期刊文献+
共找到103篇文章
< 1 2 6 >
每页显示 20 50 100
Multi-year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM_NCC). Part Ⅰ: Sensitivity Study 被引量:39
1
作者 丁一汇 史学丽 +6 位作者 刘一鸣 刘艳 李清泉 钱永甫 苗蔓倩 翟国庆 高昆 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第3期323-341,共19页
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcast... A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions. 展开更多
关键词 regional climate model sensitivity experiment physical process parameterization MEI-YU
下载PDF
Multi-Year Simulations and Experimental Seasonal Predictions for Rainy Seasons in China by Using a Nested Regional Climate Model (RegCM_NCC) Part Ⅱ:The Experimental Seasonal Prediction 被引量:28
2
作者 丁一汇 刘一鸣 +3 位作者 史学丽 李清泉 李巧萍 刘艳 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2006年第4期487-503,共17页
A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM... A nested regional climate model has been experimentally used in the seasonal prediction at the China National Climate Center (NCC) since 2001. The NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM (CGCM) provides the boundary and initial conditions for driving the regional climate model (RegCM_NCC). The latter has a 60-km horizontal resolution and improved physical parameterization schemes including the mass flux cumulus parameterization scheme, the turbulent kinetic energy closure scheme (TKE) and an improved land process model (LPM). The large-scale terrain features such as the Tibetan Plateau are included in the larger domain to produce the topographic forcing on the rain-producing systems. A sensitivity study of the East Asian climate with regard to the above physical processes has been presented in the first part of the present paper. This is the second part, as a continuation of Part Ⅰ. In order to verify the performance of the nested regional climate model, a ten-year simulation driven by NCEP reanalysis datasets has been made to explore the performance of the East Asian climate simulation and to identify the model's systematic errors. At the same time, comparative simulation experiments for 5 years between the RegCM2 and RegCM_NCC have been done to further understand their differences in simulation performance. Also, a ten-year hindcast (1991-2000) for summer (June-August), the rainy season in China, has been undertaken. The preliminary results have shown that the RegCM_NCC is capable of predicting the major seasonal rain belts. The best predicted regions with high anomaly correlation coefficient (ACC) are located in the eastern part of West China, in Northeast China and in North China, where the CGCM has maximum prediction skill as well. This fact may reflect the importance of the largescale forcing. One significant improvement of the prediction derived from RegCM_NCC is the increase of ACC in the Yangtze River valley where the CGCM has a very low, even a negative, ACC. The reason behind this improvement is likely to be related to the more realistic representation of the large-scale terrain features of the Tibetan Plateau. Presumably, many rain-producing systems may be generated over or near the Tibetan Plateau and may then move eastward along the Yangtze River basin steered by upper-level westerly airflow, thus leading to enhancement of rainfalls in the mid and lower basins of the Yangtze River. The real-time experimental predictions for summer in 2001, 2002, 2003 and 2004 by using this nested RegCM-NCC were made. The results are basically reasonable compared with the observations. 展开更多
关键词 regional climate model simulation HINDCAST PREDICTION
下载PDF
Simulation of Effects of Land Use Change on Climate in China by a Regional Climate Model 被引量:33
3
作者 高学杰 罗勇 +2 位作者 林万涛 赵宗慈 Filippo GIORGI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第4期583-592,共10页
Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). T... Climate effects of land use change in China as simulated by a regional climate model (RegCM2) are investigated. The model is nested in one-way mode within a global coupled atmosphere-ocean model (CSIRO R21L9 AOGCM). Two multi-year simulations, one with current land use and the other with potential vegetation cover, are conducted. Statistically significant changes of precipitation, surface air temperature, and daily maximum and daily minimum temperature are analyzed based on the difference between the two simulations. The simulated effects of land use change over China include a decrease of mean annual precipitation over Northwest China, a region with a prevalence of arid and semi-arid areas; an increase of mean annual surface air temperature over some areas; and a decrease of temperature along coastal areas. Summer mean daily maximum temperature increases in many locations, while winter mean daily minimum temperature decreases in East China and increases in Northwest China. The upper soil moisture decreases significantly across China. The results indicate that the same land use change may cause different climate effects in different regions depending on the surrounding environment and climate characteristics. 展开更多
关键词 land use change regional climate model regional climate change
下载PDF
Climate Change due to Greenhouse Effects in China as Simulated by a Regional Climate Model 被引量:52
4
作者 高学杰 赵宗慈 +2 位作者 丁一汇 黄荣辉 Filippo Giorgi 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第6期1224-1230,共7页
Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a... Impacts of greenhouse effects (2 × CO2) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 × CO2) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 × CO2 showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO2 doubling. Key words Regional climate model - Greenhouse effect This research was supported by National Key Programme for Developing Basic Sciences (G1998040900 — Part I), Chinese Academy of Sciences Key Program KZCX2-203 and KZ981-B1-108. 展开更多
关键词 regional climate model Greenhouse effect
下载PDF
SIMULATION OF PRESENT CLIMATE OVER EAST ASIA BY A REGIONAL CLIMATE MODEL 被引量:16
5
作者 张冬峰 高学杰 +1 位作者 欧阳里程 董文杰 《Journal of Tropical Meteorology》 SCIE 2008年第1期19-23,共5页
A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating p... A 15-year simulation of climate over East Asia is conducted with the latest version of a regional climate model RegCM3 nested in one-way mode to the ERA40 Re-analysis data. The performance of the model in simulating present climate over East Asia and China is investigated. Results show that RegCM3 can reproduce well the atmospheric circulation over East Asia. The simulation of the main distribution patterns of surface air temperature and precipitation over China and their seasonal cycle/evolution, are basically agree with that of the observation. Meanwhile a general cold bias is found in the simulation. As for the precipitation, the model tends to overestimate the precipitation in northern China while underestimate it in southern China, particularly in winter. In general, the model has better performance in simulating temperature than precipitation. 展开更多
关键词 regional climate model climate simulation EVALUATION East Asia region China
下载PDF
Projections of Wind Changes for 21st Century in China by Three Regional Climate Models 被引量:13
6
作者 JIANG Ying Luo Yong +3 位作者 ZHAO Zongci SHI Ying XU Yinlong ZHU Jinhong 《Chinese Geographical Science》 SCIE CSCD 2010年第3期226-235,共10页
This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studi... This paper examines the capability of three regional climate models (RCMs), i.e., RegCM3 (the International Centre for Theoretical Physics Regional Climate Model), PRECIS (Providing Regional Climates for Impacts Studies) and CMM5 (the fifth-generation Pennsylvania State University-the National Center for Atmospheric Research of USA, NCAR Mesoscale Model) to simulate the near-surface-layer winds (10 m above surface) all over China in the late 20th century. Results suggest that like global climate models (GCMs), these RCMs have the certain capability of imitating the distribution of mean wind speed and fail to simulate the greatly weakening wind trends for the past 50 years in the country. However, RCMs especially RegCM3 have the better capability than that of GCMs to simulate the distribution and change feature of mean wind speed. In view of their merits, these RCMs were used to project the variability of near-surface-layer winds over China for the 21st century. The results show that 1) summer mean wind speed for 2020-2029 will be lower compared to those in 1990-1999 in most area of China; 2) annual and winter mean wind speed for 2081-2100 will be lower than those of 1971-1990 in the whole China; and 3) the changes of summer mean wind speed for 2081-2100 are uncertain. As a result, although climate models are absolutely necessary for projecting climate change to come, there are great uncertainties in projections, especially for wind speed, and these issues need to be further explored. 展开更多
关键词 wind speed PROJECTION regional climate model global climate model
下载PDF
Impacts of Upper Tropospheric Cooling upon the Late Spring Drought in East Asia Simulated by a Regional Climate Model 被引量:8
7
作者 辛晓歌 Zhaoxin LI +1 位作者 宇如聪 周天军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第4期555-562,共8页
Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). ... Responses of late spring (21 April 20 May) rainfall to the upper tropospheric cooling over East Asia are investigated with a regional climate model based on Laboratoire de M6t6orologie Dynamique Zoom (LMDZ4-RCM). A control experiment is performed with two runs driven by the mean ERA-40 data during 1958-1977 and 1981 2000, respectively. The model reproduces the major decadal-scale circulation changes in late spring over East Asia, including a cooling in the upper troposphere and an anomalous meridional cell. Accordingly, the precipitation decrease is also captured in the southeast of the upper-level cooling region. To quantify the role of the upper-level cooling in the drought mechanism, a sensitivity experiment is further conducted with the cooling imposed in the upper troposphere. It is demonstrated that the upper-level cooling can generate the anomalous meridional cell and consequently the drought to the southeast of the cooling center. Therefore, upper tropospheric cooling should have played a dominant role in the observed late spring drought over Southeast China in recent decades. 展开更多
关键词 Southeast China spring drought inter-decadal variability regional climate modeling
下载PDF
Regional Climate Change and Uncertainty Analysis based on Four Regional Climate Model Simulations over China 被引量:10
8
作者 WU Jia GAO Xue-Jie +1 位作者 XU Yin-Long PAN Jie 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期147-152,共6页
Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The loc... Four sets of climate change simulations at grid spacing of 50 km were conducted over East Asia with two regional climate models driven at the lateral bounda- ries by two global models for the period 1981-2050. The locus of the study was on the ensemble projection of cli- mate change in the mid-21st century (2031-50) over China. Validation of each simulation and the ensemble average showed good performances of the models overall, as well as advantages of the ensemble in reproducing present day (1981 2000) December-February (DJF), June-August (JJA), and annual (ANN) mean temperature and precipitation. Significant wanning was projected for the mid-21st century, with larger values of temperature increase found in the northern part of China and in the cold seasons. The ensemble average changes of precipitation in DJF, JJA, and ANN were determined, and the uncertainties of the projected changes analyzed based on the consistencies of the simulations. It was concluded that the largest uncertainties in precipitation projection are in eastern China during the summer season (monsoon pre-cipitation). 展开更多
关键词 climate change regional climate model ENSEMBLE China
下载PDF
Future Precipitation Extremes in China under Climate Change and Their Physical Quantification Based on a Regional Climate Model and CMIP5 Model Simulations 被引量:6
9
作者 Peihua QIN Zhenghui XIE +2 位作者 Jing ZOU Shuang LIU Si CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2021年第3期460-479,共20页
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes ... The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level). 展开更多
关键词 precipitation extremes regional climate model CMIP5 models
下载PDF
Implementation of a Surface Runoff Model with Horton and Dunne Mechanisms into the Regional Climate Model RegCM_NCC 被引量:3
10
作者 史学丽 谢正辉 +1 位作者 刘一鸣 杨宏伟 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第5期750-764,共15页
A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, i... A surface runoff parameterization scheme that dynamically represents both Horton and Dunne runoff generation mechanisms within a model grid cell together with a consideration of the subgrid-scaie soil heterogeneity, is implemented into the National Climate Center regional climate model (RegCM_NCC). The effects of the modified surface runoff scheme on RegCMANCC performance are tested with an abnormal heavy rainfall process which occurred in summer 1998. Simulated results show that the model with the original surface runoff scheme (noted as CTL) basically captures the spatial pattern of precipitation, circulation and land surface variables, but generally overestimates rainfall compared to observations. The model with the new surface runoff scheme (noted as NRM) reasonably reproduces the distribution pattern of various variables and effectively diminishes the excessive precipitation in the CTL. The processes involved in the improvement of NRM-simulated rainfall may be as follows: with the new surface runoff scheme, simulated surface runoff is larger, soil moisture and evaporation (latent heat flux) are decreased, the available water into the atmosphere is decreased; correspondingly, the atmosphere is drier and rainfall is decreased through various processes. Therefore, the implementation of the new runoff scheme into the RegCMANCC has a significant effect on results at not only the land surface, but also the overlying atmosphere. 展开更多
关键词 surface runoff regional climate model PRECIPITATION water vapor
下载PDF
Notes of Numerical Simulation of Summer Rainfall in China with a Regional Climate Model REMO 被引量:3
11
作者 崔雪锋 黄刚 陈文 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第6期999-1008,共10页
Regional climate models are major tools for regional climate simulation and their output are mostly used for climate impact studies. Notes are reported from a series of numerical simulations of summer rainfall in Chin... Regional climate models are major tools for regional climate simulation and their output are mostly used for climate impact studies. Notes are reported from a series of numerical simulations of summer rainfall in China with a regional climate model. Domain sizes and running modes are major foci. The results reveal that the model in forecast mode driven by "perfect" boundaries could reasonably represent the inter-annual differences: heavy rainfall along the Yangtze River in 1998 and dry conditions in 1997. Model simulation in climate mode differs to a greater extent from observation than that in forecast mode. This may be due to the fact that in climate mode it departs further from the driving fields and relies more on internal model dynamical processes. A smaller domain in climate mode outperforms a larger one. Further development of model parameterizations including dynamic vegetation are encouraged in future studies. 展开更多
关键词 regional climate model REMO summer rainfall in China running mode domain choice
下载PDF
Changes in Extreme Events as Simulated by a High-Resolution Regional Climate Model for the Next 20-30 Years over China 被引量:4
12
作者 XU Ji-Yun SHI Ying GAO Xue-Jie 《Atmospheric and Oceanic Science Letters》 2012年第6期483-488,共6页
In this paper, the changes in temperature and precipitation extremes over the next 20-30 years (2021-2050) in relative to the present day (1986-2005) under the Intergovernmental Panel on Climate Change (IPCC) Special ... In this paper, the changes in temperature and precipitation extremes over the next 20-30 years (2021-2050) in relative to the present day (1986-2005) under the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1B scenario are analyzed based on a high-resolution climate change simulation performed by a regional climate model (the Abdus Salam International Center for Theoretical Physics (ICTP) RegCM3). The extreme indices of summer days (SU), frost days (FD), and growing season length (GSL) for temperature and simple daily intensity index (SDII), number of days with precipitation ≥10 mm d-1 (R10), and consecutive dry days (CDD) for precipitation are used as the indicators of the extremes. The results show that the indices simulated by RegCM3 in the present day show good agreement with the observed. A general increase in SU, a decrease in FD, and an increase in GSL are found to occur in the next 20-30 years over China. A general increase in SDII, an increase in R10 over western China, and a decrease in R10 in north, northeast, and central China are simulated by the model. Changes in CDD are characterized by a decrease in the north and an increase in the south and the Tibetan Plateau. 展开更多
关键词 climate change regional climate model extreme events China
下载PDF
East China Summer Rainfall during ENSO Decaying Years Simulated by a Regional Climate Model 被引量:4
13
作者 ZENG Xian-Feng LI Bo +2 位作者 FENG Lei LIU Xiao-Juan ZHOU Tian-Jun 《Atmospheric and Oceanic Science Letters》 2011年第2期91-97,共7页
The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dyna... The performance of the Climate version of the Regional Eta-coordinate Model (CREM), a regional climate model developed by State Key Laboratory of Numerical modeling for Atmospheric Science and Geophysical Fluid Dynamics/Institute of Atmospheric Physics (LASG/IAP), in simulating rainfall anomalies during the ENSO decaying summers from 1982 to 2002 was evalu- ated. The added value of rainfall simulation relative to reanalysis data and the sources of model bias were studied. Results showed that the model simulated rainfall anomalies moderately well. The model did well at capturing the above-normal rainfall along the Yangtze River valley (YRV) during E1 Nifio decaying summers and the below and above-normal rainfall centers along the YRV and the Huaihe River valley (HRV), respectively, during La Nifia decaying summers. These features were not evident in rainfall products derived from the reanalysis, indicating that rainfall simulation did add value. The main limitations of the model were that the simulated rainfall anomalies along the YRV were far stronger and weaker in magnitude than the observations during E1 Nifio decaying summers and La Nifia decaying summers, respectively. The stronger magnitude above-normal rainfall during E1 Nifio decaying summers was due to a stronger northward transport of water vapor in the lower troposphere, mostly from moisture advection. An artificial, above-normal rainfall center was seen in the region north to 35°N, which was associated with stronger northward water vapor transport. Both lower tropospheric circulation bias and a wetter model atmosphere contributed to the bias caused by water vapor transport. There was a stronger southward water vapor transport from the southern boundary of the model during La Nifia decaying summers; less remaining water vapor caused anomalously weaker rainfall in the model as compared to observations. 展开更多
关键词 East China rainfall ENSO decaying summers regional climate model water vapor
下载PDF
Effects of Nested Area Size upon Regional Climate Model Simulations 被引量:3
14
作者 刘华强 钱永甫 郑益群 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2002年第1期111-120,共10页
This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting... This paper presents a numerical study on the 1998 summer rainfall over the Yangtze River valley in central and eastern China, addressing effect of a nested area size on simulations in terms of the technique of nesting a regional climate model (RCM) upon a general circulation model (GCM). Evidence suggests that the size exerts greater impacts upon regional climate of the country, revealing that a larger nested size is superior to a small one for simulation in mitigating errors of GCM-provided lateral boundary forcing. Also, simulations show that the RCM should incorporate regions of climate systems of great importance into study and a low-resolution GCM yields more pronounced errors as a rule when used in the research of the Tibetan Plateau, and, in contrast, our P&#963;RCM can do a good job in describing the plateau’s role in a more realistic and accurate way. It is for this reason that the tableland should be included in the nested area when the RCM is employed to investigate the regional climate. Our P&#963;RCM nesting upon a GCM reaches more realistic results compared to a single GCM used. 展开更多
关键词 regional climate model Atmospheric general circulation model NESTING
下载PDF
Projected Climate Change in the Northwestern Arid Regions of China: An Ensemble of Regional Climate Model Simulations 被引量:2
15
作者 YU En-Tao XIANG Wei-Ling 《Atmospheric and Oceanic Science Letters》 CSCD 2015年第3期134-142,共9页
The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed u... The projected temperature and precipitation- change under different emissions scenarios using Coupled Model Intercomparison Project Phase 5 models over the northwestern arid regions of China (NWAC) were ana- lyzed using the ensemble of three high-resolution dy- namical downscaling simulations: the simulation of the Regional Climate Model version 4.0 (RegCM4) forced by the Beijing Climate Center Climate System Model version 1.1 (BCC_CSMI.1); the Hadley Centre Global En- vironmental Model version 3 regional climate model (HadGEM3-RA) forced by the Atmosphere-Ocean cou- pled HadGEM version 2 (HadGEM2-AO); and the Weather Research and Forecasting (WRF) model forced by the Norwegian community Earth System Model (NorESM1-M). Model validation indicated that the mul- timodel simulations reproduce the spatial and temporal distribution of temperature and precipitation well. The temperature is projected to increase over NWAC under both the 4.5 and 8.5 Representative Concentration Path- ways scenarios (RCP4.5 and RCP8.5, respectively) in the middle of the 21 st century, but the warming trend is larger under the RCP8.5 scenario, Precipitation shows a signifi- cant increasing trend in spring and winter under both RCP4.5 and RCPS.5; but in summer, precipitation is pro- jected to decrease in the Tarim Basin and Junggar Basin. The regional averaged temperature and precipitation show increasing trends in the future over NWAC; meanwhile, the large variability of the winter mean temperature and precipitation may induce more extreme cold events and intense snowfall events in these regions in the future. 展开更多
关键词 northwestern arid regions regional climate model climate proiection
下载PDF
MODELING THE EFFECTS OF ANTHROPOGENIC SULFATE IN CLIMATE CHANGE BY USING A REGIONAL CLIMATE MODEL 被引量:1
16
作者 高学杰 林一骅 赵宗慈 《Journal of Tropical Meteorology》 SCIE 2003年第2期173-180,共8页
Effects of aerosol with focus on the direct climate effect of anthropogenic sulfate aerosol under 2×CO2 condition were investigated by introducing aerosol distribution into the latest version of RegCM2. Two exper... Effects of aerosol with focus on the direct climate effect of anthropogenic sulfate aerosol under 2×CO2 condition were investigated by introducing aerosol distribution into the latest version of RegCM2. Two experiments, first run (2×CO2 + 0 aerosol concentration) and second run (2×CO2 + aerosol distribution), were made for 5 years respectively. Preliminary analysis shows that the direct climate effect of aerosol might cause a decrease of surface air temperature. The decrease might be larger in winter and in South China. The regional-averaged monthly precipitation might also decrease in most of the months due to the effect. The annual mean change of precipitation might be a decrease in East and an increase in West China. But the changes of both temperature and precipitation simulated were much smaller as compared to the greenhouse effect. 展开更多
关键词 greenhouse effect regional climate model region of China anthropogenic sulfate aerosol
下载PDF
An Evaluation of RegCM3_CERES for Regional Climate Modeling in China 被引量:1
17
作者 陈锋 谢正辉 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第4期1187-1200,共14页
A 20-year simulation of regional climate over East Asia by the regional climate model RegCM3_CERES (Regional Climate Model version 3 coupled with the Crop Estimation through Resource and Environment Synthesis) was c... A 20-year simulation of regional climate over East Asia by the regional climate model RegCM3_CERES (Regional Climate Model version 3 coupled with the Crop Estimation through Resource and Environment Synthesis) was carried out and compared with observations and the original RegCM3 model to compre- hensively evaluate its performance in simulating the regional climate over continental China. The results showed that RegCM3_CERES reproduced the regional climate at a resolution of 60 km over China by using ERA40 data as the boundary conditions, albeit with some limitations. The model captured the basic char- acteristics of the East Asian circulation, the spatial distribution of mean precipitation and temperature, and the daily characteristics of precipitation and temperature. However, it underestimated both the intensity of the monsoon in the monsoonal area and precipitation in southern China, overestimated precipitation in northern China, and produced a systematic cold temperature bias over most of continental China. Despite these limitations, it was concluded that the RegCM3_CERES model is able to simulate the regional climate over continental China reasonably well. 展开更多
关键词 regional climate model model validation
下载PDF
Advance in Application of Regional Climate Models in China
18
作者 ZHANG Wei YAN Minhua +1 位作者 CHEN Panqin XU Helan 《Chinese Geographical Science》 SCIE CSCD 2008年第1期93-100,共8页
Regional climate models have become the powerful tools for simulating regional climate and its change process and have been widely used in China. Using regional climate models, some research results have been obtained... Regional climate models have become the powerful tools for simulating regional climate and its change process and have been widely used in China. Using regional climate models, some research results have been obtained on the following aspects: 1) the numerical simulation of East Asian monsoon climate, including exceptional monsoon precipitation, summer precipitation distribution, East Asian circulation, multi-year climate average condition, summer rain belt and so on; 2) the simulation of arid climate of the western China, including thermal effect of the Qinghal-Tibet Plateau, the plateau precipitation in the Qilian Mountains; and the impacts of greenhouse effects (CO2 doubling) upon climate in the western China; and 3) the simulation of the climate effect of underlying surface changes, including the effect of soil on climate formation, the influence of terrain on precipitation, the effect of regional soil degradation on regional climate, the effect of various underlying surfaces on regional climate, the effect of land-sea contrast on the climate formulation, the influence of snow cover over the plateau regions on the regional climate, the effect of vegetation changes on the regional climate, etc. In the process of application of regional climate models, the preferences of the models are improved so that better simulation results are gotten. At last, some suggestions are made about the application of regional climate models in regional climate research in the future. 展开更多
关键词 regional climate model model application research advance China
下载PDF
FUTURE CHANGE OF PRECIPITATION EXTREMES OVER THE PEARL RIVER BASIN FROM REGIONAL CLIMATE MODELS
19
作者 杜尧东 杨红龙 +1 位作者 曹超雄 刘蔚琴 《Journal of Tropical Meteorology》 SCIE 2016年第1期57-65,共9页
Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climat... Based on RegCM4,a climate model system,we simulated the distribution of the present climate(1961-1990)and the future climate(2010-2099),under emission scenarios of RCPs over the whole Pearl River Basin.From the climate parameters,a set of mean precipitation,wet day frequency,and mean wet day intensity and several precipitation percentiles are used to assess the expected changes in daily precipitation characteristics for the 21 st century.Meanwhile the return values of precipitation intensity with an average return of 5,10,20,and 50 years are also used to assess the expected changes in precipitation extremes events in this study.The structure of the change across the precipitation distribution is very coherent between RCP4.5 and RCP8.5.The annual,spring and winter average precipitation decreases while the summer and autumn average precipitation increases.The basic diagnostics of precipitation show that the frequency of precipitation is projected to decrease but the intensity is projected to increase.The wet day percentiles(q90 and q95) also increase,indicating that precipitation extremes intensity will increase in the future.Meanwhile,the5-year return value tends to increase by 30%-45%in the basins of Liujiang River,Red Water River,Guihe River and Pearl River Delta region,where the 5-year return value of future climate corresponds to the 8-to 10-year return value of the present climate,and the 50-year return value corresponds to the 100-year return value of the present climate over the Pearl River Delta region in the 2080 s under RCP8.5,which indicates that the warming environment will give rise to changes in the intensity and frequency of extreme precipitation events. 展开更多
关键词 climate change RCPs scenario Pearl River Basin regional climate model RegCM4
下载PDF
A Regional Climate Model Simulation of Summer Monsoon over East Asia:A Case Study of 1991 Flood in Yangtzee-Huai River Valley
20
作者 魏和林 王维强 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 1998年第4期59-79,共21页
The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Region... The evolution of summer monsoon over East Asia is the result of multi-scale interactions, including the large-scale subtropical high, upper level jet and regional-scale Meiyu front, vortex, and thermal heating. Regional Climate Models should be a better way to simulate the summer monsoon evolution, because not only they can reflect the large-scale forcing through boundary condition, theirs high resolution can also catch regional-scale forcing in detail. To evaluate the ability of SUNYA-ReCM to simulate the evolution of the summer monsoon over East Asia especially in the extreme climate, a simulation of the East Asian flood that occurred during 1991 summer was performed. This simulation was driven by large-scale atmospheric background derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) and Tropic Ocean Global Atmospheric (TOGA) analysis. The model is capable of reproducing the major features of the monthly mean monsoon circulation, anomalous rainfall in the Yangtze-Huai River Valley and the two northward jumps of rainfall belt as well as the other large-scale components of the monsoon. The changes of the large-scale circulation during the evolution of summer monsoon are also well simulated, which include: (1) the wind direction changes from southeasterly to southwesterly in the South China Sea. (2) The northward shift of the upper westerly over East China and the Tibetan Plateau. (3) The northward shift of the western Pacific subtropic high at 500 hPa. The model also has a good simulation on the evolution of the regional-scale components of the monsoon, including Meiyu front and southwest (SW) vortex in Sichuan Basin. 展开更多
关键词 regional climate model Summer monsoon 1991 flood
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部