus(BdPLV),underscoring BdDomeless3’s crucial role in antiviral defense of B.dorsalis.Following the suppression of Domeless3 expression,six antimicrobial peptide genes displayed decreased expression,potentially correlating with the rise in viral infectivity.To our knowledge,this is the first study identifying cytokine receptors associated with the JAK/STAT pathway in tephritid flies,shedding light on the immune mechanisms of B.dorsalis. 展开更多
关键词 Bactrocera dorsalis JAK/STAT pathway Domeless receptors antiviral immunity symbiont-like virus
下载PDF
Melanocortin 3,5 receptors immunohistochemical expression in colonic mucosa of inflammatory bowel disease patients:A matter of disease activity?
3
作者 Antonietta Gerarda Gravina Iacopo Panarese +7 位作者 Maria Consiglia Trotta Michele D'Amico Raffaele Pellegrino Franca Ferraraccio Marilena Galdiero Roberto Alfano Paolo Grieco Alessandro Federico 《World Journal of Gastroenterology》 SCIE CAS 2024年第9期1132-1142,共11页
BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to asce... BACKGROUND Melanocortin 3 and 5 receptors(i.e.,MC3R and MC5R)belong to the melanocortin family.However,data regarding their role in inflammatory bowel diseases(IBD)are currently unavailable.AIM This study aims to ascertain their expression profiles in the colonic mucosa of Crohn’s disease(CD)and ulcerative colitis(UC),aligning them with IBD disease endoscopic and histologic activity.METHODS Colonic mucosal biopsies from CD/UC patients were sampled,and immunohisto-chemical analyses were conducted to evaluate the expression of MC3R and MC5R.Colonic sampling was performed on both traits with endoscopic scores(Mayo endoscopic score and CD endoscopic index of severity)consistent with inflamed mucosa and not consistent with disease activity(i.e.,normal appearing mucosa).RESULTS In both CD and UC inflamed mucosa,MC3R(CD:+7.7 fold vs normal mucosa,P<0.01;UC:+12 fold vs normal mucosa,P<0.01)and MC5R(CD:+5.5 fold vs normal mucosa,P<0.01;UC:+8.1 fold vs normal mucosa,P<0.01)were significantly more expressed compared to normal mucosa.CONCLUSION MC3R and MC5R are expressed in the colon of IBD patients.Furthermore,expression may differ according to disease endoscopic activity,with a higher degree of expression in the traits affected by disease activity in both CD and UC,suggesting a potential use of these receptors in IBD pharmacology. 展开更多
关键词 Melanocortin 3 receptor Melanocortin 5 receptor Ulcerative colitis Crohn's disease Inflammatory bowel disease
下载PDF
Role of bitter contributors and bitter taste receptors:a comprehensive review of their sources,functions and future development
4
作者 Xinyue Zhou Han Wang +6 位作者 Ming Huang Jin Chen Jianle Chen Huan Cheng Xingqian Ye Wenjun Wang Donghong Liu 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期1806-1824,共19页
Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review... Bitterness,one of the 5“basic tastes”,is usually undesired by humans.However,abundant literature reported that bitter fruits and vegetables have beneficial health effects due to their bitter contributors.This review provided an updated overview of the main bitter contributors of typical bitter fruits and vegetables and their health benefits.The main bitter contributors,including phenolics,terpenoids,alkaloids,amino acids,nucleosides and purines,were summarized.The bioactivities and wide range of beneficial effects of them on anti-cancers,anti-inflammations,anti-microbes,neuroprotection,inhibiting chronic and acute injury in organs,as well as regulating behavior performance and metabolism were reported.Furthermore,not only did the bitter taste receptors(taste receptor type 2 family,T2Rs)show taste effects,but extra-oral T2Rs could also be activated by binding with bitter components,regulating physiological activities via modulating hormone secretion,immunity,metabolism,and cell proliferation.This review provided a new perspective on exploring and explaining the nutrition of bitter foods,revealing the relationship between the functions of bitter contributors from food and T2Rs.Future trends may focus on revealing the possibility of T2Rs being targets for the treatment of diseases,exploring the mechanism of T2Rs mediating the bioactivities,and making bitter foods more acceptable without getting rid of bitter contributors. 展开更多
关键词 Bitter contributors Bitter taste receptor Health benefits FRUITS VEGETABLES
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
5
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Expression and functional study of cholecystokinin-A receptors on the interstitial Cajal-like cells of the guinea pig common bile duct 被引量:1
6
作者 Dan Xu Song-Lin Ma +1 位作者 Man-Lin Huang Heng Zhang 《World Journal of Gastroenterology》 SCIE CAS 2023年第38期5374-5382,共9页
BACKGROUND Many studies have shown that interstitial Cajal-like cell(ICLC)abnormalities are closely related to a variety of dynamic gastrointestinal disorders.ICLCs are pacemaker cells for gastrointestinal movement an... BACKGROUND Many studies have shown that interstitial Cajal-like cell(ICLC)abnormalities are closely related to a variety of dynamic gastrointestinal disorders.ICLCs are pacemaker cells for gastrointestinal movement and are involved in the transmission of nerve impulses.AIM To elucidate the expression profile and significance of cholecystokinin-A(CCK-A)receptors in ICLCs in the common bile duct(CBD),as well as the role of CCK in regulating CBD motility through CCK-A receptors on CBD ICLCs.METHODS The levels of tyrosine kinase receptor(c-kit)and CCK-A receptors in CBD tissues and isolated CBD cells were quantified using the double immunofluorescence labeling technique.The CCK-mediated enhancement of the movement of CBD muscle strips through CBD ICLCs was observed by a muscle strip contraction test.RESULTS Immunofluorescence showed co-expression of c-kit and CCK-A receptors in the CBD muscularis layer.Observations of isolated CBD cells showed that c-kit was expressed on the surface of ICLCs,the cell body and synapse were colored and polygonal,and some cells presented protrusions and formed networks adjacent to the CBD while others formed filaments at the synaptic terminals of local cells.CCK-A receptors were also expressed on CBD ICLCs.At concentrations ranging from 10^(-6) mol/L to 10^(-10) mol/L,CCK promoted CBD smooth muscle contractility in a dose-dependent manner.In contrast,after ICLC removal,the contractility mediated by CCK in CBD smooth muscle decreased.CONCLUSION CCK-A receptors are highly expressed on CBD ICLCs,and CCK may regulate CBD motility through the CCK-A receptors on ICLCs. 展开更多
关键词 Interstitial Cajal-like cells Tyrosine kinase receptor Common bile duct Cholecystokinin-A receptors
下载PDF
Effects of Ovariectomy and 17β-Estradiol Replacement on the Activity of Dopamine D2 Receptors in the Selection of Macronutrients Carbohydrates, Lipids and Proteins in Females Rats
7
作者 Brahima Bamba Seydou Silué +1 位作者 Tiémélé Eugène Atayi Antoine Némé Tako 《Journal of Biosciences and Medicines》 CAS 2023年第5期76-110,共35页
17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body wei... 17β-estradiol modulates the activity of D2 receptors in the regulation of food intake and body weight. The functional lack of 17β-estradiol in postmenopausal women could create a dietary imbalance and cause body weight gain. This study aimed to better understand the interferences that could exist between 17β-estradiol, D2 receptors and the selection of carbohydrate, fat and protein consumption, as well as their consequences on body weight gain by using an animal model of the menopause. Ovariectomy exacerbates the consumption of foods rich in lipids. Thus confirming an inhibitory action of 17β-estradiol (E2) on the consumption of these types of foods. This consumption stimulates body weight gain, which is promoted by the high caloric content of these foods and not by the amount consumed. Our results showed a direct involvement of D2 receptors in food choice. This choice would be made according to the two (2) isoforms of the D2 receptors. The D2/BR isoform directs towards a high carbohydrate consumption, without causing a gain in body weight. While D2/SUL, promotes high fat food consumption, causing an increase in body weight. In women, 17β-estradiol modulates the activity ratio between these two D2 receptor isoforms to ensure energy and homeostatic balance, stabilizing food intake and body weight. 展开更多
关键词 17Β-ESTRADIOL D2 receptors BROMOCRIPTINE SULPIRIDE Carbohydrates LIPIDS PROTEINS Body Weight Menopause Obesity
下载PDF
Chemokine Receptors CCR1, CCR3, CCR7 and Chemokines CX3CL1 and CCL5 are Significantly Up-Regulated and Very Reliable for Acute Rejection Diagnosis of Kidney Transplants
8
作者 Paula Xavier Dias-Pinto José Gerardo G. Oliveira 《Open Journal of Nephrology》 2023年第2期126-149,共24页
Background: The allo-immune response following organ transplantation constitutes one of the main determinants concerning both short- and long- term outcomes in renal graft recipients. Chemokines and their receptors pl... Background: The allo-immune response following organ transplantation constitutes one of the main determinants concerning both short- and long- term outcomes in renal graft recipients. Chemokines and their receptors play a diversified and important role, either homeostatic or inflammatory and direct different immune-competent cell types to the allograft. While deeply studied in the last two decades, controversy persists as a result of chemokines’ pleiotropic actions. We report our analysis of CCR1, CCR3, CCR7, CCL5 and CX3CL1 expression or synthesis by graft-infiltrating cells in human kidney transplants (KTx). At the same time, we tested their robustness in diagnosing acute rejection. Methods: Fine-needle aspiration biopsies (Fnab) were performed either on days 7 or 14 post-transplantation among stable KTx and on the day of acute rejection (AR) diagnosis. Fnab cytopreparations were studied by the enzymatic avidin-biotin complex staining for CCR1, CCR3, CCR7 and CX3CL1. From another subgroup of cases, Fnab samples were cultured for 48 hours and the supernatants were analysed for CCL5 by ELISA. Results: The group of AR cases showed a significantly up-regulated expression of CCR1, CCR3, CCR7 and CX3CL1 and a significantly higher synthesis of CCL5. The positive predictive values were respectively 92%, 97%, 85%, 76% and 78% and negative predictive values were by the same order, 100%, 73%, 100%, 98% and 83%. Conclusions: Our study permits us to advance that CCR1 and CCR3 play a significant and non-redundant role in acute rejection, and it is the first report of CCR3 association with rejection, probably related to CCL5. The presence inside the graft of significant up-regulation for CCR7 surmises that part of antigen presentation may be performed there without being restricted to secondary lymphoid sites. Our results with CX3CL1 confirm other reports. 展开更多
关键词 Kidney Transplants Aspiration Biopsies Acute Rejection CHEMOKINES Chemokine receptors
下载PDF
Peroxisome proliferator-activated receptors as targets to treat metabolic diseases:Focus on the adipose tissue,liver,and pancreas
9
作者 Henrique Souza-Tavares Carolline Santos Miranda +5 位作者 Isabela Macedo Lopes Vasques-Monteiro Cristian Sandoval Daiana Araujo Santana-Oliveira Flavia Maria Silva-Veiga Aline Fernandes-da-Silva Vanessa Souza-Mello 《World Journal of Gastroenterology》 SCIE CAS 2023年第26期4136-4155,共20页
The world is experiencing reflections of the intersection of two pandemics:Obesity and coronavirus disease 2019.The prevalence of obesity has tripled since 1975 worldwide,representing substantial public health costs d... The world is experiencing reflections of the intersection of two pandemics:Obesity and coronavirus disease 2019.The prevalence of obesity has tripled since 1975 worldwide,representing substantial public health costs due to its comorbidities.The adipose tissue is the initial site of obesity impairments.During excessive energy intake,it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs.The pancreas is one of the organs most affected by obesity.Once lipotoxicity becomes chronic,there is an increase in insulin secretion by pancreatic beta cells,a surrogate for type 2 diabetes mellitus(T2DM).These alterations threaten the survival of the pancreatic islets,which tend to become dysfunctional,reaching exhaustion in the long term.As for the liver,lipotoxicity favors lipogenesis and impairs beta-oxidation,resulting in hepatic steatosis.This silent disease affects around 30%of the worldwide population and can evolve into end-stage liver disease.Although therapy for hepatic steatosis remains to be defined,peroxisome proliferator-activated receptors(PPARs)activation copes with T2DM management.Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways,leading to insulin resistance relief,improved thermogenesis,and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation.This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases,focusing on adipose tissue plasticity and hepatic and pancreatic remodeling. 展开更多
关键词 OBESITY Insulin resistance Peroxisome proliferator-activated receptors PANCREAS Hepatic steatosis Adipose tissue
下载PDF
Bile acids and their receptors: Potential therapeutic targets in inflammatory bowel disease
10
作者 Xiong-Quan Long Ming-Zhu Liu +4 位作者 Zi-Hao Liu Lv-Zhou Xia Shi-Peng Lu Xiao-Ping Xu Ming-Hao Wu 《World Journal of Gastroenterology》 SCIE CAS 2023年第27期4252-4270,共19页
Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction b... Chronic and recurrent inflammatory disorders of the gastrointestinal tract caused by a complex interplay between genetics and intestinal dysbiosis are called inflammatory bowel disease.As a result of the interaction between the liver and the gut microbiota,bile acids are an atypical class of steroids produced in mammals and traditionally known for their function in food absorption.With the development of genomics and metabolomics,more and more data suggest that the pathophysiological mechanisms of inflammatory bowel disease are regulated by bile acids and their receptors.Bile acids operate as signalling molecules by activating a variety of bile acid receptors that impact intestinal flora,epithelial barrier function,and intestinal immunology.Inflammatory bowel disease can be treated in new ways by using these potential molecules.This paper mainly discusses the increasing function of bile acids and their receptors in inflammatory bowel disease and their prospective therapeutic applications.In addition,we explore bile acid metabolism and the interaction of bile acids and the gut microbiota. 展开更多
关键词 Bile acids Inflammatory bowel disease Intestinal immunology Bile acid receptors Bile acid metabolism Gut microbiota
下载PDF
The role of purinergic receptors in neural repair and regeneration after spinal cord injury
11
作者 Rui-Dong Cheng Wen Ren +1 位作者 Ben-Yan Luo Xiang-Ming Ye 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1684-1690,共7页
Spinal cord injury is a serious injury of the central nervous system that results in neurological deficits.The pathophysiological mechanisms underlying spinal cord injury,as well as the mechanisms involved in neural r... Spinal cord injury is a serious injury of the central nervous system that results in neurological deficits.The pathophysiological mechanisms underlying spinal cord injury,as well as the mechanisms involved in neural repair and regeneration,are highly complex.Although there have been many studies on these mechanisms,there is no effective intervention for such injury.In spinal cord injury,neural repair and regeneration is an important part of improving neurological function after injury,although the low regenerative ability of nerve cells and the difficulty in axonal and myelin regeneration after spinal cord injury hamper functional recovery.Large amounts of ATP and its metabolites are released after spinal cord injury and participate in various aspects of functional regulation by acting on purinergic receptors which are widely expressed in the spinal cord.These processes mediate intracellular and extracellular signalling pathways to improve neural repair and regeneration after spinal cord injury.This article reviews research on the mechanistic roles of purinergic receptors in spinal cord injury,highlighting the potential role of purinergic receptors as interventional targets for neural repair and regeneration after spinal cord injury. 展开更多
关键词 glial cells glial scar inflammatory responses neural regeneration neural repair neural stem cells purinergic receptors spinal cord injury
下载PDF
Axonal growth inhibitors and their receptors in spinal cord injury:from biology to clinical translation 被引量:2
12
作者 Sílvia Sousa Chambel Célia Duarte Cruz 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2573-2581,共9页
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibi... Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelinassociated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19(that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the Rho A/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment. 展开更多
关键词 chondroitin sulphate proteoglycans collapsin response mediator protein 2 inhibitory molecules leucine-rich repeat and Ig domain containing 1 leucocyte common antigen related myelin-associated glycoprotein neurite outgrowth inhibitor A Nogo receptor 1 Nogo receptor 3 oligodendrocyte myelin glycoprotein p75 neurotrophin receptor Plexin A2 Ras homolog family member A/Rho-associated protein kinase receptor protein tyrosine phosphataseσ repulsive guidance molecule A spinal cord injury tumour necrosis factor receptor superfamily member 19
下载PDF
Insights into the structural biology of G-protein coupled receptors impacts drug design for central nervous system neurodegenerative processes
13
作者 Farfán-García Eunice Dalet Trujillo-Ferrara José Guadalupe +2 位作者 Castillo-Hernández María del Carmen Guerra-Araiza Christian Humberto Soriano-Ursúa Marvin Antonio 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第24期2290-2302,共13页
In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of... In the last few years, there have been important new insights into the structural biology of G-protein coupled receptors. It is now known that allosteric binding sites are involved in the affinity and selec- tivity of ligands for G-protein coupled receptors, and that signaling by these receptors involves both G-protein dependent and independent pathways. The present review outlines the physiological and pharmacological implications of this perspective for the design of new drugs to treat disorders of the central nervous system. Specifically, new possibilities are explored in relation to allosteric and or- thosteric binding sites on dopamine receptors for the treatment of Parkinson's disease, and on muscarinic receptors for Alzheimer's disease. Future research can seek to identify ligands that can bind to more than one site on the same receptor, or simultaneously bind to two receptors and form a dimer. For example, the design of bivalent drugs that can reach homo/hetero-dimers of D2 dopa- mine receptor holds promise as a relevant therapeutic strategy for Parkinson's disease. Regarding the treatment of Alzheimer's disease, the design of dualsteric ligands for mono-oligomeric mus- carinic receptors could increase therapeutic effectiveness by generating potent compounds that could activate more than one signaling pathway. 展开更多
关键词 neural regeneration G-Protein coupled receptors structural biology drug design neurodegenera-tive disorders oligomedzation biased signaling Parkinson's disease Alzheimer's disease dopa-mine receptors muscarinic receptors grants-supported paper NEUROREGENERATION
下载PDF
Relationship of Toll-Like Receptors 2 and 4 Gene Polymorphisms with Essential Hypertension in Chinese Han Population
14
作者 Huabei Wu Shijie Yin 《Journal of Biosciences and Medicines》 CAS 2023年第2期53-63,共11页
Objective: There are numerous studies suggesting that genetic polymor-phisms of inflammation factors Toll-like receptors 2 and 4 (TLR2, TLR4) might play a role in the pathophysiological process of hypertension. In thi... Objective: There are numerous studies suggesting that genetic polymor-phisms of inflammation factors Toll-like receptors 2 and 4 (TLR2, TLR4) might play a role in the pathophysiological process of hypertension. In this study, we evaluated the association in a sample of members of the Chinese Han population. Method: We selected four single nucleotide polymor-phisms (SNP) of TLR2 (rs3804099, rs3804100, rs7656411) and TLR4 (rs1927906) genes, and measured the distributions of genotypic and allelic frequencies in 1063 participants, including 391 essential hypertension pa-tients and 672 controls. Result: No significant differences in the genotypic and allelic frequencies of the four SNPs were detected between cases and controls. However, three haplotypes, CCG, TTG and TTT of TLR2, were significantly associated with a decrease in the risk of essential hyperten-sion (OR: 0.512, 95% CI: 0.397 - 0.660, P P = 0.0038;OR: 0.797, 95% CI: 0.667 - 0.952, P = 0.0122, respectively). Inversely, the risk of essential hypertension increased sig-nificantly in patients with the CTG, TCG or TCT haplotypes (OR: 2.924, 95% CI: 2.157 - 3.963, P P P Conclusion: Our study suggested that haplotypes (CCG, TTG, TTT, CTG, TCG and TCT) of TLR2 might have profound effects on the development of essential hypertension in the Chinese Han population. 展开更多
关键词 Toll-Like Receptor 2 Toll-Like Receptor 4 Single-Nucleotide Polymor-phisms Essential Hypertension INFLAMMATION
下载PDF
Potential physiological and pathological roles for axonal ryanodine receptors
15
作者 David P.Stirling 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期756-759,共4页
Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia.Although excessive Cais an established driver of axonal degeneration,t... Clinical disability following trauma or disease to the spinal cord often involves the loss of vital white matter elements including axons and glia.Although excessive Cais an established driver of axonal degeneration,therapeutically targeting externally sourced Cato date has had limited success in both basic and clinical studies.Contributing factors that may underlie this limited success include the complexity of the many potential sources of Caentry and the discovery that axons also contain substantial amounts of stored Cathat if inappropriately released could contribute to axonal demise.Axonal Castorage is largely accomplished by the axoplasmic reticulum that is part of a continuous network of the endoplasmic reticulum that provides a major sink and source of intracellular Cafrom the tips of dendrites to axonal terminals.This“neuron-within-a-neuron”is positioned to rapidly respond to diverse external and internal stimuli by amplifying cytosolic Calevels and generating short and long distance regenerative Cawaves through Cainduced Carelease.This review provides a glimpse into the molecular machinery that has been implicated in regulating ryanodine receptor mediated Carelease in axons and how dysregulation and/or overstimulation of these internodal axonal signaling nanocomplexes may directly contribute to Ca-dependent axonal demise.Neuronal ryanodine receptors expressed in dendrites,soma,and axonal terminals have been implicated in synaptic transmission and synaptic plasticity,but a physiological role for internodal localized ryanodine receptors remains largely obscure.Plausible physiological roles for internodal ryanodine receptors and such an elaborate internodal binary membrane signaling network in axons will also be discussed. 展开更多
关键词 axomyelinic synapse AXON axoplasmic reticulum calcium ryanodine receptor secondary axonal degeneration spinal cord injury voltage-gated calcium channel white matter injury
下载PDF
Targeting microglial neurotransmitter receptors as a therapeutic approach for Alzheimer’s disease
16
作者 Shareen Mizari Ranja Alyas +2 位作者 Shahzoz Khan Robina Ahmad Rabia Mehmod 《Aging Communications》 2023年第2期19-25,共7页
Alzheimer’s disease(AD)is a neurodegenerative condition that disrupts nerve cell function due to the misfolding and buildup of proteins,resulting in cognitive loss and aberrant behavior.Microglia cellsare one of the ... Alzheimer’s disease(AD)is a neurodegenerative condition that disrupts nerve cell function due to the misfolding and buildup of proteins,resulting in cognitive loss and aberrant behavior.Microglia cellsare one of the crucial immune cells in the central nervous system.Depending on their activation levels,microglia cells in the degenerative phase of AD can serve either neuroprotective or neurotoxic roles.Microglia cells express several neurotransmitter receptors that play distinct functions in the degenerative progression of AD.These receptors facilitate bidirectional communication between microglia and nerve cells.The neurotransmitter receptors on microglia cells can mediate or affect the neuroprotective or toxic effects of microglia cells,thereby affecting AD pathology.This paper focuses on the gamma-aminobutyric acid,glutaminergic,cannabinoid,cholinergic,and adrenergic receptors on microglia cells and their relationship with AD.Understanding how neurotransmitter receptors on microglia function in AD will be crucial for identifying potential treatment targets. 展开更多
关键词 MICROGLIA neurotransmitter receptor Alzheimer’s disease
下载PDF
Electroacupuncture improves neuropathic pain Adenosine, adenosine 5'-triphosphate disodium and their receptors perhaps change simultaneously 被引量:3
17
作者 Wen Ren Wenzhan Tu +2 位作者 Songhe Jiang Ruidong Cheng Yaping Du 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第33期2618-2623,共6页
Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was app... Applying a stimulating current to acupoints through acupuncture needles–known as electroacupuncture–has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may act via purinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain. 展开更多
关键词 ELECTROACUPUNCTURE ANALGESIA ADENOSINE adenosine 5'-triphosphate disodium A1 receptors P2Xpudnoceptor 3 receptors neuropathic pain peripheral nervous system central nervous system regeneration neural regeneration.
下载PDF
G-protein coupled receptors and synaptic plasticity in sleep deprivation 被引量:2
18
作者 Shweta Parmar Ramakrishna Tadavarty Bhagavatula R Sastry 《World Journal of Psychiatry》 SCIE 2021年第11期954-980,共27页
Insufficient sleep has been correlated to many physiological and psychoneurological disorders.Over the years,our understanding of the state of sleep has transcended from an inactive period of rest to a more active sta... Insufficient sleep has been correlated to many physiological and psychoneurological disorders.Over the years,our understanding of the state of sleep has transcended from an inactive period of rest to a more active state involving important cellular and molecular processes.In addition,during sleep,electrophysiological changes also occur in pathways in specific regions of the mammalian central nervous system(CNS).Activity mediated synaptic plasticity in the CNS can lead to long-term and sometimes permanent strengthening and/or weakening synaptic strength affecting neuronal network behaviour.Memory consolidation and learning that take place during sleep cycles,can be affected by changes in synaptic plasticity during sleep disturbances.G-protein coupled receptors(GPCRs),with their versatile structural and functional attributes,can regulate synaptic plasticity in CNS and hence,may be potentially affected in sleep deprived conditions.In this review,we aim to discuss important functional changes that can take place in the CNS during sleep and sleep deprivation and how changes in GPCRs can lead to potential problems with therapeutics with pharmacological interventions. 展开更多
关键词 G-protein coupled receptors Metabotropic glutamate receptors Gammaamino butyric acid-B receptor Synaptic plasticity Sleep deprivation Memory consolidation
下载PDF
Liver X receptors and epididymal epithelium physiology
19
作者 Fabrice Saez Eléore Chabory +4 位作者 Rémi Cadet Patrick Vernet Silvère Baron2 Jean-Marc A. Lobaccaro Joeol R. Drevet 《Asian Journal of Andrology》 SCIE CAS CSCD 2007年第4期574-582,共9页
Aim: To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from ch... Aim: To investigate the roles of liver X receptors (LXR) in the lipid composition and gene expression regulation in the murine caput epididymidis. LXR are nuclear receptors for oxysterols, molecules derived from cholesterol metabolism that are present in mammals as two isoforms: LXRα, which is more specifically expressed in lipid-metabolising tissues, such as liver, adipose and steroidogenic tissues, and macrophages, whereas LXRβ is ubiquitous. Their importance in reproductive physiology has been sustained by the fact that male mice in which the function of both LXR has been disrupted have fertility disturbances starting at the age of 5 months, leading to complete sterility by the age of 9 months. These defects are associated with epididymal epithelial degeneration in caput segments one and two, and with a sperm midpiece fragility, leading to the presence of isolated sperm heads and flagella when luminal contents are recovered from the cauda epididymidis. Methods: The lipid composition of the caput epididymidis of wild-type and LXR-deficient mice was assessed using oil red O staining on tissue cryosections and lipid extraction followed by high performance liquid chromatography or gas chromatography. Gene expression was checked by quantitative real time polymerase chain reaction. Results: Using LXR-deficient mice, we showed an alteration of the lipid composition of the caput epididymidis as well as a significantly decreased expression of the genes encoding SREBPlc, SCD1 and SCD2, involved in fatty acid metabolism. Conclusion: Altogether, these results show that LXR are important regulators of epididymal function, and play a critical role in the lipid maturation processes occurring during sperm epididymal maturation. (Asian J Androl 2007 July; 9: 574-582) 展开更多
关键词 EPIDIDYMIS liver X receptors nuclear receptors LIPIDS CHOLESTEROL gene expression
下载PDF
Expression of Progesterone and Estrogen Receptors in Human Renal Cell Carcinoma
20
作者 钱立新 眭元庚 +4 位作者 徐正铨 吴宏飞 尤国才 张炜 金雁 《The Journal of Biomedical Research》 CAS 1997年第2期17-21,共5页
Progesterone receptor(PR) and estrogen receptor(ER) were investigated in 29 specimens of renal cell carcinoma (RCC) and its autologous kidneys, 12 samples of control kidnerys with high sensitive and specific enzymelab... Progesterone receptor(PR) and estrogen receptor(ER) were investigated in 29 specimens of renal cell carcinoma (RCC) and its autologous kidneys, 12 samples of control kidnerys with high sensitive and specific enzymelabelled histochemical techniques. The positive expression rates of PR in RCC, its autologous kidneys and control kidneys were 31.0%, 82.8% and 83.3% respectively, while the positive expression rates of ER of those tissues were 58.6%, 79.3% and 83.3%, respectively. It showed that the positive rate and the value of PR and ER in RCC were significantly less than those determined in the autologous kidneys and normal tissues(P<0.05) and no significant differences of PR and ER were found between autologous and normal kidneys(P>0.05). The level and positive rate of PR in stage Ⅰ were higher than those in stage Ⅱ to Ⅳ of RCC tissues (P<0.05). There was no relationship between the status of PR, ER and patient sex(P>0.05). Expression of PR in RCC had correlation to Robson stage closely. The positive rate of PR may be treated as a prognostic factor because it decreased as the stage rose. Our result provided an experimental basis for the application of hormonal therapy in RCC and emphasized that patients who may be benefited from hormonal therapy must have sufficient hormone receptors. 展开更多
关键词 renal neoplasm progesterone receptors estrogen receptors
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部