The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this stu...The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures.展开更多
Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initia...Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.展开更多
The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a ...The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.展开更多
In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, t...In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.展开更多
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an...Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.展开更多
This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in t...This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.展开更多
A novel method for prediction of the load carrying capacity of a corroded reinforced concrete beam (CRCB) is presented in the paper. Nine reinforced concrete beams, which had been working in an aggressive environment ...A novel method for prediction of the load carrying capacity of a corroded reinforced concrete beam (CRCB) is presented in the paper. Nine reinforced concrete beams, which had been working in an aggressive environment for more than 10 years, were tested in the laboratory. Comprehensive tests, including flexural test, strength test for corroded concrete and rusty rebar, and pullout test for bond strength between concrete and rebar, were conducted. ne flexural test results of CRCBs reveal that the distribution of surface cracks on the beams shows a fractal behavior. The relationship between the fractal dimensions and mechanical properties of CRCBs is then studied. A prediction model based on artificial neural network (ANN) is established by the use of the fractal dimension as the corrosion index, together with the basic information of the beam. The validity of the prediction model is demonstrated through the experimental data, and satisfactory results are achieved.展开更多
This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifica...This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.展开更多
To meet the requirement of fire endurance for concrete structures strengthened with CFRP sheets, this study develops an inorganic adhesive whose strength at 600 ℃ is not lower than that at normal room temperature. Th...To meet the requirement of fire endurance for concrete structures strengthened with CFRP sheets, this study develops an inorganic adhesive whose strength at 600 ℃ is not lower than that at normal room temperature. The inorganic adhesive is then used to bond CFRP sheets on reinforced concrete beams in order to strengthen them. The fire protection of the CFRP sheets is done using the thick-type fireproofing coatings for tunnel ( TFCT) and steel structure ( TFCSS) respectively. Four specimens are tested in the furnace together. Specimens are exposed to fire for 1. 5 h in according to the ISO834 standard fire curve,and then naturally cooled for 1 h. In the tests,the largest displacements at the mid-span positions of specimens are only from 1 /1400 to 1 /318 of actual span corresponding to the highest temperatures from 300 ℃ to 470 ℃. After the specimens are naturally cooled to the normal temperature and the fireproofing coatings are then removed,it can be seen that the CFRP sheets keep in a good state,which indicates that CFRP sheets can be tightly bonded on the concrete and work well together with the concrete beams during and after fire. Besides,the tests also verify that the fire performance of TFCT is superior to TFCSS for the strengthened beams.展开更多
With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for dee...With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.展开更多
Reinforcement corrosion has a serious impact on the durability and safety of reinforced concrete structures.Six reinforced concrete(RC)beam specimens are constructed.After beam specimens are subjected to accelerated c...Reinforcement corrosion has a serious impact on the durability and safety of reinforced concrete structures.Six reinforced concrete(RC)beam specimens are constructed.After beam specimens are subjected to accelerated corrosion with the constant current,beam specimens are repaired with epoxy mortar and the flexural test of beams is investigated.Then the behaviors of repaired corroded reinforced concrete beams are evaluated.The experimental results show that cracking and ultimate loads of corroded RC beams are enhanced after being repaired.And the strain distributions measured across sections of beam specimens still obey the assumption of plane section.After being repaired,the number of cracks decreases and the crack spacing increases.展开更多
Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term beh...Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.展开更多
The marine structures such as harbour,pier and inshore concrete terrace are exposed in adverse circumstances in a long period of time .Owing to the attack of external corrosive medium,their safety,durability and relia...The marine structures such as harbour,pier and inshore concrete terrace are exposed in adverse circumstances in a long period of time .Owing to the attack of external corrosive medium,their safety,durability and reliability decline.Especially the reinforced concrete(RC) structures in the wave splash area are more likely to be subjected to destruction and the loss is vast. Now the safety ,durability and reliability of structure have become increasingly an important subject to be studied.By way of the soaking and drying cycle test on the different mix proportions oblique section of 10 pieces of RC beams suffered artificial sea water(ASW) corrosion under 0,35,70,105,140 times of dry-wet cycles,the compared results of exerting pressure test of these beams under simply supporting were investigated. The law about the changes of the mechanical performance for RC beams with different mix proportions under different time periods for suffering corrosion of dry-wet cycles is as follows: the resistivity to ASW corrosion of the concrete specimens with various water cement ratio(various initial strength)is different;the characters of oblique section failure for RC beams attacked by sea water are about the same as those for ordinary RC beam; along with the extension of the time for sea water attack, the bearing capacity for oblique section of RC beams varies wave upon wave.The specimens attacked by sea water for about 35 times of corrosion cycle achieve minimum bearing capacity.展开更多
This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer ...This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with sidebonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in AC1-440 and fib European code were compared with the experimental results.展开更多
This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of ...This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.展开更多
This paper evaluates two methods of diagnosing damage, Natural frequency and Stiffness-Frequency change-Based damage detection method in reinforced concrete beams under load using vibration characteristics such as nat...This paper evaluates two methods of diagnosing damage, Natural frequency and Stiffness-Frequency change-Based damage detection method in reinforced concrete beams under load using vibration characteristics such as natural frequency and mode shape. The research uses finite element method with crack damage instead of deleting or reducing the bearing capacity of the element like in previous studies. First, a theory of the damage diagnosis method based on the change of natural frequency and mode shape is presented. Next, the simulation results of reinforced concrete beams using ANSYS will be compared with the experiment. Particularly, the investigated damage cases are cracks in reinforced concrete beams under loads. Finally, we will evaluate the accuracy of the damage diagnosis methods and suggest the location of the vibration data and specify the failure threshold of the methods.展开更多
With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.R...With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered.展开更多
This paper presents an experimental investigation on the flexural behavior of cross-connected brick masonry infill wall panels supported on reinforced concrete beam grids above and below the walls.The experimental pro...This paper presents an experimental investigation on the flexural behavior of cross-connected brick masonry infill wall panels supported on reinforced concrete beam grids above and below the walls.The experimental program was comprised of six wall systems.The effect of change in lower beam stiffness relative to the wall and the geometry of the main walls were investigated.From the results of the experimental tests,the increase in the depth of the lower beam grid reduces the deflection,resulting in an increase in the load carrying capacity of the wall.Further,the stiffness of the main walls affects the deflection and the failure load of the cross walls.展开更多
Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of diff...Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of different preloaded states and nonlinear stress-strain relationship of compressed concrete were both taken into account in this approach. Then a simplified expression was given by ignoring tensile resistance of concrete. Comparison of analytical predictions with experimental results indicates satisfactory accuracy of the procedures. The errors are less than 8% and 10% respectively when the tensile resistance of concrete is or not considered. While the maximum error of existing procedures is up to 60%.展开更多
Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member wa...Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member was proposed. The post-cracking behavior as well as tension stiffening effect was considered in the new model. The relative slip of bending member could also be determined through the extension of the new model,which could be applied to obtaining the concentrated rotations at certain sections in order to predict the flexural deformation of RC beam. Several examples of four-point bending RC beams were approached to verify the new model,and the predictions of the flexural deflections of RC beams agreed well with experimental results. The new model can be extended to the application of partially corroded RC beam.展开更多
文摘The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures.
文摘Reinforced concrete (RC) beams externally bonded with basalt fiber reinforced polymer (BFRP) are experimentally investigated by using different numbers of bonding plies, transverse anchorages as well as the initial conditions of strengthened beams. The performances of the BFRP strengthening are compared with those of the carbon fiber reinforced polymer (CFRP) and the glass fiber reinforced polymer (GFRP) under the same experimental condition. Experimental results indicate that the strength and ductility of the strengthened beam with two plies of the BFRP are improved remarkably than those with one ply. The strengthening effects of the BFRP lie between those of the CFRP and the GFRP. The BFRP strengthening is little influenced by pre-cracks of concrete. Most failures are caused by interfaciai debonding induced by flexural cracks in the experiment. Clamping of Uwraps along the whole beam is less efficient than endpoint anchorage for increasing the ultimate load of the strengthened beam. Finally, the models suggested by the five guidelines for predicting the debonding strain of the CFRP are extended to the BFRP and the conservative estimates of the debonding strain of the BFRP are given as well.
基金The National Natural Science Foundation of China(No.50608013)Special Prophase Project on Basic Research of the National Department of Science and Technology(No.2004CCA04100)
文摘The test results of eight concrete beams reinforced with carbon fiber reinforced polymer (CFRP) sheets subjected to an aggressive environment under a sustained load are presented. The beams are 1 700 mm long with a rectangular cross-section of 120- mm width and 200-mm depth. The beams are precracked with a four-point flexural load, bonded CFRP sheets, and placed into wet-dry saline water( NaCl) either in an unstressed state or loaded to about 30% or 60% of the initial ultimate load. The individual and coupled effects of wet-dry saline water and sustained bending stresses on the long term behaviour of concrete beams reinforced with the CFRP are investigated. The test results show that the coupled action of wet-dry saline water and sustained bending stresses appears to significantly affect the load capacity and the failure mode of beam strengthened with CFRP, mainly due to the degradation of the bond between CFRP and concrete. However, the stiffness is not affected by the coupled action of wet-dry cycles and a sustained load.
基金The National Natural Science Foundation of China(No.51138002)the Foundation for the Author of National Excellent Doctoral Dissertation of PR China(No.201452)the Open Fund of Shanghai Key Laboratory of Engineering Structure Safety(No.2015-KF06)
文摘In order to study the calculation methods of bending behavior of Chinese reinforced concrete beams from 1912 to 1949, tests on the mechanical performance of 66 rebars from different modem Chinese concrete buildings, the concrete compressive strength of 12 modem Chinese concrete buildings, and the concrete cover thickness of 9 modem Chinese concrete buildings are carried out; and the actual material properties and structural conformations of modem Chinese concrete buildings are obtained. Then, the comparison on calculation methods of bending behavior including the original Chinese calculation method, the present Chinese calculation method, the present American calculation method and the present European calculation method is studied. The results show that the original Chinese calculation method of bending behavior is based on the allowable stress calculation method, and the design safety factors are 3.55 to 4. 0. In term of the calculation area of longitudinal rebars of reinforced concrete beams, without considering earthquake action, the original Chinese structural calculation method is safer than the present Chinese structural calculation method, the present European structural calculation method, and the present American structural calculation method. The results can provide support for the structural safety assessments of modem Chinese reinforced concrete buildings.
基金financially supported by the National Key Basic Research Development Plan of China(973 Program,Grant No.2015CB655102)the National Natural Science Foundation of China(Grant Nos.51508272 and 51678304)+2 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20180433)the Project funded by China Postdoctoral Science Foundation(Grant No.2018M630558)the Open Research Funds for State Key Laboratory of High Performance Civil Engineering Materials(Grant No.2015CEM001)
文摘Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed.
基金support of Reliance Industries and Bakaert Industries, India for providing fiber for the experimental work
文摘This article presents an experimental study on the flexural performance of reinforced concrete(RC)beams with fiber reinforced cementitious composites(FRCC)and hybrid fiber reinforced cementitious composites(HFRCC)in the hinge portion.Beam specimens with moderate confinement were used in the study and tested under monotonic loading.Seven diverse types of FRCC including hybrid composites using fibers in different profiles and in different volumes are employed in this study.Companion specimens such as cylindrical specimens and prism specimens are also used to study the physical properties of composites employed.The moment?curvature,stiffness behavior,ductility,crack pattern and modified flexural damage ratio are the main factors considered in this study to observe the efficacy of the employed hybrid composites.The experimental outputs demonstrate the improved post yield behavior with less rate of stiffness degradation and better damage tolerance capacity than conventional technique.
文摘A novel method for prediction of the load carrying capacity of a corroded reinforced concrete beam (CRCB) is presented in the paper. Nine reinforced concrete beams, which had been working in an aggressive environment for more than 10 years, were tested in the laboratory. Comprehensive tests, including flexural test, strength test for corroded concrete and rusty rebar, and pullout test for bond strength between concrete and rebar, were conducted. ne flexural test results of CRCBs reveal that the distribution of surface cracks on the beams shows a fractal behavior. The relationship between the fractal dimensions and mechanical properties of CRCBs is then studied. A prediction model based on artificial neural network (ANN) is established by the use of the fractal dimension as the corrosion index, together with the basic information of the beam. The validity of the prediction model is demonstrated through the experimental data, and satisfactory results are achieved.
基金Project(51578548)supported by the National Natural Science Foundation of ChinaProject(2018JJ3202)supported by the Natural Science Foundation of Hunan Province,ChinaProject(17C0681)supported by the Educational Departmental Science Research of Hunan Province,China
文摘This study presents experimental and numerical investigations of simply supported steel reinforced concrete(RC)beams under fire.The temperature field of cross sections,the vertical deflection at mid-span,and specifically the axial expansion displacement at beam-ends were measured during the fire tests.A novel finite element(FE)model of a RC beam under fire was developed,in which the water loss in the heat transfer analysis and the concrete transient strain in the mechanical analysis were considered.Based on the validated FE model proposed in this study,parametric studies were conducted to investigate the effects of the beam type,the protective layer thickness,and the load ratio on the thermal and mechanical behavior of simply supported RC beams.It was found that greater fire resistance and fire performance of girder beams in comparison to secondary beams contributed to the non-structural reinforcements,which effectively compensated for the reduced tensile capacities of structural reinforcements because of the degradation of the material properties.In addition,the history of normal stress distributions of concrete under fire can be divided into three phases:expansion,stress redistribution and plateau phases.
基金Sponsored by Changjiang Scholars Program of China( Grant No 2009-37)the National Natural Science Foundation of China( Grant No 50678050)Innovative Science Foundation of HIT ( Grant No HIT2005C-3)
文摘To meet the requirement of fire endurance for concrete structures strengthened with CFRP sheets, this study develops an inorganic adhesive whose strength at 600 ℃ is not lower than that at normal room temperature. The inorganic adhesive is then used to bond CFRP sheets on reinforced concrete beams in order to strengthen them. The fire protection of the CFRP sheets is done using the thick-type fireproofing coatings for tunnel ( TFCT) and steel structure ( TFCSS) respectively. Four specimens are tested in the furnace together. Specimens are exposed to fire for 1. 5 h in according to the ISO834 standard fire curve,and then naturally cooled for 1 h. In the tests,the largest displacements at the mid-span positions of specimens are only from 1 /1400 to 1 /318 of actual span corresponding to the highest temperatures from 300 ℃ to 470 ℃. After the specimens are naturally cooled to the normal temperature and the fireproofing coatings are then removed,it can be seen that the CFRP sheets keep in a good state,which indicates that CFRP sheets can be tightly bonded on the concrete and work well together with the concrete beams during and after fire. Besides,the tests also verify that the fire performance of TFCT is superior to TFCSS for the strengthened beams.
基金Project(50908082) supported by the National Natural Science Foundation of ChinaProject(2009ZK3111) supported by the Science and Technology Department of Hunan Province,China
文摘With consideration of the differences between concrete and steel,three solutions using genetic evolutionary structural optimization algorithm were presented to automatically develop optimal strut-and-tie model for deep beams.In the finite element analysis of the first method,the concrete and steel rebar are modeled by a plane element and a bar element,respectively.In the second method,the concrete and steel are assigned to two different plane elements,whereas in the third method only one kind of plane element is used with no consideration of the differences of the two materials.A simply supported beam under two point loads was presented as an example to verify the validity of the three proposed methods.The results indicates that all the three methods can generate optimal strut-and-tie models and the third algorithm has powerful capability in searching more optimal results with less computational effort.The effectiveness of the proposed algorithm III has also been demonstrated by other two examples.
基金supported by the Program for the Transport Science & Technology Project of Jiangsu Province
文摘Reinforcement corrosion has a serious impact on the durability and safety of reinforced concrete structures.Six reinforced concrete(RC)beam specimens are constructed.After beam specimens are subjected to accelerated corrosion with the constant current,beam specimens are repaired with epoxy mortar and the flexural test of beams is investigated.Then the behaviors of repaired corroded reinforced concrete beams are evaluated.The experimental results show that cracking and ultimate loads of corroded RC beams are enhanced after being repaired.And the strain distributions measured across sections of beam specimens still obey the assumption of plane section.After being repaired,the number of cracks decreases and the crack spacing increases.
基金Project(50278097) supported by the National Natural Science Foundation of China
文摘Tests were carried out on 8 self-compacting reinforced concrete(SCC) beams and 4 normal reinforced concrete beams. The effects of mode of consolidation,load level,reinforcing ratio and structural type on long term behavior of SCC were investigated. Under the same environmental conditions,the shrinkage-time curve of self-compacting concrete beam is very similar to that of normal concrete beam. For both self-compacting reinforced concrete beams and normal reinforced concrete beams,the rate of shrinkage at early stages is higher,the shrinkage strain at 2 months is about 60% of the maximum value at one year. The shrinkage strain of self-compacting reinforced concrete beam after one year is about 450×10-6. Creep deflection of self-compacting reinforced concrete beam decreases as the tensile reinforcing ratio increases. The deflection creep coefficient of self-compacting reinforced concrete beam after one and a half year is about 1.6,which is very close to that of normal reinforced concrete beams cast with vibration. Extra cautions considering shrinkage and creep behavior are not needed for the use of SCC in engineering practices.
文摘The marine structures such as harbour,pier and inshore concrete terrace are exposed in adverse circumstances in a long period of time .Owing to the attack of external corrosive medium,their safety,durability and reliability decline.Especially the reinforced concrete(RC) structures in the wave splash area are more likely to be subjected to destruction and the loss is vast. Now the safety ,durability and reliability of structure have become increasingly an important subject to be studied.By way of the soaking and drying cycle test on the different mix proportions oblique section of 10 pieces of RC beams suffered artificial sea water(ASW) corrosion under 0,35,70,105,140 times of dry-wet cycles,the compared results of exerting pressure test of these beams under simply supporting were investigated. The law about the changes of the mechanical performance for RC beams with different mix proportions under different time periods for suffering corrosion of dry-wet cycles is as follows: the resistivity to ASW corrosion of the concrete specimens with various water cement ratio(various initial strength)is different;the characters of oblique section failure for RC beams attacked by sea water are about the same as those for ordinary RC beam; along with the extension of the time for sea water attack, the bearing capacity for oblique section of RC beams varies wave upon wave.The specimens attacked by sea water for about 35 times of corrosion cycle achieve minimum bearing capacity.
文摘This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with sidebonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in AC1-440 and fib European code were compared with the experimental results.
文摘This paper is devoted to investigate experimentally the strength evaluation of normal strength and self-compacting reinforced concrete beams under the effect of impact. The experimental work includes investigating of eight (180×250×1,200 ram) beam specimens. Three variables are adopted in this paper: tensile reinforcement ratio, type of concrete (NSC (normal strength concrete) or SCC (self-compacting concrete)) and height of falling (dropped) ball (1 m or 2 m). The experimental results indicated that the number of blows increased with increasing of tensile reinforcement ratio and compressive strength by about 35% and 123%, respectively. Maximum mid-span deflection was increased with increasing falling height and decreased with increasing reinforcement ration and concrete compressive strength. The increasing of concrete compressive strength is more effective than increasing of the reinforcement ratio, it appeared that the percentage of increasing exceeds 50%. The ultimate strength is decreased with increasing the falling height for about 34%-44%.
文摘This paper evaluates two methods of diagnosing damage, Natural frequency and Stiffness-Frequency change-Based damage detection method in reinforced concrete beams under load using vibration characteristics such as natural frequency and mode shape. The research uses finite element method with crack damage instead of deleting or reducing the bearing capacity of the element like in previous studies. First, a theory of the damage diagnosis method based on the change of natural frequency and mode shape is presented. Next, the simulation results of reinforced concrete beams using ANSYS will be compared with the experiment. Particularly, the investigated damage cases are cracks in reinforced concrete beams under loads. Finally, we will evaluate the accuracy of the damage diagnosis methods and suggest the location of the vibration data and specify the failure threshold of the methods.
文摘With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered.
文摘This paper presents an experimental investigation on the flexural behavior of cross-connected brick masonry infill wall panels supported on reinforced concrete beam grids above and below the walls.The experimental program was comprised of six wall systems.The effect of change in lower beam stiffness relative to the wall and the geometry of the main walls were investigated.From the results of the experimental tests,the increase in the depth of the lower beam grid reduces the deflection,resulting in an increase in the load carrying capacity of the wall.Further,the stiffness of the main walls affects the deflection and the failure load of the cross walls.
基金Project(2002G043) supported by the Science & Technology Research Program of Chinese Railway MinistryProject (05JJ30101)supported by the Natural Science Foundation of Hunan Province, China
文摘Based on the theory of concrete structure, a new expression was derived for lagged strain of fiber-reinforced polymer (FLIP) laminates in reinforced concrete (RC) beams strengthened with FRP. The influence of different preloaded states and nonlinear stress-strain relationship of compressed concrete were both taken into account in this approach. Then a simplified expression was given by ignoring tensile resistance of concrete. Comparison of analytical predictions with experimental results indicates satisfactory accuracy of the procedures. The errors are less than 8% and 10% respectively when the tensile resistance of concrete is or not considered. While the maximum error of existing procedures is up to 60%.
基金National Key Basic Research and Development Program(973Program),China(No.2002CB412709)
文摘Based on an assumption of parabolic bond stress distribution,a simplified model with quartic polynomial function of the relative slip of steel bar and surrounding concrete for reinforced concrete (RC)tensile member was proposed. The post-cracking behavior as well as tension stiffening effect was considered in the new model. The relative slip of bending member could also be determined through the extension of the new model,which could be applied to obtaining the concentrated rotations at certain sections in order to predict the flexural deformation of RC beam. Several examples of four-point bending RC beams were approached to verify the new model,and the predictions of the flexural deflections of RC beams agreed well with experimental results. The new model can be extended to the application of partially corroded RC beam.