Magnesium hydride has attracted great attention because of its high theoretical capacity and outstanding reversibility, nevertheless, its practical applications have been restricted by the disadvantages of the sluggis...Magnesium hydride has attracted great attention because of its high theoretical capacity and outstanding reversibility, nevertheless, its practical applications have been restricted by the disadvantages of the sluggish kinetics and high thermodynamic stability. In this work, an unexpected high reversible hydrogen capacity over 8.0 wt% has been achieved from MgH2 metal hydride composited with small amounts of LiBH4 and Li3AlH6 complex hydrides, which begins to release hydrogen at 276 ℃ and then completely dehydrogenates at 360 ℃. The dehydrogenated MgH2+LiBH4/Li3AlH6 composite can fully reabsorb hydrogen below 300 ℃ with an excellent cycling stability. The composite exhibits a significant reduction of dehydrogenation activation energy from 279.7 kJ/mol(primitive MgH2) to 139.3 kJ/mol(MgH2+LiBH4/Li3AlH6),as well as a remarkable reduction of dehydrogenation enthalpy change from 75.1 k J/mol H2(primitive MgH2) to 62.8 kJ/mol H2(MgH2+LiBH4/Li3AlH6). The additives of LiBH4 and Li3AlH6 not only enhance the cycling hydrogen capacity, but also simultaneously improve the reversible de/rehydrogenation kinetics, as well as the dehydrogenation thermodynamics. This notable improvement on the hydrogen absorption/desorption behaviors of the MgH2+LiBH4/Li3AlH6 composite could be attributed to the dehydrogenated products including Li3Mg7, Mg17Al12 and MgAlB4, which play a key role on reducing the dehydrogenation activation energy and increasing diffusion rate of hydrogen. Meanwhile, the LiBH4 and Li3AlH6 effectively destabilize MgH2 with a remarkable reduction on dehydrogenation enthalpy change in terms of thermodynamics. In particular, the Li3Mg7, Mg17Al12 and MgAlB4 phases can reversibly transform into MgH2, Li3AlH6 and LiBH4 after rehydrogenation, which contribute to maintain a high cycling capacity.This constructing strategy can further promote the development of high reversible capacity Mg-based materials with suitable de/rehydrogenation properties.展开更多
Biomass-derived carbon materials for lithiumion batteries emerge as one of the most promising anodes from sustainable perspective.However,improving the reversible capacity and cycling performance remains a long-standi...Biomass-derived carbon materials for lithiumion batteries emerge as one of the most promising anodes from sustainable perspective.However,improving the reversible capacity and cycling performance remains a long-standing challenge.By combining the benefits of K2CO_(3) activation and KMnO_(4) hydrothermal treatment,this work proposes a two-step activation method to load MnO_(2) charge transfer onto biomass-derived carbon(KAC@MnO_(2)).Comprehensive analysis reveals that KAC@MnO_(2) has a micro-mesoporous coexistence structure and uniform surface distribution of MnO_(2),thus providing an improved electrochemical performance.Specifically,KAC@MnO_(2) exhibits an initial chargedischarge capacity of 847.3/1813.2 mAh·g^(-1) at 0.2 A·g^(-1),which is significantly higher than that of direct pyrolysis carbon and K2CO_(3) activated carbon,respectively.Furthermore,the KAC@MnO_(2) maintains a reversible capacity of 652.6 mAh·g^(-1) after 100 cycles.Even at a high current density of 1.0 A·g^(-1),KAC@MnO_(2) still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g^(-1) after 500 cycles.Compared with reported biochar anode materials,the KAC@MnO_(2) prepared in this work shows superior reversible capacity and cycling performance.Additionally,the Li+insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the chargedischarge process,helping us better understand the energy storage mechanism of KAC@MnO_(2).展开更多
Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE...Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.展开更多
On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on a-Fe_2O_3 has been gradually fastened on as promising anodes materia...On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on a-Fe_2O_3 has been gradually fastened on as promising anodes materials toward lithium-ion batteries(LIBs). A high-performance anode for LIBs based on α-Fe_2O_3 nanoplates have been selectively prepared. The α-Fe_2O_3 nanoplates can be synthesized with iron ionbased ionic liquid as iron source and template. The α-Fe_2O_3 nanoplates as the anode of LIBs can display high capacity of around1950 mAh g^(-1) at 0.5 A g^(-1) which have exceeded the theoretical capacity of α-Fe_2O_3. On account of unique nanoplate structures and gum arabic as binder, the α-Fe_2O_3 nanoplates also exhibit high rate capability and excellent cycling performance.展开更多
The raw carbon nanotubes (CNTs) prepared by chemical vapor deposition (CVD) were used in electrochemical lithiation. To remove the impurity the mild oxidation was done on the samples. The electrochemical characteristi...The raw carbon nanotubes (CNTs) prepared by chemical vapor deposition (CVD) were used in electrochemical lithiation. To remove the impurity the mild oxidation was done on the samples. The electrochemical characteristics of the two samples are investigated by the galvanostatic charge-discharge measurements and cyclic voltammetry. The structural and interfacial changes of the CNTs electrode were analyzed by XRD and FT-IR. The samples show a reversibility of lithium intercalation and de-intercalation. The reversible capacities of the first five cycles are larger than 300 mAh/g and the irreversible capacity of the first cycle was much larger than that mentioned in literatures. There is no identical change in the structure during the charge and discharge. The reactions at the interface between electrode and the electrolyte are similar to those of other carbonaceous materials.展开更多
Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspbe...Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspberry shaped nanostructures consist of original oriented aggregates of Fe(3–x)O4 magnetite nanocrystals, ensuring a low oxidation state of magnetite and a hollow and porous structure, which has been easily combined with graphene sheets. The resulting nanocomposite powder displays a very homogeneous spatial distribution of Fe(3–x)O4 nanostructures at the surface of the graphene sheets. These original nanostructures and their strong interaction with the graphene sheets resulted in very small capacity fading upon Li+ion intercalation. Reversible capacity, as high as 660 m Ah/g, makes this material promising for anode in Li-ion batteries application.展开更多
Compared with conventional graphite anode,hard carbons have the potential to make reversible lithium storage below 0 V accessible due to the formation of dendrites is slow.However,under certain conditions of high curr...Compared with conventional graphite anode,hard carbons have the potential to make reversible lithium storage below 0 V accessible due to the formation of dendrites is slow.However,under certain conditions of high currents and lithiation depths,the irreversible plated lithium occurs and then results in the capacity losses.Herein,we systematically explore the true reversibility of hard carbon anodes below 0 V.We identify the lithiation boundary parameters that control the reversible capacity of hard carbon anodes.When the boundary capacity is controlled below 400 mAh g−1 with current density below 50 mA g−1,no lithium dendrites are observed during the lithiation process.Compared with the discharge cut-off voltage to 0 V,this boundary provides a nearly twice reversible capacity with the capacity retention of 80%after 172 cycles.The results of characterization and finite element model reveal that the large reversible capacity below 0 V of hard carbon anodes is mainly benefited from the dual effect of lithium intercalation and reversible lithium film.After the lithium intercalation,the over-lithiation induces the quick growth of lithium dendrites,worsening the electrochemical irreversibility.This work enables insights of the potentially low-voltage performance of hard carbons in lithium-ion batteries.展开更多
MgH_(2),as one of the typical solid-state hydrogen storage materials,has attracted extensive attention.However,the slow kinetics and poor cycle stability limit its application.In this work,LiBH_(4) and YNi_(5) alloy w...MgH_(2),as one of the typical solid-state hydrogen storage materials,has attracted extensive attention.However,the slow kinetics and poor cycle stability limit its application.In this work,LiBH_(4) and YNi_(5) alloy were co-added as additives to MgH_(2) via ball milling,thereby realizing an excellent dehydrogenation per-formance and good cycle stability at 300 ℃.The MgH_(2)-0.04LiBH_(4)-0.01YNi_(5) composite can release 7 wt.%of hydrogen in around 10 min at 300 ℃ and still have a reversible hydrogen storage capacity of 6.42 wt.%after 110 cycles,with a capacity retention rate as high as 90.3%based on the second dehydrogenation capacity.The FTIR results show that LiBH_(4) can reversibly absorb and desorb hydrogen throughout the hydrogen ab/desorption process,which contributes a portion of the reversible hydrogen storage capacity to the MgH_(2)-0.04LiBH_(4)-0.01YNi_(5) composite.Due to the small amount of LiBH_(4) and YNi_(5),the dehydro-genation activation energy of MgH_(2) did not decrease significantly,nor did the dehydrogenation enthalpy(△H)change.However,the MgNi3B2 and in-situ formed YH3 during the hydrogen absorption/desorption cycles is not only beneficial to the improvement of the kinetics performance for MgH_(2) but also improves its cycle stability.This work provides a straightforward method for developing high reversible hydrogen capacity on Mg-based hydrogen storage materials with moderate kinetic performance.展开更多
Heterostructure engineering by coupling different nanocrystals has received extensive attention because it can enhance the reaction kinetics of the anode of sodium-ion batteries(SIBs).However,constructing high-quality...Heterostructure engineering by coupling different nanocrystals has received extensive attention because it can enhance the reaction kinetics of the anode of sodium-ion batteries(SIBs).However,constructing high-quality heterostructure anode materials through green and environmentally friendly methods remains a challenge.Herein,we have proposed a simple one-step method by recycling the electronic waste metal materials to synthesize the Cu_(1.94)S/ZnS heterostructure materials.Combined with the experimental analysis and first principle calculations,we find that the synergistic effect of different components in heterostructure structures can significantly enhance the reversible capacity and rate performance of anode materials.Based on the constructed Cu_(1.94)S/ZnS anode,we obtain a superior reversible capacity of 440 mAh·g^(-1) at 100 mA·g^(-1) and 335 mAh·g^(-1) after 3000 cycles at 2000 mA·g^(-1).Our work sheds new light on designing high-rate and capacity anodes for SIBs through the greenness synthesis method.展开更多
Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge t...Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions.Herein,we present hard carbon microtubes(HCTs)with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs.The resulted HCTs feature with smaller surface area and shorter Na+diffusion path benefitting from their unique micro-nano structure.Most importantly,the wall thickness of HCTs could be regulated and controlled by the carbonization temperature.At a high temperature of 1,600℃,the carbonized HCTs possess the smallest wall thickness,which reduces the diffusion barrier of Na+and enhances the reversibility Na+storage.As a result,the 1600HCTs deliver a high initial Coulombic efficiency of 90%,good cycling stability(89.4%of capacity retention over 100 cycles at 100 mA·g^(−1)),and excellent rate capacity.This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage.展开更多
Ginkgo leave, a naturally abundant resource, has been successfully employed as the raw material to prepare ni- trogen doped porous carbon (NDPC) materials. The preparation of the porous carbon does not involve assis...Ginkgo leave, a naturally abundant resource, has been successfully employed as the raw material to prepare ni- trogen doped porous carbon (NDPC) materials. The preparation of the porous carbon does not involve assistance of any activation or template technique. The as-obtained NDPC shows favorable features for electrochemical energy storage, which can not only provide multiple sites for the storage and insertion of Li ions, but also facilitate rapid mass transport of electrons and Li ions. As a result, the NDPC when evaluated as an anode material for lithium ion batteries delivers high reversible capacity (505 mAh·g-1 at 0.1 C), excellent rate capability (190 mAh·g-1 at 10 C). These favorable properties suggest that the NDPC can be a promising anode material for lithium ion batteries (LIBs).展开更多
基金the financial supports for this research from the National Basic Research Program of China(2019YFB1505103)the National Natural Science Foundation of China(51571179 and 51671173)the Open Fund of the Guangdong Provincial Key Laboratory of Advance Energy Storage Materials。
文摘Magnesium hydride has attracted great attention because of its high theoretical capacity and outstanding reversibility, nevertheless, its practical applications have been restricted by the disadvantages of the sluggish kinetics and high thermodynamic stability. In this work, an unexpected high reversible hydrogen capacity over 8.0 wt% has been achieved from MgH2 metal hydride composited with small amounts of LiBH4 and Li3AlH6 complex hydrides, which begins to release hydrogen at 276 ℃ and then completely dehydrogenates at 360 ℃. The dehydrogenated MgH2+LiBH4/Li3AlH6 composite can fully reabsorb hydrogen below 300 ℃ with an excellent cycling stability. The composite exhibits a significant reduction of dehydrogenation activation energy from 279.7 kJ/mol(primitive MgH2) to 139.3 kJ/mol(MgH2+LiBH4/Li3AlH6),as well as a remarkable reduction of dehydrogenation enthalpy change from 75.1 k J/mol H2(primitive MgH2) to 62.8 kJ/mol H2(MgH2+LiBH4/Li3AlH6). The additives of LiBH4 and Li3AlH6 not only enhance the cycling hydrogen capacity, but also simultaneously improve the reversible de/rehydrogenation kinetics, as well as the dehydrogenation thermodynamics. This notable improvement on the hydrogen absorption/desorption behaviors of the MgH2+LiBH4/Li3AlH6 composite could be attributed to the dehydrogenated products including Li3Mg7, Mg17Al12 and MgAlB4, which play a key role on reducing the dehydrogenation activation energy and increasing diffusion rate of hydrogen. Meanwhile, the LiBH4 and Li3AlH6 effectively destabilize MgH2 with a remarkable reduction on dehydrogenation enthalpy change in terms of thermodynamics. In particular, the Li3Mg7, Mg17Al12 and MgAlB4 phases can reversibly transform into MgH2, Li3AlH6 and LiBH4 after rehydrogenation, which contribute to maintain a high cycling capacity.This constructing strategy can further promote the development of high reversible capacity Mg-based materials with suitable de/rehydrogenation properties.
基金supported by the National Natural Science Foundation of China(Grant No.22078278)Hunan Innovative Talent Project(Grant No.2022RC1111)+1 种基金the Key project of Hunan Provincial Education Department(Grant No.22A0131)the State Key Laboratory of Clean Energy Utilization(Open Fund Project No.ZJUCEU2021009).
文摘Biomass-derived carbon materials for lithiumion batteries emerge as one of the most promising anodes from sustainable perspective.However,improving the reversible capacity and cycling performance remains a long-standing challenge.By combining the benefits of K2CO_(3) activation and KMnO_(4) hydrothermal treatment,this work proposes a two-step activation method to load MnO_(2) charge transfer onto biomass-derived carbon(KAC@MnO_(2)).Comprehensive analysis reveals that KAC@MnO_(2) has a micro-mesoporous coexistence structure and uniform surface distribution of MnO_(2),thus providing an improved electrochemical performance.Specifically,KAC@MnO_(2) exhibits an initial chargedischarge capacity of 847.3/1813.2 mAh·g^(-1) at 0.2 A·g^(-1),which is significantly higher than that of direct pyrolysis carbon and K2CO_(3) activated carbon,respectively.Furthermore,the KAC@MnO_(2) maintains a reversible capacity of 652.6 mAh·g^(-1) after 100 cycles.Even at a high current density of 1.0 A·g^(-1),KAC@MnO_(2) still exhibits excellent long-term cycling stability and maintains a stable reversible capacity of 306.7 mAh·g^(-1) after 500 cycles.Compared with reported biochar anode materials,the KAC@MnO_(2) prepared in this work shows superior reversible capacity and cycling performance.Additionally,the Li+insertion and de-insertion mechanisms are verified by ex situ X-ray diffraction analysis during the chargedischarge process,helping us better understand the energy storage mechanism of KAC@MnO_(2).
基金the financial support from the National Nature Science Foundation of China(No.U20A20249)the National Key Research and Development Program of China(2021YFB3800300)the Shenzhen Science and Technology Innovation Commission(KCXST20221021111216037)。
文摘Sodium-ion batteries(SIBs)are expected to offer affordability and high energy density for large-scale energy storage system.However,the commercial application of SIBs is hurdled by low initial coulombic efficiency(ICE),continuous Na loss during long-term operation,and low sodium-content of cathode materials.In this scenario,presodiation strategy by introducing an external sodium reservoir has been rationally proposed,which could supplement additional sodium ions into the system and thereby markedly improve both the cycling performance and energy density of SIBs.In this review,the significance of presodiation is initially introduced,followed by comprehensive interpretation on technological properties,underlying principles,and associated approaches,as well as our perspectives on present inferiorities and future research directions.Overall,this contribution outlines a distinct pathway towards the presodiation methodology,of significance but still in its nascent phase,which may inspire the targeted guidelines to explore new chemistry in this field.
基金financially supported by the National Natural Science Foundation of China (No.21506081,21506077)Jiangsu University Scientific Research Funding (15JDG048)+1 种基金Chinese Postdoctoral Foundation (2016M590420)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on a-Fe_2O_3 has been gradually fastened on as promising anodes materials toward lithium-ion batteries(LIBs). A high-performance anode for LIBs based on α-Fe_2O_3 nanoplates have been selectively prepared. The α-Fe_2O_3 nanoplates can be synthesized with iron ionbased ionic liquid as iron source and template. The α-Fe_2O_3 nanoplates as the anode of LIBs can display high capacity of around1950 mAh g^(-1) at 0.5 A g^(-1) which have exceeded the theoretical capacity of α-Fe_2O_3. On account of unique nanoplate structures and gum arabic as binder, the α-Fe_2O_3 nanoplates also exhibit high rate capability and excellent cycling performance.
文摘The raw carbon nanotubes (CNTs) prepared by chemical vapor deposition (CVD) were used in electrochemical lithiation. To remove the impurity the mild oxidation was done on the samples. The electrochemical characteristics of the two samples are investigated by the galvanostatic charge-discharge measurements and cyclic voltammetry. The structural and interfacial changes of the CNTs electrode were analyzed by XRD and FT-IR. The samples show a reversibility of lithium intercalation and de-intercalation. The reversible capacities of the first five cycles are larger than 300 mAh/g and the irreversible capacity of the first cycle was much larger than that mentioned in literatures. There is no identical change in the structure during the charge and discharge. The reactions at the interface between electrode and the electrolyte are similar to those of other carbonaceous materials.
基金supported by the funding from the European Research Council(ERCAdvanced Grant,ERC-2011-AdG,Project 291543-IONACES)+2 种基金the Materials Institute Carnot Alsace(MICA)from the Direction Générale de l’Armement(DGA)French-German Research Institute of Saint-Louis(ISL)
文摘Fe(3–x)O4 raspberry shaped nanostructures/graphene nanocomposites were synthesized by a one-step polyol-solvothermal method to be tested as electrode materials for Li-ion battery(LIB). Indeed, Fe(3–x)O4 raspberry shaped nanostructures consist of original oriented aggregates of Fe(3–x)O4 magnetite nanocrystals, ensuring a low oxidation state of magnetite and a hollow and porous structure, which has been easily combined with graphene sheets. The resulting nanocomposite powder displays a very homogeneous spatial distribution of Fe(3–x)O4 nanostructures at the surface of the graphene sheets. These original nanostructures and their strong interaction with the graphene sheets resulted in very small capacity fading upon Li+ion intercalation. Reversible capacity, as high as 660 m Ah/g, makes this material promising for anode in Li-ion batteries application.
基金This work gratefully acknowledges the support of National Key Research and Development(R&D)Program of China(grant No.2020YFB1505800)National Science Foundation for Excellent Young Scholars of China(grant No.2192285)+2 种基金the Youth Innovation Promotion Association of CAS(grant No.2019178)Research and Development Project of Key Core and Common Technology of Shanxi Province(grant No.2020xxx014)Key Research and Development(R&D)Projects of Shanxi Province(grant No.202102040201003).
文摘Compared with conventional graphite anode,hard carbons have the potential to make reversible lithium storage below 0 V accessible due to the formation of dendrites is slow.However,under certain conditions of high currents and lithiation depths,the irreversible plated lithium occurs and then results in the capacity losses.Herein,we systematically explore the true reversibility of hard carbon anodes below 0 V.We identify the lithiation boundary parameters that control the reversible capacity of hard carbon anodes.When the boundary capacity is controlled below 400 mAh g−1 with current density below 50 mA g−1,no lithium dendrites are observed during the lithiation process.Compared with the discharge cut-off voltage to 0 V,this boundary provides a nearly twice reversible capacity with the capacity retention of 80%after 172 cycles.The results of characterization and finite element model reveal that the large reversible capacity below 0 V of hard carbon anodes is mainly benefited from the dual effect of lithium intercalation and reversible lithium film.After the lithium intercalation,the over-lithiation induces the quick growth of lithium dendrites,worsening the electrochemical irreversibility.This work enables insights of the potentially low-voltage performance of hard carbons in lithium-ion batteries.
基金National Natural Science Foundation of China(Nos.52271213 and 52271221).
文摘MgH_(2),as one of the typical solid-state hydrogen storage materials,has attracted extensive attention.However,the slow kinetics and poor cycle stability limit its application.In this work,LiBH_(4) and YNi_(5) alloy were co-added as additives to MgH_(2) via ball milling,thereby realizing an excellent dehydrogenation per-formance and good cycle stability at 300 ℃.The MgH_(2)-0.04LiBH_(4)-0.01YNi_(5) composite can release 7 wt.%of hydrogen in around 10 min at 300 ℃ and still have a reversible hydrogen storage capacity of 6.42 wt.%after 110 cycles,with a capacity retention rate as high as 90.3%based on the second dehydrogenation capacity.The FTIR results show that LiBH_(4) can reversibly absorb and desorb hydrogen throughout the hydrogen ab/desorption process,which contributes a portion of the reversible hydrogen storage capacity to the MgH_(2)-0.04LiBH_(4)-0.01YNi_(5) composite.Due to the small amount of LiBH_(4) and YNi_(5),the dehydro-genation activation energy of MgH_(2) did not decrease significantly,nor did the dehydrogenation enthalpy(△H)change.However,the MgNi3B2 and in-situ formed YH3 during the hydrogen absorption/desorption cycles is not only beneficial to the improvement of the kinetics performance for MgH_(2) but also improves its cycle stability.This work provides a straightforward method for developing high reversible hydrogen capacity on Mg-based hydrogen storage materials with moderate kinetic performance.
基金supported by the National Natural Science Foundation of China(No.22275148)the Fundamental Research Funds for the Central Universities(No.D5000220443)+1 种基金Natural Science Foundation of Chongqing(No.CSTB2023NSCQMSX0538)China and Young Talent Fund of Association for Science and Technology in Shaanxi,China.
文摘Heterostructure engineering by coupling different nanocrystals has received extensive attention because it can enhance the reaction kinetics of the anode of sodium-ion batteries(SIBs).However,constructing high-quality heterostructure anode materials through green and environmentally friendly methods remains a challenge.Herein,we have proposed a simple one-step method by recycling the electronic waste metal materials to synthesize the Cu_(1.94)S/ZnS heterostructure materials.Combined with the experimental analysis and first principle calculations,we find that the synergistic effect of different components in heterostructure structures can significantly enhance the reversible capacity and rate performance of anode materials.Based on the constructed Cu_(1.94)S/ZnS anode,we obtain a superior reversible capacity of 440 mAh·g^(-1) at 100 mA·g^(-1) and 335 mAh·g^(-1) after 3000 cycles at 2000 mA·g^(-1).Our work sheds new light on designing high-rate and capacity anodes for SIBs through the greenness synthesis method.
基金supported by the Natural Science Research Project for Universities in Anhui Province(No.KJ2021ZD0006)the Natural Science Foundation of Anhui Province(No.2208085MB21)+3 种基金the Fundamental Research Funds for the Central Universities of China(No.PA2022GDSK0056)the University Synergy Innovation Program of Anhui Province(Nos.GXXT-2020-073 and GXXT-2020-074),the National Key R&D Program of China(No.2020YFA0406103)the National Natural Science Foundation of China(Nos.21725102,91961106,91963108,and 22175165)Singapore National Research Foundation under NRF RF Award No.Tier 12017-T1-001-075.
文摘Sodium-ion batteries(SIBs)are considered the most up-and-coming complements for large-scale energy storage devices due to the abundance and cheap sodium.However,due to the bigger radius,it is still a great challenge to develop anode materials with suitable space for the intercalation of sodium ions.Herein,we present hard carbon microtubes(HCTs)with tunable apertures derived from low-cost natural kapok fibers via a carbonization process for SIBs.The resulted HCTs feature with smaller surface area and shorter Na+diffusion path benefitting from their unique micro-nano structure.Most importantly,the wall thickness of HCTs could be regulated and controlled by the carbonization temperature.At a high temperature of 1,600℃,the carbonized HCTs possess the smallest wall thickness,which reduces the diffusion barrier of Na+and enhances the reversibility Na+storage.As a result,the 1600HCTs deliver a high initial Coulombic efficiency of 90%,good cycling stability(89.4%of capacity retention over 100 cycles at 100 mA·g^(−1)),and excellent rate capacity.This work not only charts a new path for preparing hard carbon materials with adequate ion channels and novel tubular micro-nano structures but also unravels the mechanism of hard carbon materials for sodium storage.
文摘Ginkgo leave, a naturally abundant resource, has been successfully employed as the raw material to prepare ni- trogen doped porous carbon (NDPC) materials. The preparation of the porous carbon does not involve assistance of any activation or template technique. The as-obtained NDPC shows favorable features for electrochemical energy storage, which can not only provide multiple sites for the storage and insertion of Li ions, but also facilitate rapid mass transport of electrons and Li ions. As a result, the NDPC when evaluated as an anode material for lithium ion batteries delivers high reversible capacity (505 mAh·g-1 at 0.1 C), excellent rate capability (190 mAh·g-1 at 10 C). These favorable properties suggest that the NDPC can be a promising anode material for lithium ion batteries (LIBs).