In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading ...In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.展开更多
The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the d...The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the design pressure,material yielding of the shell plating should occur first,eventually followed by local buckling,while global buckling currently retains the highest safety factor.On the other hand,in the aeronautical field,in some cases structural components are designed in such a way that local instability may occur within the design loads,being the phenomena inside the material elastic range and not leading to a significant drop in term of stiffness.This paper is aimed at investigating the structural response beyond a set of selected limit states,using nonlinear FE method adopting different initial imperfection models,to provide the designers with new information useful for calibrating safety factors.It was found that both local and global buckling can be considered as ultimate limit states,with a significant sensitivity towards initial imperfection,while material yielding and tripping buckling of frames show a residual structural capacity.In conclusion,it was found that the occurrence of local buckling leads to similar sudden catastrophic consequences as global buckling,with the ultimate strength capacity highly affected by the initial imperfection shape and amplitude.展开更多
Three types of composite stringers were impacted from two different directions.Relationships between impact energy and visible defect length were found.The critical impact energy corresponding to barely visible impact...Three types of composite stringers were impacted from two different directions.Relationships between impact energy and visible defect length were found.The critical impact energy corresponding to barely visible impact damage(BVID)of each stringer was determined.Specimens with BVID were then compressed to obtain the residual strength.Experimental results showed that for all types of stringers,the critical energy of in-plane impact is always much lower than out-plane ones.In-plane impact causes much more decrement of stringers'bearing capacity than outplane impact.For both impact directions,I-stringers own the highest defect detectability,T-stringers come second.Meanwhile,I-stringers own the better residual strength ratio than I-stringers and I-stringers.Synthetic considering impact defect detectability and residual bearing capacity after impact,T-stringers own the best compression-afterimpact(CAI)behaviors.展开更多
Use of indices that quantify the seismic residual capacity of buildings damaged in earthquakes is one way to draw judgements on the building’s safety and possibility of future use.In Japanese damage assessment guidel...Use of indices that quantify the seismic residual capacity of buildings damaged in earthquakes is one way to draw judgements on the building’s safety and possibility of future use.In Japanese damage assessment guidelines,several approximate calculation methods exist to evaluate the residual capacity of buildings based on visually observed damage and simplifying assumptions on the nature of the building’s response mechanism and member capacities.While these methods provide a useful residual capacity ratio that enables a‘relative’comparison be-tween buildings,the exact relationship to a physically meaningful residual capacity is unclear.The aim of this study is to benchmark the‘approximations’of residual capacity.To do so,a shake-table test was conducted on a 14 scale 4-storey RC structure and a residual capacity evaluation was undertaken based on observed damage states.With the help of a numerical model,a benchmark residual capacity at each of the damage states is determined and compared to the approximate residual capacity calculation results via guidelines.It was found that approx-imate methods are generally accurate prior to yield but can become overly conservative post-yield.Simplifying assumptions of equal member deformation capacity used in the residual capacity ratio calculation was found to be suitable given constraints of rapid field evaluations.展开更多
The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this stu...The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures.展开更多
A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the batt...A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the battery series to be charged. The system can determine which battery is necessary to be updated for the reason of damage or aging. The system can display the total voltage of battery series, extreme voltage and temperature of every battery in the series. The system can display the accumulative discharge for every battery in the series. The system can alarm when both total or extreme voltage is at low level, or temperature of a battery in the series is at high level. The system provided with a microprocessor as key part can collect and record signal of charging and discharging current, total voltage, extreme voltage and temperature for every battery. The mathematical model of residual capacity for EV lead acid batteries was discussed in details. The system operates well in the laboratory and meets the requirement.展开更多
This paper presents some results from a comprehensive experimental program designed to determine the interaction between mechanical loading and corrosion of reinforcing steel, as well as their combined effect on servi...This paper presents some results from a comprehensive experimental program designed to determine the interaction between mechanical loading and corrosion of reinforcing steel, as well as their combined effect on serviceability and residual load- bearing capacity of reinforced concrete beams. Beam specimens with the size of 120mm×200mm×1700mm were subjected to four-point bending at various sustained loading levels (0%, 25%, 45%, and 65% of the ultimate load) during the corrosion test process. The marine tidal zone was simulated by alternating spraying and draining of 3.5% NaCl solution. An external direct current technique was used to accelerate the corrosion of the reinforcement. Residual flexural load-bearing capacity of the beams was evaluated at the end of the experiment. The results indicate that the loading has a significant effect on corrosion. Under simultaneous loading and accelerated corrosion conditions, the time-dependent deflection of the beams increases with the progressive corrosion of the reinforcement. The beams under high-level loading deteriorate more rapidly than those under low-level loading and without loading. As a result, the residual flexural capacity of the beams subjected to higher level loading was much lower than that of the beams subjected to lower level loading and in the absence of loading. The results suggest that, for a rational service-life prediction of reinforced concrete structures, the influence of the service load on the structural performance should be considered in combination with environmental conditions.展开更多
To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire,three sandwich walls were tested.One of them was used for static load tes...To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire,three sandwich walls were tested.One of them was used for static load test and the other two for the one-side fire tests.Besides,temperature probe points were set on the sandwich walls to obtain the temperature distribution.Meanwhile,the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent.The temperature distribution and performance reduction of materials were also considered.The residual bearing capacity of specimens after fire exposure were simulated considering the effects of web spacing,wall panel thickness and fire exposure time.Because the sandwich wall panels were stressed by eccentric compression after a fire,the residual compressive strength of the wall panel after the fire can be calculated through the eccentric loading analysis.Compared with the numerical results,it can be concluded that the effectiveness of calculation method of residual bearing capacity after fire exposure was proved.展开更多
Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications coul...Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate.Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils(p 〈 0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction(Na HCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction(HCl-glyphosate) and concomitantly reduced that of the Na HCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution p H on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.展开更多
As a major element of the transportation network,tunnels are unavoidably threatened by accidental loads such as vehicle bombs and tank truck explosions.The goal of this research is to explore the dynamic characteristi...As a major element of the transportation network,tunnels are unavoidably threatened by accidental loads such as vehicle bombs and tank truck explosions.The goal of this research is to explore the dynamic characteristics and damage assessment of tunnel structures under contact blast loads.First,three scaled-down reinforced concrete tunnel models were made,and the explosion test and static loading test were carried out successively to evaluate the axial residual bearing capacity,axial displacement and failure mechanism of the tunnel.Secondly,the finite element model is built by utilizing LS-DYNA,and the reliability of the finite element method is confirmed by comparing the data of the explosion test with the static loading test.At the same time,the calculation method for damage coefficient and the classification criteria for damage grade based on axial residual bearing capacity are presented.Then,based on the finite element method,the propagation process of the explosion shock wave in the tunnel and the damage mechanism of the tunnel are investigated.Finally,seven explosion scenarios are developed,the damage degree of these seven tunnels under the blast load is quantitatively analyzed,and further anti-blast design ideas are put forth.The study in this article may give an intended reference for the damage assessment,anti-explosion design and strengthening work of reinforced concrete tunnels.展开更多
The high proportion of nonlinear and unbalanced loads results in power quality issues in islanded microgrids.This paper presents a novel control strategy for harmonic and unbalanced power allocation among distributed ...The high proportion of nonlinear and unbalanced loads results in power quality issues in islanded microgrids.This paper presents a novel control strategy for harmonic and unbalanced power allocation among distributed genera-tors(DGs)in microgrids.Different from the existing sharing strategies that allocate the harmonic and unbalanced power according to the rated capacities of DGs,the proposed control strategy intends to shape the lowest output impedances of DGs to optimize the power quality of the microgrid.To achieve this goal,the feasible range of virtual impedance is analyzed in detail by eigenvalue analysis,and the findings suggest a simultaneous adjustment of real and imaginary parts of virtual impedance.Because virtual impedance is an open-loop control that imposes DG to the risk of overload,a new closed-loop structure is designed that uses residual capacity and absorbed power as feedback.Accordingly,virtual impedance can be safely adjusted in the feasible range until the power limit is reached.In addi-tion,a fuzzy integral controller is adopted to improve the dynamics and convergence of the power distribution,and its performance is found to be superior to linear integral controllers.Finally,simulations and control hardware-in-the-loop experiments are conducted to verify the effectiveness and usefulness of the proposed control strategy.展开更多
The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the ...The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the diversity of different inverters to mitigate harmonics from nonlinear loads.As a result,the voltage quality of microgrids cannot be effectively improved.To address this issue,this study proposes an adaptive harmonic virtual impedance(HVI)control for improving voltage quality of microgrids.Based on the premise that no inverter is overloaded,the main objective of the proposed control is to maximize harmonic power absorption by shaping the lowest output impedances of inverters.To achieve this,the proposed control is utilized to adjust the HVI of each inverter based on its operation conditions.In addition,the evaluation based on Monte Carlo harmonic power flow is designed to assess the performance of the proposed control in practice.Finally,comparative studies and control-in-the-loop experiments are conducted.展开更多
文摘In order to realize the in-situ evaluation of reinforced concrete bridges subjected to fatigue for a long time or after earthquake, an evaluation method for cumulative damage of concrete structures based on unloading elastic modulus was proposed. First, according to the concrete stress-strain curve and the statistical relationship between residual strain and cumulative strain, the calculation method of static equivalent strain and residual strain concrete based on unloading elastic modulus and the method for estimating the strength of concrete after damage were proposed. The detailed steps of field test and analysis and the practical damage indicators of residual strain were given. Then, the evaluation method of existing stress and strain of Reinforced Concrete Bridge under dead load and the concept of “equivalent dead load bending moment” were put forward. On this basis, the paper analyzed the root cause of the decrease of bearing capacity of Reinforced Concrete Bridge after fatigue damage, and pointed out that the equivalent strain or residual strain of reinforced concrete increases under the fatigue effect, which led to the decreasing of actual live moment and deformation performance while the ultimate load-carrying capacity remained constant or very little decrease. The evaluation method of structure residual capacity was given, and through comparative analysis of eight T reinforced concrete beams that had been in service for 35 years with the static failure tests, the effectiveness of the method was verified.
基金The research activity on this topic is still under development in the frame of the ASAMS(Aspetti specialistici e approccio metodologico per progettazione di sottomarini di ultima generazione)project(2019-2022)which has been funded by the Italian MoD–Segredifesa,in collaboration with Fincantieri.
文摘The current design philosophy for submarine hulls,in the preliminary design stage,generally considers as governing limit states material yielding along with various buckling modes.It is common belief that,beyond the design pressure,material yielding of the shell plating should occur first,eventually followed by local buckling,while global buckling currently retains the highest safety factor.On the other hand,in the aeronautical field,in some cases structural components are designed in such a way that local instability may occur within the design loads,being the phenomena inside the material elastic range and not leading to a significant drop in term of stiffness.This paper is aimed at investigating the structural response beyond a set of selected limit states,using nonlinear FE method adopting different initial imperfection models,to provide the designers with new information useful for calibrating safety factors.It was found that both local and global buckling can be considered as ultimate limit states,with a significant sensitivity towards initial imperfection,while material yielding and tripping buckling of frames show a residual structural capacity.In conclusion,it was found that the occurrence of local buckling leads to similar sudden catastrophic consequences as global buckling,with the ultimate strength capacity highly affected by the initial imperfection shape and amplitude.
基金supported in part by the National Key Basic Research and Development Plan (“973”Plan)(No. 613274)Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Three types of composite stringers were impacted from two different directions.Relationships between impact energy and visible defect length were found.The critical impact energy corresponding to barely visible impact damage(BVID)of each stringer was determined.Specimens with BVID were then compressed to obtain the residual strength.Experimental results showed that for all types of stringers,the critical energy of in-plane impact is always much lower than out-plane ones.In-plane impact causes much more decrement of stringers'bearing capacity than outplane impact.For both impact directions,I-stringers own the highest defect detectability,T-stringers come second.Meanwhile,I-stringers own the better residual strength ratio than I-stringers and I-stringers.Synthetic considering impact defect detectability and residual bearing capacity after impact,T-stringers own the best compression-afterimpact(CAI)behaviors.
基金funded by Obayashi Corporation and the Consortium for Socio-functional Continuity Tech-nology(http://www.softech.titech.ac.jp/,Project ID:JPMJOP1723 un-der Japan Science and Technology Agency).
文摘Use of indices that quantify the seismic residual capacity of buildings damaged in earthquakes is one way to draw judgements on the building’s safety and possibility of future use.In Japanese damage assessment guidelines,several approximate calculation methods exist to evaluate the residual capacity of buildings based on visually observed damage and simplifying assumptions on the nature of the building’s response mechanism and member capacities.While these methods provide a useful residual capacity ratio that enables a‘relative’comparison be-tween buildings,the exact relationship to a physically meaningful residual capacity is unclear.The aim of this study is to benchmark the‘approximations’of residual capacity.To do so,a shake-table test was conducted on a 14 scale 4-storey RC structure and a residual capacity evaluation was undertaken based on observed damage states.With the help of a numerical model,a benchmark residual capacity at each of the damage states is determined and compared to the approximate residual capacity calculation results via guidelines.It was found that approx-imate methods are generally accurate prior to yield but can become overly conservative post-yield.Simplifying assumptions of equal member deformation capacity used in the residual capacity ratio calculation was found to be suitable given constraints of rapid field evaluations.
文摘The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures.
文摘A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the battery series to be charged. The system can determine which battery is necessary to be updated for the reason of damage or aging. The system can display the total voltage of battery series, extreme voltage and temperature of every battery in the series. The system can display the accumulative discharge for every battery in the series. The system can alarm when both total or extreme voltage is at low level, or temperature of a battery in the series is at high level. The system provided with a microprocessor as key part can collect and record signal of charging and discharging current, total voltage, extreme voltage and temperature for every battery. The mathematical model of residual capacity for EV lead acid batteries was discussed in details. The system operates well in the laboratory and meets the requirement.
基金This project was supported by the Science and Technology Foundation of Liaoning Province, China (No.001077)
文摘This paper presents some results from a comprehensive experimental program designed to determine the interaction between mechanical loading and corrosion of reinforcing steel, as well as their combined effect on serviceability and residual load- bearing capacity of reinforced concrete beams. Beam specimens with the size of 120mm×200mm×1700mm were subjected to four-point bending at various sustained loading levels (0%, 25%, 45%, and 65% of the ultimate load) during the corrosion test process. The marine tidal zone was simulated by alternating spraying and draining of 3.5% NaCl solution. An external direct current technique was used to accelerate the corrosion of the reinforcement. Residual flexural load-bearing capacity of the beams was evaluated at the end of the experiment. The results indicate that the loading has a significant effect on corrosion. Under simultaneous loading and accelerated corrosion conditions, the time-dependent deflection of the beams increases with the progressive corrosion of the reinforcement. The beams under high-level loading deteriorate more rapidly than those under low-level loading and without loading. As a result, the residual flexural capacity of the beams subjected to higher level loading was much lower than that of the beams subjected to lower level loading and in the absence of loading. The results suggest that, for a rational service-life prediction of reinforced concrete structures, the influence of the service load on the structural performance should be considered in combination with environmental conditions.
文摘To investigate the temperature field and residual bearing capacity of the sandwich wall panels with GFRP skins and a wood-web core under a fire,three sandwich walls were tested.One of them was used for static load test and the other two for the one-side fire tests.Besides,temperature probe points were set on the sandwich walls to obtain the temperature distribution.Meanwhile,the model of the sandwich wall was established in the finite element software by the method of core material stiffness equivalent.The temperature distribution and performance reduction of materials were also considered.The residual bearing capacity of specimens after fire exposure were simulated considering the effects of web spacing,wall panel thickness and fire exposure time.Because the sandwich wall panels were stressed by eccentric compression after a fire,the residual compressive strength of the wall panel after the fire can be calculated through the eccentric loading analysis.Compared with the numerical results,it can be concluded that the effectiveness of calculation method of residual bearing capacity after fire exposure was proved.
基金supported by the National Natural Science Foundation of China (Nos.51278055, 51179008)the National Key Technology R&D Program (No.2012BAJ21B08)the National Public Benefit (Environmental) Research Foundation of China (No.201109009)
文摘Fe/Al drinking water treatment residuals(WTRs), ubiquitous and non-hazardous by-products of drinking water purification, are cost-effective adsorbents for glyphosate. Given that repeated glyphosate applications could significantly decrease glyphosate retention by soils and that the adsorbed glyphosate is potentially mobile, high sorption capacity and stability of glyphosate in agricultural soils are needed to prevent pollution of water by glyphosate.Therefore, we investigated the feasibility of reusing Fe/Al WTR as a soil amendment to enhance the retention capacity of glyphosate in two agricultural soils. The results of batch experiments showed that the Fe/Al WTR amendment significantly enhanced the glyphosate sorption capacity of both soils(p 〈 0.001). Up to 30% of the previously adsorbed glyphosate desorbed from the non-amended soils, and the Fe/Al WTR amendment effectively decreased the proportion of glyphosate desorbed. Fractionation analyses further demonstrated that glyphosate adsorbed to non-amended soils was primarily retained in the readily labile fraction(Na HCO3-glyphosate). The WTR amendment significantly increased the relative proportion of the moderately labile fraction(HCl-glyphosate) and concomitantly reduced that of the Na HCO3-glyphosate, hence reducing the potential for the release of soil-adsorbed glyphosate into the aqueous phase. Furthermore, Fe/Al WTR amendment minimized the inhibitory effect of increasing solution p H on glyphosate sorption by soils and mitigated the effects of increasing solution ionic strength. The present results indicate that Fe/Al WTR is suitable for use as a soil amendment to prevent glyphosate pollution of aquatic ecosystems by enhancing the glyphosate retention capacity in soils.
基金supported by the National Natural Science Foundation of China(Grant No.51678018).
文摘As a major element of the transportation network,tunnels are unavoidably threatened by accidental loads such as vehicle bombs and tank truck explosions.The goal of this research is to explore the dynamic characteristics and damage assessment of tunnel structures under contact blast loads.First,three scaled-down reinforced concrete tunnel models were made,and the explosion test and static loading test were carried out successively to evaluate the axial residual bearing capacity,axial displacement and failure mechanism of the tunnel.Secondly,the finite element model is built by utilizing LS-DYNA,and the reliability of the finite element method is confirmed by comparing the data of the explosion test with the static loading test.At the same time,the calculation method for damage coefficient and the classification criteria for damage grade based on axial residual bearing capacity are presented.Then,based on the finite element method,the propagation process of the explosion shock wave in the tunnel and the damage mechanism of the tunnel are investigated.Finally,seven explosion scenarios are developed,the damage degree of these seven tunnels under the blast load is quantitatively analyzed,and further anti-blast design ideas are put forth.The study in this article may give an intended reference for the damage assessment,anti-explosion design and strengthening work of reinforced concrete tunnels.
基金supported by the Science and Technology Project of SGCC under grant 5400-202219417A-2-0-ZN.
文摘The high proportion of nonlinear and unbalanced loads results in power quality issues in islanded microgrids.This paper presents a novel control strategy for harmonic and unbalanced power allocation among distributed genera-tors(DGs)in microgrids.Different from the existing sharing strategies that allocate the harmonic and unbalanced power according to the rated capacities of DGs,the proposed control strategy intends to shape the lowest output impedances of DGs to optimize the power quality of the microgrid.To achieve this goal,the feasible range of virtual impedance is analyzed in detail by eigenvalue analysis,and the findings suggest a simultaneous adjustment of real and imaginary parts of virtual impedance.Because virtual impedance is an open-loop control that imposes DG to the risk of overload,a new closed-loop structure is designed that uses residual capacity and absorbed power as feedback.Accordingly,virtual impedance can be safely adjusted in the feasible range until the power limit is reached.In addi-tion,a fuzzy integral controller is adopted to improve the dynamics and convergence of the power distribution,and its performance is found to be superior to linear integral controllers.Finally,simulations and control hardware-in-the-loop experiments are conducted to verify the effectiveness and usefulness of the proposed control strategy.
基金supported by the Science and Technology Project of State Grid Corporation of China(No.5400-202219417A-2-0-ZN)。
文摘The effects of nonlinear loads on voltage quality represent an emerging concern for islanded microgrids.Existing research works have mainly focused on harmonic power sharing among multiple inverters,which ignores the diversity of different inverters to mitigate harmonics from nonlinear loads.As a result,the voltage quality of microgrids cannot be effectively improved.To address this issue,this study proposes an adaptive harmonic virtual impedance(HVI)control for improving voltage quality of microgrids.Based on the premise that no inverter is overloaded,the main objective of the proposed control is to maximize harmonic power absorption by shaping the lowest output impedances of inverters.To achieve this,the proposed control is utilized to adjust the HVI of each inverter based on its operation conditions.In addition,the evaluation based on Monte Carlo harmonic power flow is designed to assess the performance of the proposed control in practice.Finally,comparative studies and control-in-the-loop experiments are conducted.