Flanking transmission has significant effects on the overall sound insulation of two adjacent rooms within a residence building. This study investigates the mechanism of the sound flanking transmission by dividing it ...Flanking transmission has significant effects on the overall sound insulation of two adjacent rooms within a residence building. This study investigates the mechanism of the sound flanking transmission by dividing it into several subsystems with the statistical energy analysis method. The sound energy equations of these subsystems are obtained first, and then,the sound transmissions on each flanking path are predicted and the dominant sound transmission path is determined by solving these equations and calculating the total loss factors of the subsystems and coupling loss factors between subsystems. With respect to a masonry building with heavy-weight homogeneous structure, the results show that:(1) the flanking transmission paths instead of the separating wall may become the dominant ones at low frequencies;(2) all sound transmissions on the flanking paths tend to be consistent at medium and high frequencies, so the sound insulation between two adjacent rooms depends on the direct path of the separating wall;(3) heavy-weight separating walls can be used to reduce the frequency range of the flanking transmission.展开更多
基金supported by the National Natural Science Foundation of China(51568003)the Natural Science Foundation of Guangxi Province,China(2015GXNSFAA139254,2014GXNSFAA118017)
文摘Flanking transmission has significant effects on the overall sound insulation of two adjacent rooms within a residence building. This study investigates the mechanism of the sound flanking transmission by dividing it into several subsystems with the statistical energy analysis method. The sound energy equations of these subsystems are obtained first, and then,the sound transmissions on each flanking path are predicted and the dominant sound transmission path is determined by solving these equations and calculating the total loss factors of the subsystems and coupling loss factors between subsystems. With respect to a masonry building with heavy-weight homogeneous structure, the results show that:(1) the flanking transmission paths instead of the separating wall may become the dominant ones at low frequencies;(2) all sound transmissions on the flanking paths tend to be consistent at medium and high frequencies, so the sound insulation between two adjacent rooms depends on the direct path of the separating wall;(3) heavy-weight separating walls can be used to reduce the frequency range of the flanking transmission.