期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Soil spatial variability impact on the behavior of a reinforced earth wall 被引量:2
1
作者 Adam HAMROUNI Daniel DIAS Badreddine SBARTAI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第2期518-531,共14页
This article presents the soil spatial variability effect on the performance of a reinforced earth wall.The serviceability limit state is considered in the analysis.Both cases of isotropic and anisotropic non-normal r... This article presents the soil spatial variability effect on the performance of a reinforced earth wall.The serviceability limit state is considered in the analysis.Both cases of isotropic and anisotropic non-normal random fields are implemented for the soil properties.The K arhunen-Loeve expansion method is used for the discretization of the random field.Numerical finite difference models are considered as deterministic models.The Monte Carlo simulation technique is used to obtain the deformation response variability of the reinforced soil retaining wall.The influences of the spatial variability response of the geotechnical system in terms of horizontal facing displacement is presented and discussed.The results obtained show that the spatial variability has an important influence on the facing horizontal displacement as well as on the failure probability. 展开更多
关键词 reinforced earth wall GEOSYNTHETIC random field spatial variability Monte Carlo simulation
原文传递
Time-History Dynamic Characteristics of Reinforced Soil-Retaining Walls
2
作者 Lianhua Ma Min Huang Linfeng Han 《Structural Durability & Health Monitoring》 EI 2024年第6期853-869,共17页
Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil... Given the complexities of reinforced soil materials’constitutive relationships,this paper compares reinforced soil composite materials to a sliding structure between steel bars and soil and proposes a reinforced soil constitutive model that takes this sliding into account.A finite element dynamic time history calculation software for composite response analysis was created using the Fortran programming language,and time history analysis was performed on reinforced soil retaining walls and gravity retaining walls.The vibration time histories of reinforced soil retaining walls and gravity retaining walls were computed,and the dynamic reactions of the two types of retaining walls to vibration were compared and studied.The dynamic performance of reinforced earth retaining walls was evaluated. 展开更多
关键词 reinforced earth retaining walls time history dynamic analysis finite element
下载PDF
Field Measurements and Pullout Tests of Reinforced Earth Retaining Wall
3
作者 陈群 何昌荣 朱分清 《Journal of Southwest Jiaotong University(English Edition)》 2004年第2期165-172,共8页
In this paper, field measurements and pullout tests of a new type of reinforced earth retaining wall, which is reinforced by trapezoid concrete blocks connected by steel bar, are described. Field measurements included... In this paper, field measurements and pullout tests of a new type of reinforced earth retaining wall, which is reinforced by trapezoid concrete blocks connected by steel bar, are described. Field measurements included settlements of the earth fill, tensile forces in the ties and earth pressures on the facing panels during the construction and at completion. Based on the measurements, the following statements can be made: (1) the tensile forces in the ties increased with the height of backfill above the tie and there is a tensile force crest in most ties; (2) at completion, the measured earth pressures along the wall face were between the values of the active earth pressures and the pressures at rest; (3) larger settlements occurred near the face of the wall where a zone of drainage sand and gravel was not compacted properly and smaller settlements occurred in the well-compacted backfill. The results of field pullout tests indicated that the magnitudes of pullout resistances as well as tensile forces induced in the ties were strongly influenced by the relative displacements between the ties and the backfill, and pullout resistances increased with the height of backfill above the ties and the length of ties. 展开更多
关键词 reinforced earth retaining wall Field measurement Pullout test
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部