The Hani Rice Terraces System is one of the Globally Important Agricultural Heritage Systems(GIAHS) sites which can successfully resist extreme droughts.The reason is not only that the forests and terraces have the ...The Hani Rice Terraces System is one of the Globally Important Agricultural Heritage Systems(GIAHS) sites which can successfully resist extreme droughts.The reason is not only that the forests and terraces have the important function of water conservation,which provide and conserve adequate water resources for this complex ecosystem,but also that Hani traditional ecological knowledge plays an important role in the drought-resistance process.In this paper,drought-resistant mechanisms of the Hani Rice Terraces System have been analyzed first,then Hani traditional ecological knowledge has been analyzed based on a comprehensive literature review,a questionnaire survey and key informant interviews.The results show that the Hani nationality has developed knowledge of water management techniques,including water conserving construction,water allocation and ditch management.The Hani people are also highly conscious of water resources protection.There is a good deal of forest resource management knowledge and worship of forests,which have effectively helped in protecting the forest ecological system.In the reclamation and maintenance of Hani terraced fields,the Hani people have developed a series of farming systems,which have effectively protected the terrace ecosystem.Through analyzing this knowledge of water management,forest resource management and Hani terraced fields management,our paper confirms the important role that traditional ecological knowledge plays in maintaining stability of the system and realizing the efficient use of water resource.This is not only helpful for preserving cultural heritage,but is vital for protecting the Hani Rice Terraces System as a whole.展开更多
To study the resistant mechanisms of cisplatin in human lung adenocarcinoma cell line A 549 DDP. A 549 DDP cells was established by stepwise increasing concentration of cisplatin (CDDP) in medium. Interstran...To study the resistant mechanisms of cisplatin in human lung adenocarcinoma cell line A 549 DDP. A 549 DDP cells was established by stepwise increasing concentration of cisplatin (CDDP) in medium. Interstrand cross linked DNA (ICL) was measured by ethidium bromide fluorescence assay. The intracellular and intranuclear accumulation of cisplatin was measured by atomic absorption spectrometry. The removal of GS X was determined by FCM and fluorescence microscopy. Results: The A 549 DDP cell line was 8.9 fold resistance relative to the parental A 549 cell line. The formation of ICL in A 549 was 6.28 times higher than that in A 549 DDP cells. The intracellular and intranuclear accumulation of cisplatin in A 549 cells was 5.9 times and 4.1 times higher than that in A 549 DDP cells, respectively. The ability of GS X pump pumped GS X complex (GS Pt) in A 549 DDP cells was higher than that in A 549 . The repair rate in A 549 DDP cells was 2 times higher than that in A 549 . Conclusions: Decreased accumulation and increased export of cisplatin might be the main mechanism of cisplatin resistant A 549 DDP cells while the enhanced repair capacity of DNA may play a role in CDDP resistance.展开更多
Ovarian cancer is among the most lethal gynecological cancers,primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy.Drug resistance(DR)poses the most sign...Ovarian cancer is among the most lethal gynecological cancers,primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy.Drug resistance(DR)poses the most significant challenge in treating patients with existing drugs.The Food and Drug Administration(FDA)has recently approved three new therapeutic drugs,including two poly(ADP-ribose)polymerase(PARP)inhibitors(olaparib and niraparib)and one vascular endothelial growth factor(VEGF)inhibitor(bevacizumab)for maintenance therapy.However,resistance to these new drugs has emerged.Therefore,understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management.In this review,we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.展开更多
Chlamydia Trachomatis (C.T.) is one of the most common pathogens of human sexually transmitted diseases. Treatment of C.T. infection primarily depends on Tetracyclines, Macrolides and Quinolones, but with the wide use...Chlamydia Trachomatis (C.T.) is one of the most common pathogens of human sexually transmitted diseases. Treatment of C.T. infection primarily depends on Tetracyclines, Macrolides and Quinolones, but with the wide use of antibiotics an increasing number of drug-resistant Chlamydia trachomatis cases have been reported. This review summarizes the resistant conditions and the possible resistance mechanisms of C.T..展开更多
Objective: To investigate the antimicrobial susceptibility of 97 clinical Staphylococcus aureus(S. aureus) strains against 14 antimicrobials and corresponding resistance mechanisms.Methods: The antimicrobial susceptib...Objective: To investigate the antimicrobial susceptibility of 97 clinical Staphylococcus aureus(S. aureus) strains against 14 antimicrobials and corresponding resistance mechanisms.Methods: The antimicrobial susceptibility of the isolates was determined using a disk diffusion method and antimicrobial resistance genes were screened by polymerase chain reaction. Mutations responsible for ciprofloxacin and rifampicin resistance were investigated by polymerase chain reaction and DNA sequencing.Results: All isolates were found to be susceptible to vancomycin. Various rates of resistance to penicillin(83.5%), ampicillin(77.3%), erythromycin(63.9%), tetracycline(16.5%), amoxicillin/clavulanic acid(16.5%), ciprofloxacin(15.5%), trimethoprim/sulfamethoxazole(15.5%), oxacillin(13.4%), fusidic acid(12.4%), rifampin(6.2%), clindamycin(6.2%), gentamicin(6.2%) and mupirocin(5.2%) were determined. In addition,different combinations of resistance genes were identified among resistant isolates.Ciprofloxacin resistant isolates had mutations in codon 84(Ser84 Leu) and 106(Gly106 Asp) in the gyr A gene. Mutations in grl A were mostly related to Ser80 Phe substitution. Leu466 Ser mutation in the rpo B gene was detected in all rifampin resistant isolates. All methicillin resistant S. aureus isolates were SCCmec type V.Conclusions: In conclusion, it was determined that the isolates were resistant to different classes of antimicrobials at varying rates and resistance was mediated by different genetic mechanisms. Therefore, continuous monitoring of resistance in S. aureus strains is necessary to control their resistance for clinically important antimicrobials.展开更多
Carbapenem resistance presents a major challenge for the global public health network, as clinical infections caused by carbapenem-resistant organisms(CRO) are frequently associated with significant morbidity and mort...Carbapenem resistance presents a major challenge for the global public health network, as clinical infections caused by carbapenem-resistant organisms(CRO) are frequently associated with significant morbidity and mortality. Ceftazidime–avibactam(CAZ–AVI) is a novel cephalosporin/β-lactamase inhibitor combination offering an important advance in the treatment of CRO infections. CAZ–AVI has been reported to inhibit the activities of Ambler classes A, C, and some class D enzymes. However, bacterial resistance has been emerging shortly after the introduction of this combination in clinical use, with an increasing trend. Understanding these resistance mechanisms is crucial for guiding the development of novel treatments and aiding in the prediction of underlying resistance mechanisms. This review aims to systematically summarize the epidemiology of CAZ–AVI-resistant strains and recently identified resistance mechanisms of CAZ–AVI, with a focus on the production of β-lactamase variants, the hyperexpression of β-lactamases, reduced permeability, and overexpressed efflux pumps. The various mechanisms of CAZ–AVI resistance that have emerged within a short timescale emphasize the need to optimize the use of current agents, as well as the necessity for the surveillance of CAZ–AVI-resistant pathogens.展开更多
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr...The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.展开更多
The sensitivity of a susceptible and two resistant strains of cotton bollworm, Helicoverpa armigera, to phoxim, malathion and methomyl was determined by a topical application of bioassay method. YG strain, collected f...The sensitivity of a susceptible and two resistant strains of cotton bollworm, Helicoverpa armigera, to phoxim, malathion and methomyl was determined by a topical application of bioassay method. YG strain, collected from field of Yanggu, Shandong Province of China, possessed 7-, 13- and 20-fold of resistance to the above three antiacetylcholinesterases based on the comparison of LD50 values with a laboratory susceptible strain. There were not significant difference of the specific activity and the Vmax value among the three strains. But the affinity of AChE tO acetylthiocholine (ATCh), in YG strain was the lowest among the three strains tested. A cDNA encoding partial AChE gene was cloned from the three strains by RT-PCR and there was one nucleotide acid difference between YG strain and other two strains which resulted in no amino acid mutation. This partial AChE gene was used as a probe to perform Southern blot. The results indicated that there was no gene amplification in resistant cotton bollworm. Altered AChE with a decreased sensitivity to inhibitors appeared to be one of important resistance mechanisms in cotton bollworm against OP and carbamate compounds.展开更多
The microporous corundum material was prepared using alumina micro-powder as the main raw material, alumina sol and starch as binders by a wet process, achieving the bulk density of 3.05 g · cm^-3, the apparent p...The microporous corundum material was prepared using alumina micro-powder as the main raw material, alumina sol and starch as binders by a wet process, achieving the bulk density of 3.05 g · cm^-3, the apparent porosity of 9. 1%, the closed porosity of 12.3%, the median pore diameter of 0. 43 μm, and the thermal conductivity of 6. 5 W· m^-1· K^-1 at 800 ℃ which is 41.6% lower than that of common corundum. The slag resistance of the microporous corundum material was studied by immersion and compared with that of the common corundum aggregate, and the slag resistant mechanism of microporous corundum material was revealed. The results show that the slag resistance of the microporous corundum material is superior to that of the common corundum aggregate, the SEM and EDX show that on the reaction interface between microporous corundum and molten, slag, a continuous isolation layer with a large quantity of CA2 and CA6 columnar crystals is formed; while the common corundum aggregate reacts with the molten slag interface to form a discontinuous isolation layer of columnar crystals, through which a lot of molten slag corrodes or permeates into the aggregate. The mechanism is mainly that the microporous structure is more advantageous to nucleation and growth of CA2 and CA6 columnar crystals; in the reaction with the aggregate, the molten slag gets saturated and the critical solution thickness of the microporous corundum and the common corundum is 0. 16 μm and 0. 34 μm, respectively, this is caused by the smaller microporous corundum aggregate pores; and the smaller pores also increase the second phase ripening rate of microporous corundum, which is 9. 7 times of that of the common corundum.展开更多
With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on ...With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms.We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models.Finally,simulations are presented.We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms,which are applied to explain their resistive switchings.展开更多
Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure,low power consumption,and rich switching dynamics r...Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure,low power consumption,and rich switching dynamics resembling biological synapses and neurons in the last decades.Fruitful demonstrations have been achieved in memristive synapses neurons and neural networks in the last few years.Versatile dynamics are involved in the data processing and storage in biological neurons and synapses,which ask for carefully tuning the switching dynamics of the memristive emulators.Note that switching dynamics of the memristive devices are closely related to switching mechanisms.Herein,from the perspective of switching dynamics modulations,the mainstream switching mechanisms including redox reaction with ion migration and electronic effect have been systemically reviewed.The approaches to tune the switching dynamics in the devices with different mechanisms have been described.Finally,some other mechanisms involved in neuromorphic computing are briefly introduced.展开更多
Gram-negative bacilli Pseudomonas aeruginosa is an important pathogen in hospitalized patients, contributing to their morbidity and mortality due to its multiple resistance mechanisms. Therefore, as therapeutic option...Gram-negative bacilli Pseudomonas aeruginosa is an important pathogen in hospitalized patients, contributing to their morbidity and mortality due to its multiple resistance mechanisms. Therefore, as therapeutic options become restricted, the search for new agents is a priority. Latterly an accelerated increase in frequency of multidrug-resistant clinical strains has severely limited the availability of therapeutic options. Several in vitro and in vitro studies evaluating the efficacy of different antimicrobials agents and development of vaccines against P. aeruginosa have been reported as novel approaches, such as inhibition of virulence factor expression or inhibition of their metabolic pathways.展开更多
At present,the multiple drug resistance of Acinetobacter baumannii outbreaks worldwide and has intensified the trend,especially in the intensive care unit and burn ward.Generic drug resistant Acinetobacter baumannii i...At present,the multiple drug resistance of Acinetobacter baumannii outbreaks worldwide and has intensified the trend,especially in the intensive care unit and burn ward.Generic drug resistant Acinetobacter baumannii is known as the 21st century gram-negative bacterium“MRSA”,“Superbugs”.In recent years,researches have shown that this is associated with pathogenic bacteria to form biofilms.In this paper,the status of Acinetobacter baumannii infection,biofilm formation,resistance mechanism and prevention in recent years were summarized.展开更多
Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1,Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis(Bt)in the United States.Laboratory-selected Cry1Ac/Cry2Ab cross resistance a...Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1,Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis(Bt)in the United States.Laboratory-selected Cry1Ac/Cry2Ab cross resistance and fieldevolved practical dual resistance of H.zea to these two toxins have been widely reported.Whether the widespread Cry1Ac/Cy2Ab dual resistance of H.zea has resulted from the selection of one shared or two independent resistance mechanisms by pyramided Bt crops remains unclear.Cadherin is a well-confirmed receptor of Cry1Ac and a suggested receptor of Cry2Ab in at least three Lepidopteran species.To test whether cadherin may serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab,we cloned H.zea cadherin(HzCadherin)cDNA and studied its functional roles in the mode of action of Cry1Ac and Cry2Ab by gain-and lossof-function analyses.Heterologous expression of HzCadherin in H.zea midgut,H.zea fat body and Sf9 cells made all three of these cell lines more susceptible to activated Cry1Ac but not activated Cry2Ab,whereas silencing HzCadherin of H.zea midgut and fat body cells significantly reduced the susceptibility to Cry1Ac but not Cry2Ab.Likewise,suppressing HzCadherin with siRNA made H.zea larvae resistant to Cry1Ac.These results clearly demonstrate that HzCadherin is not a receptor for Cry2Ab,and thus it is unlikely to serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab.展开更多
Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent p...Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent problem that needs continuous attention by scientists, medical professionals, and government agencies. To solve the problem, an in-depth understanding of the intricate interplay between causes of antiviral drug resistance and potential new drugs specifically natural products is imperative in the interest and safety of public health. This review delves into natural product as reservoir for antiviral agents with the peculiar potentials for addressing the complexities associated with multi-drug resistant and emerging viral strains. An evaluation of the mechanisms underlying antiviral drug activity, antiviral drug resistance is addressed, with emphasis on production of broad-spectrum antiviral agents from natural sources. There is a need for continued natural product-based research, identification of new species and novel compounds.展开更多
As an important ecological tree species in northern China, Populus simonii plays a crucial role in maintaining ecological balance and promoting environmental sustainability. The academic community has conducted a seri...As an important ecological tree species in northern China, Populus simonii plays a crucial role in maintaining ecological balance and promoting environmental sustainability. The academic community has conducted a series of in-depth studies on this species, covering key areas such as genomics, survival mechanisms, and genetic breeding. Through the analysis of the genomic structure and function of P. simonii, we have not only revealed the molecular basis for its adaptation to harsh environments but also identified key genes that promote its growth and resistance to pests and diseases. Furthermore, exploring the survival mechanisms of P. simonii has deepened our understanding of its stress resistance traits, including how it effectively copes with abiotic stresses such as drought, salinization, and heavy metal pollution. In genetic breeding, significant progress has been made through the application of modern biotechnology, improving the growth rate and wood quality of P. simonii and enhancing its environmental adaptability and disease resistance. These research findings have not only enriched our knowledge of the biological characteristics of P. simonii but also provided a solid scientific foundation for its application in ecological restoration, forestry production, and environmental management.展开更多
[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected ...[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected as the lower limit of NLWR to replace the original water content of permanent wilting point or the water content under soil mechanical resistance of 2.0 MPa. NLWR could be calculated us-ing the minimum value of upper limit minus the maximum value of lower limit. [Re-sult] Compared with original NLWR or least limiting water range (LLWR), the modi-fied NLWR had more practical significance. When Db〉Db-thr, soil physical properties hindered the growth of crops, so the soil should be improved; when Db〉Db-thr, soil physical properties hindered the growth of crops, so-the soil should be improved; wtlen Db〈Db-thr, as long as the soil water content is within NLWR, soil physical properties had no effect on crop growth. NLWR at this time could be used as the basis for irrigation man- agement in farmland. [Conclusion] The study provides theoretical support and scientific basis for relevant researches about evolution rule and regulatory mechanisms of soil physical quality, relationship between soil physical quality and crop growth and yield, water-fertilizer-salt management of soil.展开更多
Global food security is threatened by rice blast disease caused by the filamentous fungus Magnaporthe oryzae.An understanding of rice resistance mechanisms is fundamental to developing strategies for disease control.I...Global food security is threatened by rice blast disease caused by the filamentous fungus Magnaporthe oryzae.An understanding of rice resistance mechanisms is fundamental to developing strategies for disease control.In this review,we summarize recent advances in pathogen-associated molecular pattern-triggered immunity,effector-triggered immunity,defense regulator-mediated immunity,and effects of nutrient elements on rice blast resistance.We outline strategies used for breeding rice cultivars with improved disease resistance.We also present the major research challenges for rice blast disease resistance and propose approaches for future investigation.展开更多
One hundred and thirty-eight rice accessions were screened for resistance to the small brown planthopper (SBPH) (Laodelphax striatellus Fallen) by the modified seedbox screening test. Twenty-five rice accessions w...One hundred and thirty-eight rice accessions were screened for resistance to the small brown planthopper (SBPH) (Laodelphax striatellus Fallen) by the modified seedbox screening test. Twenty-five rice accessions with different levels of resistance to SBPH were detected, accounting for 18.1% of the total accessions, which included 2 highly resistant, 9 resistant and 14 moderately resistant varieties. Compared with indica rice, japonica rice was more susceptible to SBPH. Antixenosis test, antibiosis test and correlation analysis were performed to elucidate the resistance mechanism. The resistant check Rathu Heenati (RHT), highly resistant varieties Mudgo and Kasalath, and resistant variety IR36 expressed strong antixenosis and antibiosis against SBPH, indicating the close relationship between resistance level and these two resistance mechanisms in the four rice varieties. Antibiosis was the dominant resistance pattern in the resistant varieties Daorenqiao and Yangmaogu due to their high antibiosis but low antixenosis. Dular, ASD7 and Milyang 23 had relatively strong antixenosis and antibiosis, indicating the two resistance mechanisms were significant in these three varieties. The resistant DV85 expressed relatively high level of antixenosis but low antibiosis, whereas Zhaiyeqing 8 and Guiyigu conferred only moderate antibiosis and antixenosis to SBPH, suggesting tolerance in these three varieties. Antibiosis and antixenosis governed the resistance to SBPH in the moderately resistant accession 9311. Antixenosis was the main resistance type in V20A. Tolerance was considered to be an important resistance mechanism in Minghui 63 and Yangjing 9538 due to their poor antibiosis and antixenosis resistance. The above accessions with strong antibiosis or antixenosis were the ideal materials for the resistance breeding.展开更多
This article was to study the potential resistance mechanism of three different wheat varieties (Ww2730, Xiaoyan 22 and Batis) in the seedling stage to Sitobion avenae. The aphid feeding behavior was ascertained by ...This article was to study the potential resistance mechanism of three different wheat varieties (Ww2730, Xiaoyan 22 and Batis) in the seedling stage to Sitobion avenae. The aphid feeding behavior was ascertained by stylet penetration activities monitoring using the electrical penetration graph (EPG) technique. When the aphids feed on Ww2730 seedlings, the time for the 1st duration probing was later than that on Xiaoyan 22 and Batis significantly, and the number of interrupted probing before the 1st duration probing was more than that on Xiaoyan 22 and Batis significantly, and the 1st duration probing was shorter than that on Xiaoyan 22 and Batis significantly. The durations of the stylet pierce from the extra- to the intra-cellular (pd Ⅱ-1) on Ww2730 and Xiaoyan 22 were longer than those on Batis significantly. The duration of the potential drop (pd) in C wave on Ww2730 was longer than that on Xiaoyan 22 and Batis significantly. The times and duration of the G wave (ingestion in xylem) on Ww2730 were more and longer than those on Xiaoyan 22 and Batis significantly. The times of spot G wave on Batis was more than that on Ww2730 significantly, but the duration of spot G was shorter than that on Xiaoyan 22 and Ww2730 significantly. The total time of E1 wave, the longest duration of E1 fractions, and the mean duration time of E1 fractions that followed E2 wave on Xiaoyan 22 and Batis were all significantly longer than those on Ww2730. There was no difference of the mean duration of the 1st E1 wave on the 3 varieties, but the mean durations of other E1 wave on Ww2730 and Xiaoyan 22 were shorter than those on Batis significantly. The other wave parameters, including times and durations of F and E2 were all not different on the 3 wheat varieties. It is suggested that the resistance mechanism of wheat variety Ww2730 to S. avenae is a restriction factor of feeding in epidermis, the thicker cell wall in mesophyll, and secondary metabolites or nutrition unbalance in phloem in the seedling phase. The resistance mechanism of Xiaoyan 22 is thicker cell wall and more cell layer in mesophyll in the seedling phase. The feeding strategy of S. avenae against the resistance of Ww2730 was to shorten the second duration of secrete watery salivation to xylem than the first.展开更多
基金The Youth Talent Supporting Project of China Association for Science and Technology(2016010103)The International Exchange and Cooperation Project of Ministry of Agriculture“Conservation of Globally Important Agricultural Heritage Systems(GIAHS)in China in 2016”
文摘The Hani Rice Terraces System is one of the Globally Important Agricultural Heritage Systems(GIAHS) sites which can successfully resist extreme droughts.The reason is not only that the forests and terraces have the important function of water conservation,which provide and conserve adequate water resources for this complex ecosystem,but also that Hani traditional ecological knowledge plays an important role in the drought-resistance process.In this paper,drought-resistant mechanisms of the Hani Rice Terraces System have been analyzed first,then Hani traditional ecological knowledge has been analyzed based on a comprehensive literature review,a questionnaire survey and key informant interviews.The results show that the Hani nationality has developed knowledge of water management techniques,including water conserving construction,water allocation and ditch management.The Hani people are also highly conscious of water resources protection.There is a good deal of forest resource management knowledge and worship of forests,which have effectively helped in protecting the forest ecological system.In the reclamation and maintenance of Hani terraced fields,the Hani people have developed a series of farming systems,which have effectively protected the terrace ecosystem.Through analyzing this knowledge of water management,forest resource management and Hani terraced fields management,our paper confirms the important role that traditional ecological knowledge plays in maintaining stability of the system and realizing the efficient use of water resource.This is not only helpful for preserving cultural heritage,but is vital for protecting the Hani Rice Terraces System as a whole.
文摘To study the resistant mechanisms of cisplatin in human lung adenocarcinoma cell line A 549 DDP. A 549 DDP cells was established by stepwise increasing concentration of cisplatin (CDDP) in medium. Interstrand cross linked DNA (ICL) was measured by ethidium bromide fluorescence assay. The intracellular and intranuclear accumulation of cisplatin was measured by atomic absorption spectrometry. The removal of GS X was determined by FCM and fluorescence microscopy. Results: The A 549 DDP cell line was 8.9 fold resistance relative to the parental A 549 cell line. The formation of ICL in A 549 was 6.28 times higher than that in A 549 DDP cells. The intracellular and intranuclear accumulation of cisplatin in A 549 cells was 5.9 times and 4.1 times higher than that in A 549 DDP cells, respectively. The ability of GS X pump pumped GS X complex (GS Pt) in A 549 DDP cells was higher than that in A 549 . The repair rate in A 549 DDP cells was 2 times higher than that in A 549 . Conclusions: Decreased accumulation and increased export of cisplatin might be the main mechanism of cisplatin resistant A 549 DDP cells while the enhanced repair capacity of DNA may play a role in CDDP resistance.
基金This study received support for Open Access Publikationskosten from the DFG.
文摘Ovarian cancer is among the most lethal gynecological cancers,primarily due to the lack of specific symptoms leading to an advanced-stage diagnosis and resistance to chemotherapy.Drug resistance(DR)poses the most significant challenge in treating patients with existing drugs.The Food and Drug Administration(FDA)has recently approved three new therapeutic drugs,including two poly(ADP-ribose)polymerase(PARP)inhibitors(olaparib and niraparib)and one vascular endothelial growth factor(VEGF)inhibitor(bevacizumab)for maintenance therapy.However,resistance to these new drugs has emerged.Therefore,understanding the mechanisms of DR and exploring new approaches to overcome them is crucial for effective management.In this review,we summarize the major molecular mechanisms of DR and discuss novel strategies to combat DR.
文摘Chlamydia Trachomatis (C.T.) is one of the most common pathogens of human sexually transmitted diseases. Treatment of C.T. infection primarily depends on Tetracyclines, Macrolides and Quinolones, but with the wide use of antibiotics an increasing number of drug-resistant Chlamydia trachomatis cases have been reported. This review summarizes the resistant conditions and the possible resistance mechanisms of C.T..
基金supported by the Scientific Research Projects Unit of Mustafa Kemal University,Hatay,Turkey(Project no:47)
文摘Objective: To investigate the antimicrobial susceptibility of 97 clinical Staphylococcus aureus(S. aureus) strains against 14 antimicrobials and corresponding resistance mechanisms.Methods: The antimicrobial susceptibility of the isolates was determined using a disk diffusion method and antimicrobial resistance genes were screened by polymerase chain reaction. Mutations responsible for ciprofloxacin and rifampicin resistance were investigated by polymerase chain reaction and DNA sequencing.Results: All isolates were found to be susceptible to vancomycin. Various rates of resistance to penicillin(83.5%), ampicillin(77.3%), erythromycin(63.9%), tetracycline(16.5%), amoxicillin/clavulanic acid(16.5%), ciprofloxacin(15.5%), trimethoprim/sulfamethoxazole(15.5%), oxacillin(13.4%), fusidic acid(12.4%), rifampin(6.2%), clindamycin(6.2%), gentamicin(6.2%) and mupirocin(5.2%) were determined. In addition,different combinations of resistance genes were identified among resistant isolates.Ciprofloxacin resistant isolates had mutations in codon 84(Ser84 Leu) and 106(Gly106 Asp) in the gyr A gene. Mutations in grl A were mostly related to Ser80 Phe substitution. Leu466 Ser mutation in the rpo B gene was detected in all rifampin resistant isolates. All methicillin resistant S. aureus isolates were SCCmec type V.Conclusions: In conclusion, it was determined that the isolates were resistant to different classes of antimicrobials at varying rates and resistance was mediated by different genetic mechanisms. Therefore, continuous monitoring of resistance in S. aureus strains is necessary to control their resistance for clinically important antimicrobials.
基金supported by the National Key Research and Development Program of China (2017YFC1200200)Major Infectious Diseases such as AIDS and Viral Hepatitis Prevention and Control Technology Major Projects (2018ZX10712-001)+1 种基金National Natural Science Foundation of China (81702045 and 81902030)Shenzhen Basic Research projects (JCYJ20190807144409307)
文摘Carbapenem resistance presents a major challenge for the global public health network, as clinical infections caused by carbapenem-resistant organisms(CRO) are frequently associated with significant morbidity and mortality. Ceftazidime–avibactam(CAZ–AVI) is a novel cephalosporin/β-lactamase inhibitor combination offering an important advance in the treatment of CRO infections. CAZ–AVI has been reported to inhibit the activities of Ambler classes A, C, and some class D enzymes. However, bacterial resistance has been emerging shortly after the introduction of this combination in clinical use, with an increasing trend. Understanding these resistance mechanisms is crucial for guiding the development of novel treatments and aiding in the prediction of underlying resistance mechanisms. This review aims to systematically summarize the epidemiology of CAZ–AVI-resistant strains and recently identified resistance mechanisms of CAZ–AVI, with a focus on the production of β-lactamase variants, the hyperexpression of β-lactamases, reduced permeability, and overexpressed efflux pumps. The various mechanisms of CAZ–AVI resistance that have emerged within a short timescale emphasize the need to optimize the use of current agents, as well as the necessity for the surveillance of CAZ–AVI-resistant pathogens.
基金supported by the Science and Technology Program of Sichuan Province,China(No.2013GZX0146)
文摘The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project.
文摘The sensitivity of a susceptible and two resistant strains of cotton bollworm, Helicoverpa armigera, to phoxim, malathion and methomyl was determined by a topical application of bioassay method. YG strain, collected from field of Yanggu, Shandong Province of China, possessed 7-, 13- and 20-fold of resistance to the above three antiacetylcholinesterases based on the comparison of LD50 values with a laboratory susceptible strain. There were not significant difference of the specific activity and the Vmax value among the three strains. But the affinity of AChE tO acetylthiocholine (ATCh), in YG strain was the lowest among the three strains tested. A cDNA encoding partial AChE gene was cloned from the three strains by RT-PCR and there was one nucleotide acid difference between YG strain and other two strains which resulted in no amino acid mutation. This partial AChE gene was used as a probe to perform Southern blot. The results indicated that there was no gene amplification in resistant cotton bollworm. Altered AChE with a decreased sensitivity to inhibitors appeared to be one of important resistance mechanisms in cotton bollworm against OP and carbamate compounds.
基金Financial supports from the National Natural Science Foundation of China(Nos.51474165 and 51204126)
文摘The microporous corundum material was prepared using alumina micro-powder as the main raw material, alumina sol and starch as binders by a wet process, achieving the bulk density of 3.05 g · cm^-3, the apparent porosity of 9. 1%, the closed porosity of 12.3%, the median pore diameter of 0. 43 μm, and the thermal conductivity of 6. 5 W· m^-1· K^-1 at 800 ℃ which is 41.6% lower than that of common corundum. The slag resistance of the microporous corundum material was studied by immersion and compared with that of the common corundum aggregate, and the slag resistant mechanism of microporous corundum material was revealed. The results show that the slag resistance of the microporous corundum material is superior to that of the common corundum aggregate, the SEM and EDX show that on the reaction interface between microporous corundum and molten, slag, a continuous isolation layer with a large quantity of CA2 and CA6 columnar crystals is formed; while the common corundum aggregate reacts with the molten slag interface to form a discontinuous isolation layer of columnar crystals, through which a lot of molten slag corrodes or permeates into the aggregate. The mechanism is mainly that the microporous structure is more advantageous to nucleation and growth of CA2 and CA6 columnar crystals; in the reaction with the aggregate, the molten slag gets saturated and the critical solution thickness of the microporous corundum and the common corundum is 0. 16 μm and 0. 34 μm, respectively, this is caused by the smaller microporous corundum aggregate pores; and the smaller pores also increase the second phase ripening rate of microporous corundum, which is 9. 7 times of that of the common corundum.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60921062)
文摘With the progress of the semiconductor industry,the resistive random-access memory(RAM) has drawn increasing attention.The discovery of the memristor has brought much attention to this study.Research has focused on the resistive switching characteristics of different materials and the analysis of resistive switching mechanisms.We discuss the resistive switching mechanisms of different materials in this paper and analyze the differences of those mechanisms from the view point of circuitry to establish their respective circuit models.Finally,simulations are presented.We give the prospect of using different materials in resistive RAM on account of their resistive switching mechanisms,which are applied to explain their resistive switchings.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1832116 and 51772112)Fundamental Research Funds for the Central Universities,China(Grant No.HUST:2016YXZD058).
文摘Memristive devices have attracted intensive attention in developing hardware neuromorphic computing systems with high energy efficiency due to their simple structure,low power consumption,and rich switching dynamics resembling biological synapses and neurons in the last decades.Fruitful demonstrations have been achieved in memristive synapses neurons and neural networks in the last few years.Versatile dynamics are involved in the data processing and storage in biological neurons and synapses,which ask for carefully tuning the switching dynamics of the memristive emulators.Note that switching dynamics of the memristive devices are closely related to switching mechanisms.Herein,from the perspective of switching dynamics modulations,the mainstream switching mechanisms including redox reaction with ion migration and electronic effect have been systemically reviewed.The approaches to tune the switching dynamics in the devices with different mechanisms have been described.Finally,some other mechanisms involved in neuromorphic computing are briefly introduced.
文摘Gram-negative bacilli Pseudomonas aeruginosa is an important pathogen in hospitalized patients, contributing to their morbidity and mortality due to its multiple resistance mechanisms. Therefore, as therapeutic options become restricted, the search for new agents is a priority. Latterly an accelerated increase in frequency of multidrug-resistant clinical strains has severely limited the availability of therapeutic options. Several in vitro and in vitro studies evaluating the efficacy of different antimicrobials agents and development of vaccines against P. aeruginosa have been reported as novel approaches, such as inhibition of virulence factor expression or inhibition of their metabolic pathways.
文摘At present,the multiple drug resistance of Acinetobacter baumannii outbreaks worldwide and has intensified the trend,especially in the intensive care unit and burn ward.Generic drug resistant Acinetobacter baumannii is known as the 21st century gram-negative bacterium“MRSA”,“Superbugs”.In recent years,researches have shown that this is associated with pathogenic bacteria to form biofilms.In this paper,the status of Acinetobacter baumannii infection,biofilm formation,resistance mechanism and prevention in recent years were summarized.
基金funded by the USDA National Institute of Food and Agriculture (Hatch Grant ARZT-1360890-H31-164 and multi-state grant ARZ-T1370680-R31-172 (NC246))the National Natural Science Foundation of China (NSFC)–Henan Joint Major Grant (U2004206)+2 种基金the State Key Laboratory of Cotton Biology Open Fund, Zhengzhou University, China (CB2020A06)the Henan Agriculture Research System, China (HARS22-09-G3)the earmarked fund for China Agriculture Research System (CARS-27)
文摘Helicoverpa zea is a major target pest of pyramided transgenic crops expressing Cry1,Cry2 and/or Vip3Aa proteins from Bacillus thuringiensis(Bt)in the United States.Laboratory-selected Cry1Ac/Cry2Ab cross resistance and fieldevolved practical dual resistance of H.zea to these two toxins have been widely reported.Whether the widespread Cry1Ac/Cy2Ab dual resistance of H.zea has resulted from the selection of one shared or two independent resistance mechanisms by pyramided Bt crops remains unclear.Cadherin is a well-confirmed receptor of Cry1Ac and a suggested receptor of Cry2Ab in at least three Lepidopteran species.To test whether cadherin may serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab,we cloned H.zea cadherin(HzCadherin)cDNA and studied its functional roles in the mode of action of Cry1Ac and Cry2Ab by gain-and lossof-function analyses.Heterologous expression of HzCadherin in H.zea midgut,H.zea fat body and Sf9 cells made all three of these cell lines more susceptible to activated Cry1Ac but not activated Cry2Ab,whereas silencing HzCadherin of H.zea midgut and fat body cells significantly reduced the susceptibility to Cry1Ac but not Cry2Ab.Likewise,suppressing HzCadherin with siRNA made H.zea larvae resistant to Cry1Ac.These results clearly demonstrate that HzCadherin is not a receptor for Cry2Ab,and thus it is unlikely to serve as one shared mechanism for the cross and dual resistance of H.zea to Cry1Ac and Cry2Ab.
文摘Viral diseases are minacious with the potential for causing pandemics and treatment is complicated because of their inherent ability to mutate and become resistant to drugs. Antiviral drug resistance is a persistent problem that needs continuous attention by scientists, medical professionals, and government agencies. To solve the problem, an in-depth understanding of the intricate interplay between causes of antiviral drug resistance and potential new drugs specifically natural products is imperative in the interest and safety of public health. This review delves into natural product as reservoir for antiviral agents with the peculiar potentials for addressing the complexities associated with multi-drug resistant and emerging viral strains. An evaluation of the mechanisms underlying antiviral drug activity, antiviral drug resistance is addressed, with emphasis on production of broad-spectrum antiviral agents from natural sources. There is a need for continued natural product-based research, identification of new species and novel compounds.
文摘As an important ecological tree species in northern China, Populus simonii plays a crucial role in maintaining ecological balance and promoting environmental sustainability. The academic community has conducted a series of in-depth studies on this species, covering key areas such as genomics, survival mechanisms, and genetic breeding. Through the analysis of the genomic structure and function of P. simonii, we have not only revealed the molecular basis for its adaptation to harsh environments but also identified key genes that promote its growth and resistance to pests and diseases. Furthermore, exploring the survival mechanisms of P. simonii has deepened our understanding of its stress resistance traits, including how it effectively copes with abiotic stresses such as drought, salinization, and heavy metal pollution. In genetic breeding, significant progress has been made through the application of modern biotechnology, improving the growth rate and wood quality of P. simonii and enhancing its environmental adaptability and disease resistance. These research findings have not only enriched our knowledge of the biological characteristics of P. simonii but also provided a solid scientific foundation for its application in ecological restoration, forestry production, and environmental management.
基金Supported by National Natural Science Foundation of China(41161037,31371582)~~
文摘[Objective] The paper was to study and modify non-limiting water range (NLWR) of soil. [Method] The water content when total soil water potential was -0.3 MPa or soil mechanical resistance was 0.85 MPa was selected as the lower limit of NLWR to replace the original water content of permanent wilting point or the water content under soil mechanical resistance of 2.0 MPa. NLWR could be calculated us-ing the minimum value of upper limit minus the maximum value of lower limit. [Re-sult] Compared with original NLWR or least limiting water range (LLWR), the modi-fied NLWR had more practical significance. When Db〉Db-thr, soil physical properties hindered the growth of crops, so the soil should be improved; when Db〉Db-thr, soil physical properties hindered the growth of crops, so-the soil should be improved; wtlen Db〈Db-thr, as long as the soil water content is within NLWR, soil physical properties had no effect on crop growth. NLWR at this time could be used as the basis for irrigation man- agement in farmland. [Conclusion] The study provides theoretical support and scientific basis for relevant researches about evolution rule and regulatory mechanisms of soil physical quality, relationship between soil physical quality and crop growth and yield, water-fertilizer-salt management of soil.
基金supported by the National Natural Science Foundation of China(NSFC)(32072041)to J.Yinthe NSFC(31825022)to X.Chen+2 种基金the NSFC(31871920)to M.Hethe NSFC(32072407)to X.Zhuthe NSFC(31972258)to L.Zou。
文摘Global food security is threatened by rice blast disease caused by the filamentous fungus Magnaporthe oryzae.An understanding of rice resistance mechanisms is fundamental to developing strategies for disease control.In this review,we summarize recent advances in pathogen-associated molecular pattern-triggered immunity,effector-triggered immunity,defense regulator-mediated immunity,and effects of nutrient elements on rice blast resistance.We outline strategies used for breeding rice cultivars with improved disease resistance.We also present the major research challenges for rice blast disease resistance and propose approaches for future investigation.
文摘One hundred and thirty-eight rice accessions were screened for resistance to the small brown planthopper (SBPH) (Laodelphax striatellus Fallen) by the modified seedbox screening test. Twenty-five rice accessions with different levels of resistance to SBPH were detected, accounting for 18.1% of the total accessions, which included 2 highly resistant, 9 resistant and 14 moderately resistant varieties. Compared with indica rice, japonica rice was more susceptible to SBPH. Antixenosis test, antibiosis test and correlation analysis were performed to elucidate the resistance mechanism. The resistant check Rathu Heenati (RHT), highly resistant varieties Mudgo and Kasalath, and resistant variety IR36 expressed strong antixenosis and antibiosis against SBPH, indicating the close relationship between resistance level and these two resistance mechanisms in the four rice varieties. Antibiosis was the dominant resistance pattern in the resistant varieties Daorenqiao and Yangmaogu due to their high antibiosis but low antixenosis. Dular, ASD7 and Milyang 23 had relatively strong antixenosis and antibiosis, indicating the two resistance mechanisms were significant in these three varieties. The resistant DV85 expressed relatively high level of antixenosis but low antibiosis, whereas Zhaiyeqing 8 and Guiyigu conferred only moderate antibiosis and antixenosis to SBPH, suggesting tolerance in these three varieties. Antibiosis and antixenosis governed the resistance to SBPH in the moderately resistant accession 9311. Antixenosis was the main resistance type in V20A. Tolerance was considered to be an important resistance mechanism in Minghui 63 and Yangjing 9538 due to their poor antibiosis and antixenosis resistance. The above accessions with strong antibiosis or antixenosis were the ideal materials for the resistance breeding.
基金This study was supported financially by the Cooperation Project Foundation between the Ministries of Agriculture of Germany and China(02/03)National Natural Science Foundation of China(39970112)Youth Foundation of Northwest A&F University(080807,08080252).
文摘This article was to study the potential resistance mechanism of three different wheat varieties (Ww2730, Xiaoyan 22 and Batis) in the seedling stage to Sitobion avenae. The aphid feeding behavior was ascertained by stylet penetration activities monitoring using the electrical penetration graph (EPG) technique. When the aphids feed on Ww2730 seedlings, the time for the 1st duration probing was later than that on Xiaoyan 22 and Batis significantly, and the number of interrupted probing before the 1st duration probing was more than that on Xiaoyan 22 and Batis significantly, and the 1st duration probing was shorter than that on Xiaoyan 22 and Batis significantly. The durations of the stylet pierce from the extra- to the intra-cellular (pd Ⅱ-1) on Ww2730 and Xiaoyan 22 were longer than those on Batis significantly. The duration of the potential drop (pd) in C wave on Ww2730 was longer than that on Xiaoyan 22 and Batis significantly. The times and duration of the G wave (ingestion in xylem) on Ww2730 were more and longer than those on Xiaoyan 22 and Batis significantly. The times of spot G wave on Batis was more than that on Ww2730 significantly, but the duration of spot G was shorter than that on Xiaoyan 22 and Ww2730 significantly. The total time of E1 wave, the longest duration of E1 fractions, and the mean duration time of E1 fractions that followed E2 wave on Xiaoyan 22 and Batis were all significantly longer than those on Ww2730. There was no difference of the mean duration of the 1st E1 wave on the 3 varieties, but the mean durations of other E1 wave on Ww2730 and Xiaoyan 22 were shorter than those on Batis significantly. The other wave parameters, including times and durations of F and E2 were all not different on the 3 wheat varieties. It is suggested that the resistance mechanism of wheat variety Ww2730 to S. avenae is a restriction factor of feeding in epidermis, the thicker cell wall in mesophyll, and secondary metabolites or nutrition unbalance in phloem in the seedling phase. The resistance mechanism of Xiaoyan 22 is thicker cell wall and more cell layer in mesophyll in the seedling phase. The feeding strategy of S. avenae against the resistance of Ww2730 was to shorten the second duration of secrete watery salivation to xylem than the first.