Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluati...Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluation method and a novel network function value representation method are proposed to evaluate the reliability of the IWSNs. First, the adjacency matrix method is used to characterize three typical topologies of WSNs including the mesh network, tree network and ribbon network. Secondly, the network function value method is used to evaluate the network connectivity, and the TEST-MC evaluation method is used to evaluate network reliability and availability. Finally, the variations in the reliability, connectivity and availability of these three topologies are presented. Simulation results show that the proposed method can quickly analyze the reliability of the networks containing typical WSN topologies, which provides an effective method for the comprehensive and accurate evaluation of the reliability of WSNs.展开更多
Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount...Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount of valu- able information extracted from disparate data sources to obtain the comprehensive reliability knowledge. Consid- ering the degradation failure and the catastrophic failure simultaneously, which are competing risks and can affect the reliability, a reliability evaluation model based on data fusion for aircraft engines is developed, Above the characteristics of the proposed model, reliability evaluation is more feasible than that by only utilizing failure data alone, and is also more accurate than that by only considering single failure mode. Example shows the effective- ness of the proposed model.展开更多
In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machin...In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.展开更多
LEO satellite communication network has a large number of satellites distributed in low orbits,which leads to multiple coverage of many areas on the ground.It is hard work to describe and evaluate the reliability of L...LEO satellite communication network has a large number of satellites distributed in low orbits,which leads to multiple coverage of many areas on the ground.It is hard work to describe and evaluate the reliability of LEO satellite communication network.To solve this problem,the reliability of all-user terminals in LEO satellite communication network is defined,and the corresponding reliability evaluation method is proposed in the paper.Due to the large scale of the interstellar network,a modular reduction algorithm using the modular network instead of the original network for state decomposition is proposed in this paper.Case study shows that the calculation time of the proposed method is equivalent to 6.28%of the original state space decomposition algorithm.On this basis,the reliability of LEO satellite communication network is further analyzed.It is found that the reliability of LEO satellite network was more sensitive to the reliability of Inter-Satellite link and the satisfaction of global coverage in the early stage,and it is more sensitive to the reliability of the satellite in the later stage.The satellite-ground link has a relatively constant impact on of LEO satellite network.展开更多
The reliability of electromechanical product is usually determined by the fault number and working time traditionally. The shortcoming of this method is that the product must be in service. To design and enhance the r...The reliability of electromechanical product is usually determined by the fault number and working time traditionally. The shortcoming of this method is that the product must be in service. To design and enhance the reliability of the electromechanical product, the reliability evaluation method must be feasible and correct. Reliability evaluation method and algorithm were proposed. The reliability of product can be calculated by the reliability of subsystems which can be gained by experiment or historical data. The reliability of the machining center was evaluated by the method and algorithm as one example. The calculation result shows that the solution accuracy of mean time between failures is 97.4% calculated by the method proposed in this article compared by the traditional method. The method and algorithm can be used to evaluate the reliability of electromechanical product before it is in service.展开更多
To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural ...To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.展开更多
Recently, Open Source Software (OSS) is so widely used not only by companies for development but also by common users instead of commercial software. However, the number of OSS is vast, and its quality varies from l...Recently, Open Source Software (OSS) is so widely used not only by companies for development but also by common users instead of commercial software. However, the number of OSS is vast, and its quality varies from low to high. So how people can evaluate OSS and ensta-e that it is reliable for use becomes necessary. This paper proposes a set of reliability evaluation metrics considering the states of OSS selected in the early stage. Understandability, Fault tolerance & Recoverability and Community Matmrity as sub-attributes of reliability are defined, and then several evaluation criteria for each of them are identified. A process of reliability evaluation in our study is proposed. For application, we select four OSS projects and evaluate them with our metrics. As a result of compadrison with other evaluation model for OSS, our research presents an easy, effective and trustworthy way for selecting a reliable OSS.展开更多
The principal of preferred plane analysis is a new research view and model of rock slope engineering geology. It advocates that the rock slope stability, boundary conditions and failure model are controlled by preferr...The principal of preferred plane analysis is a new research view and model of rock slope engineering geology. It advocates that the rock slope stability, boundary conditions and failure model are controlled by preferred planes. Therefore, the problem of slope stability evaluation can be converted into the search for preferred planes and determination of preferred separating bodies. The organic combination of the deterministic model and the indeterministic model can be realized by applying the systems engineering principle and the research model and method of reliability analysis in the quantitative evaluation and prediction of rock slope stability. Finally, the paper presents the case studies of slopes of the Yangtze Gorge Project and the Ma'anshan openpit mine.展开更多
Reliability engineering implemented early in the development process has a significant impact on improving software quality.It can assist in the design of architecture and guide later testing,which is beyond the scope...Reliability engineering implemented early in the development process has a significant impact on improving software quality.It can assist in the design of architecture and guide later testing,which is beyond the scope of traditional reliability analysis methods.Structural reliability models work for this,but most of them remain tested in only simulation case studies due to lack of actual data.Here we use software metrics for reliability modeling which are collected from source codes of post versions.Through the proposed strategy,redundant metric elements are filtered out and the rest are aggregated to represent the module reliability.We further propose a framework to automatically apply the module value and calculate overall reliability by introducing formal methods.The experimental results from an actual project show that reliability analysis at the design and development stage can be close to the validity of analysis at the test stage through reasonable application of metric data.The study also demonstrates that the proposed methods have good applicability.展开更多
Equivalent ways commonly used in engineering works are not effective to estimate the reliability of tandem system based on L-M method. One modified L-M method is an important means to estimate the reliability of CNC l...Equivalent ways commonly used in engineering works are not effective to estimate the reliability of tandem system based on L-M method. One modified L-M method is an important means to estimate the reliability of CNC lathes. A method of using two named confidence limits for the estimation is put forward. Fitting resuits of the sub-systems of CNC machine tools are estimated. And the scattered level of confidence limits facing the reliability matrix of sub-systems can be clearly seen.展开更多
This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installatio...This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results.展开更多
The performance and state of multi-state system depend on its structure and different state combinations of the components. In order to evaluate the reliability of multi-state system effectively,a reliability evaluati...The performance and state of multi-state system depend on its structure and different state combinations of the components. In order to evaluate the reliability of multi-state system effectively,a reliability evaluation and sensitivity analysis method based on the time degradation measures was proposed. The equivalence sets of the multi-state system under different output performances were established. The state combinations were classified according to the performance level. The degradation probability models under different states were established,and the new reliability measures,such as dynamic probability of multi-state system,holding time in each state,dynamic expectation function and integrated expectation function of the performance,were proposed and used to implement the dynamic reliability evaluation and sensitivity analysis. A certain diesel engine fuel feeding system was taken as an application example to illustrate the proposed method. The results show that not only the holding time in the desired state of the components and the system can be predicted,but also the best state component in a certain time period can be obtained.展开更多
We propose here a mathematical approach for the study of repairable systems with arbitrary distributions. The idea is to define a new type of stochastic process, called a generalized Markov renewal process (GMRP). whi...We propose here a mathematical approach for the study of repairable systems with arbitrary distributions. The idea is to define a new type of stochastic process, called a generalized Markov renewal process (GMRP). which may describe the transition behavior of the stochastic process at non-regenerative points. In the paper an analytical method for the GMRP is put forward and the formulas are then presented for reliability analysis of repairable systems which can be described by a GMRP with finite states. A signal flow graph technique for system modeling is also summarized here. Finally- an analytical model to evaluate the reliability of a m-out-of- n.G system with general repair-time distribution is developed by means of the GMRP approach.展开更多
This paper presents software reliability modeling issues at the early stage of a software development for fault tolerant software management system. Based on Stochastic Reward Nets, an effective model of hierarchical ...This paper presents software reliability modeling issues at the early stage of a software development for fault tolerant software management system. Based on Stochastic Reward Nets, an effective model of hierarchical view for a fault tolerant software management system is put forward, and an approach that consists of system transient performance analysis is adopted. A quantitative approach for software reliability analysis is given. The results show its usefulness for the design and evaluation of the early-stage software reliability modeling when failure data is not available.展开更多
Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-...Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.展开更多
The optimal deeision theory and exploitation reliability of large scale mining area have been studied China since the late 1980’s. Researches have been earried out under the thought of mannature - machine system , an...The optimal deeision theory and exploitation reliability of large scale mining area have been studied China since the late 1980’s. Researches have been earried out under the thought of mannature - machine system , and eneouraging results have been obtained. The reliability evaluation of mining engineering ineludes the rellability exaluation of natural resources, mining technology and mine economics ete. And the geological reliability of deposit, as a natural condition, is the basis of all other evaiuation works. The paper summarizes the method for evaluating the geological reliaoility of deposit, diseusces the reliability of estimating methods for coal reserves and coai quality, evaiuates the natural resourees rellability of the Pit 1 of Antaibao Surface Coai Mine, Pingsuo, Shanxi Province.which was taken as a case study.展开更多
Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitor...Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.展开更多
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th...With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.展开更多
The research on reliability evaluation of an integrated energy system(IES)is of great significance to system planning and operations.The differences of multiple energy subsystems must be considered in reliability eval...The research on reliability evaluation of an integrated energy system(IES)is of great significance to system planning and operations.The differences of multiple energy subsystems must be considered in reliability evaluation of an IES,in which energy quality differences of various energy resources is critical.Current reliability evaluation of an IES cannot uniformly evaluate the reliability of multiple energy subsystems due to neglecting the energy quality differences of various energy resources.To address this problem,a novel reliability evaluation method for IESs based on exergy is proposed for the first time in this paper.The exergy of an energy resource or a substance is a measure of its usefulness,quality or potential to cause change.The models of exergy not supplied minimization and exergy efficiency maximization are proposed to alleviate energy capacity deficiency and transmission component overload in the reliability evaluation of an IES.These two models are compared to analyze exergy efficiency for the proposed method.The energy supply priority strategy of an IES is proposed considering energy quality differences of various energy resources,in which electricity,gas and heating/cooling subsystems are supplied in an orderly manner.Furthermore,a reliability evaluation indices system of an IES based on exergy is proposed in this paper.An extensive case study on an actual IES demonstrates the feasibility and effectiveness of the proposed reliability evaluation method.展开更多
Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability ...Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.展开更多
基金The International S&T Cooperation Program of China(No.2015DFA10490)the National Natural Science Foundation of China(No.61571113,61240032)the Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110060)
文摘Aimed at the difficulties in accurately, comprehensively and systematically evaluating the reliability of industrial wireless sensor networks (WSNs), a time-evolving state transition-Monte Carlo (TEST-MC) evaluation method and a novel network function value representation method are proposed to evaluate the reliability of the IWSNs. First, the adjacency matrix method is used to characterize three typical topologies of WSNs including the mesh network, tree network and ribbon network. Secondly, the network function value method is used to evaluate the network connectivity, and the TEST-MC evaluation method is used to evaluate network reliability and availability. Finally, the variations in the reliability, connectivity and availability of these three topologies are presented. Simulation results show that the proposed method can quickly analyze the reliability of the networks containing typical WSN topologies, which provides an effective method for the comprehensive and accurate evaluation of the reliability of WSNs.
基金Supported by the National Natural Science Foundation of China and Aviation Fund(60879001)the Natural Science Foundation of Jiangsu Province(BK2009378)+1 种基金the Fundamental Research Fund of Nanjing University of Aeronautics and Astronautics(NS2010179)the Qinglan Project of Jiangsu Province~~
文摘Reliability evaluation for aircraft engines is difficult because of the scarcity of failure data. But aircraft engine data are available from a variety of sources. Data fusion has the function of maximizing the amount of valu- able information extracted from disparate data sources to obtain the comprehensive reliability knowledge. Consid- ering the degradation failure and the catastrophic failure simultaneously, which are competing risks and can affect the reliability, a reliability evaluation model based on data fusion for aircraft engines is developed, Above the characteristics of the proposed model, reliability evaluation is more feasible than that by only utilizing failure data alone, and is also more accurate than that by only considering single failure mode. Example shows the effective- ness of the proposed model.
基金Supported by National Natural Science Foundation of China(Grant No.51175222)Jilin Provincial Natural Science Foundation of China(Grant No.20150101025JC)High-end CNC machine tools and basic manufacturing equipment science and technology of major special projects(Grant No.2015ZX04003002)
文摘In order to rectify the problems that the com- ponent reliability model exhibits deviation, and the evalu- ation result is low due to the overlook of failure propagation in traditional reliability evaluation of machine center components, a new reliability evaluation method based on cascading failure analysis and the failure influ- enced degree assessment is proposed. A direct graph model of cascading failure among components is established according to cascading failure mechanism analysis and graph theory. The failure influenced degrees of the system components are assessed by the adjacency matrix and its transposition, combined with the Pagerank algorithm. Based on the comprehensive failure probability function and total probability formula, the inherent failure proba- bility function is determined to realize the reliability evaluation of the system components. Finally, the method is applied to a machine center, it shows the following: 1) The reliability evaluation values of the proposed method are at least 2.5% higher than those of the traditional method; 2) The difference between the comprehensive and inherent reliability of the system component presents a positive correlation with the failure influenced degree ofthe system component, which provides a theoretical basis for reliability allocation of machine center system.
基金supported by the projects of the National Natural Science Foundation of China entitled“Reliability growth evaluation and prediction model of large aerospace(72071111)”“Reverse multi variable CF-GERT model and its application for complex equipment development schedule under the background of multi project mixed batch(71801127)”+4 种基金“Research on network of reliability growth of complex equipment under the background of collaborative development(71671091)”supported by a joint project of both the NSFC and the RS of the UK entitled“On grey dynamic scheduling model of complex product based on sensing information of internet of things”(71811530338)support of the Fundamental Research Funds for the Central Universities of China(NC2019003,NP2019104)Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX210239)support of a project of Intelligence Introduction Base of the Ministry of Science and Technology(G20190010178).
文摘LEO satellite communication network has a large number of satellites distributed in low orbits,which leads to multiple coverage of many areas on the ground.It is hard work to describe and evaluate the reliability of LEO satellite communication network.To solve this problem,the reliability of all-user terminals in LEO satellite communication network is defined,and the corresponding reliability evaluation method is proposed in the paper.Due to the large scale of the interstellar network,a modular reduction algorithm using the modular network instead of the original network for state decomposition is proposed in this paper.Case study shows that the calculation time of the proposed method is equivalent to 6.28%of the original state space decomposition algorithm.On this basis,the reliability of LEO satellite communication network is further analyzed.It is found that the reliability of LEO satellite network was more sensitive to the reliability of Inter-Satellite link and the satisfaction of global coverage in the early stage,and it is more sensitive to the reliability of the satellite in the later stage.The satellite-ground link has a relatively constant impact on of LEO satellite network.
基金Project(2013ZX04013047)supported by the Major Program of National Natural Science Foundation of ChinaProject(51275014)supported by the National Natural Science Foundation of China
文摘The reliability of electromechanical product is usually determined by the fault number and working time traditionally. The shortcoming of this method is that the product must be in service. To design and enhance the reliability of the electromechanical product, the reliability evaluation method must be feasible and correct. Reliability evaluation method and algorithm were proposed. The reliability of product can be calculated by the reliability of subsystems which can be gained by experiment or historical data. The reliability of the machining center was evaluated by the method and algorithm as one example. The calculation result shows that the solution accuracy of mean time between failures is 97.4% calculated by the method proposed in this article compared by the traditional method. The method and algorithm can be used to evaluate the reliability of electromechanical product before it is in service.
基金Project(2001G025) supported by the Foundation of the Science and Technology Section of Ministry of Rail way of Chinaproject(2005) supported by the Postdoctoral Foundation of Central South University
文摘To evaluate the fatigue damage reliability of critical members of the Nanjing Yangtze river bridge, according to the stress-number curve and Miner’s rule, the corresponding expressions for calculating the structural fatigue damage reliability were derived. Fatigue damage reliability analysis of some critical members of the Nanjing Yangtze river bridge was carried out by using the strain-time histories measured by the structural health monitoring system of the bridge. The corresponding stress spectra were obtained by the real-time rain-flow counting method. Results of fatigue damage were calculated respectively by the reliability method at different reliability and compared with Miner’s rule. The results show that the fatigue damage of critical members of the Nanjing Yangtze river bridge is very small due to its low live-load stress level.
文摘Recently, Open Source Software (OSS) is so widely used not only by companies for development but also by common users instead of commercial software. However, the number of OSS is vast, and its quality varies from low to high. So how people can evaluate OSS and ensta-e that it is reliable for use becomes necessary. This paper proposes a set of reliability evaluation metrics considering the states of OSS selected in the early stage. Understandability, Fault tolerance & Recoverability and Community Matmrity as sub-attributes of reliability are defined, and then several evaluation criteria for each of them are identified. A process of reliability evaluation in our study is proposed. For application, we select four OSS projects and evaluate them with our metrics. As a result of compadrison with other evaluation model for OSS, our research presents an easy, effective and trustworthy way for selecting a reliable OSS.
基金Chen Zhengzhou, Yang Weidong, Wang Peiqing and Wu Hao also took part in this study
文摘The principal of preferred plane analysis is a new research view and model of rock slope engineering geology. It advocates that the rock slope stability, boundary conditions and failure model are controlled by preferred planes. Therefore, the problem of slope stability evaluation can be converted into the search for preferred planes and determination of preferred separating bodies. The organic combination of the deterministic model and the indeterministic model can be realized by applying the systems engineering principle and the research model and method of reliability analysis in the quantitative evaluation and prediction of rock slope stability. Finally, the paper presents the case studies of slopes of the Yangtze Gorge Project and the Ma'anshan openpit mine.
基金This work was supported by the National Natural Science Foundation of China(61572167)the National Key Research and Development Program of China(2016YFC0801804)the Natural Science Foundation for Anhui Higher Education Institutions of China(KJ2019A0482).
文摘Reliability engineering implemented early in the development process has a significant impact on improving software quality.It can assist in the design of architecture and guide later testing,which is beyond the scope of traditional reliability analysis methods.Structural reliability models work for this,but most of them remain tested in only simulation case studies due to lack of actual data.Here we use software metrics for reliability modeling which are collected from source codes of post versions.Through the proposed strategy,redundant metric elements are filtered out and the rest are aggregated to represent the module reliability.We further propose a framework to automatically apply the module value and calculate overall reliability by introducing formal methods.The experimental results from an actual project show that reliability analysis at the design and development stage can be close to the validity of analysis at the test stage through reasonable application of metric data.The study also demonstrates that the proposed methods have good applicability.
基金Sponsored by the National Natural Science Foundation of China(Grant No.40774048)
文摘Equivalent ways commonly used in engineering works are not effective to estimate the reliability of tandem system based on L-M method. One modified L-M method is an important means to estimate the reliability of CNC lathes. A method of using two named confidence limits for the estimation is put forward. Fitting resuits of the sub-systems of CNC machine tools are estimated. And the scattered level of confidence limits facing the reliability matrix of sub-systems can be clearly seen.
基金supported by the National Natural Science Foundation of China(72001026).
文摘This paper proposes reliability and maintenance models for systems suffering random shocks arriving according to a non-homogeneous Poisson process.The system degradation process include two stages:from the installation of a new system to an initial point of a defect(normal stage),and then from that point to failure(defective stage),following the delay time concept.By employing the virtual age method,the impact of external shocks on the system degradation process is characterized by random virtual age increment in the two stages,resulting in the corresponding two-stage virtual age process.When operating in the defective state,the system becomes more susceptible to fatigue and suffers from a greater aging rate.Replacement is carried out either on failure or on the detection of a defective state at periodic or opportunistic inspections.This paper evaluates system reliability performance and investigates the optimal opportunistic maintenance policy.A case study on a cooling system is given to verify the obtained results.
基金National Natural Science Foundations of China(Nos.61164009,61463021)the Science Foundation of Education Commission of Jiangxi Province,China(No.GJJ14420)+1 种基金the Young Scientists Object Program of Jiangxi Province,China(No.20144BCB23037)the Graduate Innovation Foundation of Jiangxi Province,China(No.YC2014-S364)
文摘The performance and state of multi-state system depend on its structure and different state combinations of the components. In order to evaluate the reliability of multi-state system effectively,a reliability evaluation and sensitivity analysis method based on the time degradation measures was proposed. The equivalence sets of the multi-state system under different output performances were established. The state combinations were classified according to the performance level. The degradation probability models under different states were established,and the new reliability measures,such as dynamic probability of multi-state system,holding time in each state,dynamic expectation function and integrated expectation function of the performance,were proposed and used to implement the dynamic reliability evaluation and sensitivity analysis. A certain diesel engine fuel feeding system was taken as an application example to illustrate the proposed method. The results show that not only the holding time in the desired state of the components and the system can be predicted,but also the best state component in a certain time period can be obtained.
文摘We propose here a mathematical approach for the study of repairable systems with arbitrary distributions. The idea is to define a new type of stochastic process, called a generalized Markov renewal process (GMRP). which may describe the transition behavior of the stochastic process at non-regenerative points. In the paper an analytical method for the GMRP is put forward and the formulas are then presented for reliability analysis of repairable systems which can be described by a GMRP with finite states. A signal flow graph technique for system modeling is also summarized here. Finally- an analytical model to evaluate the reliability of a m-out-of- n.G system with general repair-time distribution is developed by means of the GMRP approach.
基金This work was supported in part by the Ph.D.Programs Foundation of Ministry of Education of China under
文摘This paper presents software reliability modeling issues at the early stage of a software development for fault tolerant software management system. Based on Stochastic Reward Nets, an effective model of hierarchical view for a fault tolerant software management system is put forward, and an approach that consists of system transient performance analysis is adopted. A quantitative approach for software reliability analysis is given. The results show its usefulness for the design and evaluation of the early-stage software reliability modeling when failure data is not available.
基金Supported by the National Natural Science Foundation of China(No.60973118,60873075)
文摘Since most of the available component-based software reliability models consume high computational cost and suffer from the evaluating complexity for the software system with complex structures,a component-based back-propagation reliability model(CBPRM)with low complexity for the complex software system reliability evaluation is presented in this paper.The proposed model is based on the artificial neural networks and the component reliability sensitivity analyses.These analyses are performed dynamically and assigned to the neurons to optimize the reliability evaluation.CBPRM has a linear increasing complexity and outperforms the state-based and the path-based reliability models.Another advantage of CBPRM over others is its robustness.CBPRM depends on the component reliabilities and the correlative sensitivities,which are independent from the software system structure.Based on the theory analysis and experiment results,it shows that the complexity of CBPRM is evidently lower than the contrast models and the reliability evaluating accuracy is acceptable when the software system structure is complex.
文摘The optimal deeision theory and exploitation reliability of large scale mining area have been studied China since the late 1980’s. Researches have been earried out under the thought of mannature - machine system , and eneouraging results have been obtained. The reliability evaluation of mining engineering ineludes the rellability exaluation of natural resources, mining technology and mine economics ete. And the geological reliability of deposit, as a natural condition, is the basis of all other evaiuation works. The paper summarizes the method for evaluating the geological reliaoility of deposit, diseusces the reliability of estimating methods for coal reserves and coai quality, evaiuates the natural resourees rellability of the Pit 1 of Antaibao Surface Coai Mine, Pingsuo, Shanxi Province.which was taken as a case study.
文摘Overloads of vehicle may cause damage to bridge structures,and how to assess the safety influence of heavy vehicles crossing the prototype bridge is one of the challenges.In this report,using a large amount of monitored data collected from the structural health monitoring system(SHMS)in service of the prototype bridge,of which the bridge type is large-span continuous rigid frame bridge,and adopting FEM simulation technique,we suggested a dynamic reliability assessment method in the report to assess the safety impact of heavy vehicles on the prototype bridge during operation.In the first place,by using the health monitored strain data,of which the selected monitored data time range is before the opening of traffic,the quasi dynamic reliability around the embedded sensor with no traffic load effects is obtained;then,with FEM technology,the FEM simulation model of one main span of the prototype bridge is built by using ANSYS software and then the dynamic reliability when the heavy vehicles crossing the prototype bridge corresponding to the middle-span web plate is comprehensively analyzed and discussed.At last,assuming that the main beam stress state change is in the stage of approximately linear elasticity under heavy vehicle loads impact,the authors got the impact level of heavy vehicles effects on the dynamic reliability of the prototype bridge.Based on a large number of field measured data,the dynamic reliability value calculated by our proposed methodology is more accurate.The method suggested in the paper can do good for not only the traffic management but also the damage analysis of bridges.
基金Shanghai Rising-Star Program(Grant No.21QA1403400)Shanghai Sailing Program(Grant No.20YF1414800)Shanghai Key Laboratory of Power Station Automation Technology(Grant No.13DZ2273800).
文摘With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant No.51637008 and No.U1610122.
文摘The research on reliability evaluation of an integrated energy system(IES)is of great significance to system planning and operations.The differences of multiple energy subsystems must be considered in reliability evaluation of an IES,in which energy quality differences of various energy resources is critical.Current reliability evaluation of an IES cannot uniformly evaluate the reliability of multiple energy subsystems due to neglecting the energy quality differences of various energy resources.To address this problem,a novel reliability evaluation method for IESs based on exergy is proposed for the first time in this paper.The exergy of an energy resource or a substance is a measure of its usefulness,quality or potential to cause change.The models of exergy not supplied minimization and exergy efficiency maximization are proposed to alleviate energy capacity deficiency and transmission component overload in the reliability evaluation of an IES.These two models are compared to analyze exergy efficiency for the proposed method.The energy supply priority strategy of an IES is proposed considering energy quality differences of various energy resources,in which electricity,gas and heating/cooling subsystems are supplied in an orderly manner.Furthermore,a reliability evaluation indices system of an IES based on exergy is proposed in this paper.An extensive case study on an actual IES demonstrates the feasibility and effectiveness of the proposed reliability evaluation method.
基金Project(71371182) supported by the National Natural Science Foundation of China
文摘Reliability and remaining useful life(RUL)estimation for a satellite rechargeable lithium battery(RLB)are significant for prognostic and health management(PHM).A novel Bayesian framework is proposed to do reliability analysis by synthesizing multisource data,including bivariate degradation data and lifetime data.Bivariate degradation means that there are two degraded performance characteristics leading to the failure of the system.First,linear Wiener process and Frank Copula function are used to model the dependent degradation processes of the RLB's temperature and discharge voltage.Next,the Bayesian method,in combination with Markov Chain Monte Carlo(MCMC)simulations,is provided to integrate limited bivariate degradation data with other congeneric RLBs'lifetime data.Then reliability evaluation and RUL prediction are carried out for PHM.A simulation study demonstrates that due to the data fusion,parameter estimations and predicted RUL obtained from our model are more precise than models only using degradation data or ignoring the dependency of different degradation processes.Finally,a practical case study of a satellite RLB verifies the usability of the model.