Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binder...Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.展开更多
To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosit...To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.展开更多
The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating deg...The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).展开更多
The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperatu...The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.展开更多
The Haihe cohesive sediment, which is typical in China, is studied systematically for its basic physical and incipient motion properties. Following the requirements of dredging works in the Haihe Estuary, cohesive sed...The Haihe cohesive sediment, which is typical in China, is studied systematically for its basic physical and incipient motion properties. Following the requirements of dredging works in the Haihe Estuary, cohesive sediment samples were taken from three locations. Laboratory experiments were conducted to determine the rheological properties of these samples and to examine the incipient motion of the cohesive sediment. It is found that the cohesive sediment has an obvious yield stress tau(b), which increases with the mud density in a manner of an exponential function, and so does the viscosity parameter eta. The cohesive sediment behaves like a Bingham fluid when its density is below 1.38 similar to 1.40 g/cm(3), and when denser than these values, it may become a power-law fluid. The incipient motion experiment also revealed that the incipient velocity of the cohesive sediment increases with die density in an exponential manner. Therefore, the incipient motion is primarily related to the density, which is different from the case for non-cohesive sediment in which the incipient motion is con-elated with the diameter of sand particles instead. The incipient motion occurs in two different ways depending on the concentration of mud in the bottom. For sufficiently fine particles and a concentration lower than 1.20 g/cm(3), the cohesive sediment appears as fluidized mud, and the incipient motion is in the form of instability of an internal wave. For a higher concentration, the cohesive sediment appears as general quasi-solid-mud, and the incipient motion can be described by a series of extended Shields curves each with a different porosity for newly deposited alluvial mud.展开更多
In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃...In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.展开更多
The rheological properties of South China Sea (SCS) crude oil were studied. A group of synthetic long-chain polymers, including octadecyl acrylate-maleic anhydride bidodecyl amide copolymer (VR-D), octadecyl acryl...The rheological properties of South China Sea (SCS) crude oil were studied. A group of synthetic long-chain polymers, including octadecyl acrylate-maleic anhydride bidodecyl amide copolymer (VR-D), octadecyl acrylate-maleic anhydride bioctadecyl amide copolymer (VR-O) and octadecyl acrylate-maleic anhydride phenly amide copolymer (VR-A), were employed to serve as viscosity reducers (VRs). Their performance was evaluated by both experimental and computational methodologies. The results suggest that the SCS crude oil has low wax content yet high resin and asphaltene contents, which lead to high viscosity through formation of association structures. Additionally, the SCS crude oil appears to be a pseudoplastic fluid showing linear shear stress-shear rate dependence at low temperature. Interestingly, it gradually evolves into a Newtonian fluid with exponential relationship between shear stress and shear rate at higher temperature. Synthetic VRs demonstrate desirable and effective performance on improvement of the rheological properties of SCS crude oil. Upon the introduction of 1000ppm VR-O, which is synthesized by using octadecylamine in the aminolysis reaction, the viscosity of SCS crude oil is decreased by 44.2% at 15 ℃ and 40.2% at 40℃. The computational study suggests significant energy level increase and shear stress decrease for VR-containing crude oil systems.展开更多
Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material—layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer(DSR) test.Two typical base asphalts w...Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material—layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer(DSR) test.Two typical base asphalts were chosen and modified by 2 different LDHs contents.DSR tests were performed on the original samples,samples after exposed to outdoor and samples after the artificial accelerated UV aging tests respectively to analyze the rheological properties.It is found that when the LDHs content is between 3wt% and 5wt% of asphalt weight,the high temperature performance and fatigue resistant property of the modified asphalt become better,the UV aging resistance properties are improved.展开更多
The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique...The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique.The influences of alkalinization temperature,the feeding manner of AA or MAA on the particles size,rheological properties and carboxyl distribution of the latex were discussed,and the rheological mechanism was analyzed.The experimental results show that the PAL system has preferable viscosity and particle size when the alkalinization temperature is 50 ℃.Different distribution of carboxyl group in the particles and different resultant rheological properties are obtained by different feeding manner of AA or MAA into the system.The TEM images show that the particle is a smooth globe with carboxyl group concentrating on the surface and stabilized with electric double layer and nonionic adsorbed layer.The concentration of carboxyl functional group on the surface of particles can be achieved by the specific polymerization technique.The rheologyical properties are determined by accretion of particle volume and variation of the two phase volume ratio resulted from the carboxyl group spreading layer.展开更多
The theological behavior of poly(vinylidene fluoride)(PVDF)samples of different molecular weights was investigated by means of high pressure capillary rheometer and rotational rheometer.Information on the rheological ...The theological behavior of poly(vinylidene fluoride)(PVDF)samples of different molecular weights was investigated by means of high pressure capillary rheometer and rotational rheometer.Information on the rheological properties of such materials above melt temperatures is of interest as this can lead to an improved understanding of polymer behavior in processing and fabrication technologies.Shift factors derived from time-temperature superposition showed good fit to the Arrhenius equation with a flow activa...展开更多
Effects of alginate gel at different concentrations on rheological properties of hair-tail (Trichiurus lepturus) surimi were investigated. Alginate gel (1% - 3%) exhibited enhanced effects, especially when alginate ge...Effects of alginate gel at different concentrations on rheological properties of hair-tail (Trichiurus lepturus) surimi were investigated. Alginate gel (1% - 3%) exhibited enhanced effects, especially when alginate gel concentration increased. The rheological properties of mixture samples were studied by the time sweep, frequency sweep and temperature sweep. The critical strain values of the mixture samples for the onset of non-linear viscoelasticity were about 5%. The storage modulus G' of the mixture samples increased with time for 4 h. The frequency sweep showed that G' was greater than G" for all the mixture gels with different alginate gel concentrations, and values of both n' and n" for all samples were low (<0.2), these constants corresponding to G' and G", and indicating the elasticity of mixture gels. The values of storage modulus G' decreased during heating process and increased with decreasing temperature.展开更多
This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of...This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties.展开更多
This paper presents an investigation into modelling the rheological properties of epoxy asphalt concrete( EAC) by using the Huet-Sayegh model. Complex modulus tests were conducted on EAC specimens at various temperatu...This paper presents an investigation into modelling the rheological properties of epoxy asphalt concrete( EAC) by using the Huet-Sayegh model. Complex modulus tests were conducted on EAC specimens at various temperature and loading frequency conditions. Dynamic modulus and phase angles obtained from the complex modulus tests were used in the construction of the Huet-Sayegh model. The dynamic modulus master curve was developed by the Huet-Sayegh model as well as the Burgers model for comparison purpose. The results showed that EAC exhibits typical rheological behavior whose dynamic modulus decreases with the increase of temperature while increases with the increase of frequency,and phase angles increase with the decrease of frequencies and the increase of temperatures. The Huet-Sayegh model predicts the dynamic modulus master curve of EAC very well and much better than the Burgers model over a wide range of frequencies.展开更多
With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid use...With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid used must had good rheological properties at low temperatures and high ability to inhibit hydrate formation.Synthetic drilling fluid has been widely applied to deepwater drilling operations due to its high penetration rate,excellent rheological properties,good ability to prevent hydrate formation,and high biodegradability.A synthetic drilling fluid formulation was developed in our laboratory.The rheological properties of this drilling fluid at low temperatures (0-20 °C) were tested with a 6-speed viscometer and its ability to inhibit hydrate formation was evaluated at 20 MPa CH 4 gas and 0 °C by differential scanning calorimetry (DSC).Several factors influencing the low temperature rheological properties of this synthetic drilling fluid were studied in this paper.These included the viscosity of the base fluid,the amount of CEMU and organic clay,and the water volume fraction.展开更多
Modified asphalt binders were prepared by adding conductive materials, graphite and carbon fiber. The rotation thin film oven test (RTFOT) and pressure age vessel test (PAV) were conducted to simulate the binder a...Modified asphalt binders were prepared by adding conductive materials, graphite and carbon fiber. The rotation thin film oven test (RTFOT) and pressure age vessel test (PAV) were conducted to simulate the binder aging in the field. Rheological properties of graphite and carbon fiber modified asphalt binder were investigated by the empirically rheological properties (penetration and softening point) and the dynamic shear rheometer (DSR) test. Results show that physical properties of asphalt binder change with conductive material mixed. DSR tests present that the values of complex modulus increase while phase angles decrease under a proper amount of graphite and carbon fiber. Rutting parameters point out that graphite can improve the rutting resistance of asphalts. Rheological parameters can be used to assess aging.展开更多
In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by ...In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.展开更多
The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on u...The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on ultra-fine cement rheological properties and its mechanism, were studied in material theories. The results show that the ultra-fine fly ash has a higher zeta potential, and improves flowability of ultra-fine cement paste, decreases flowability loss as time prolonging, improves compatibility between superplasticizers and cement because of the electrostatic repulsion, ball bearing effect, filling and dispersing effect of admixtures and delay-releasing effect of superplasticizers.展开更多
The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution...The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution properties. There are opposite effects of SPI and PU in the PAN/DMSO solution. Their apparent viscosity, degree of non-Newtonian fluid, and extent of structuralization of blend system increase with the addition of SPI, whereas, all of these decrease with the addition of PU. Moreover, the theological properties of PAN/DMSO solution were affected when SPI and PU were added equally, and SPI presented more effect when the proportion of ingredient was less, and PU presented more effect when the proportion of ingredient was more.展开更多
Maintaining the viscosity and fluid loss ability during drilling operation is core for a drilling fluid to perform its functions effectively. The unfriendly conditions such as high temperature and pressures encountere...Maintaining the viscosity and fluid loss ability during drilling operation is core for a drilling fluid to perform its functions effectively. The unfriendly conditions such as high temperature and pressures encountered as drilling operations cut deeper into formations require robust drilling mud formulae that would provide thermal stabilization of the drilling fluids while maintaining their rheological integrity. This research work investigates the stability of the oxides of Iron nanoparticles on the rheological properties of water based bentonite mud. The work focused on the effect of the nanoparticles on the rheology of the bentonite drilling fluid, as well as, their degree of thermal stabilization on the working fluid. The interactive effects of the iron oxide nanoparticles, temperature and shear rate on the shear stress of the drilling were also analyzed. We also showed quantitative relationship of the nanoparticle, temperature and shear rate at the optimization points of the shear rate.展开更多
This paper puts forward a physical and mathematical model for the rheological properties of a plant cell suspension culture system.The model can explain why the system is pseudoplastic satisfactorily,thus the rheologi...This paper puts forward a physical and mathematical model for the rheological properties of a plant cell suspension culture system.The model can explain why the system is pseudoplastic satisfactorily,thus the rheological properties of the system as the effect of the flow behavior index on plant cell concentration are interpreted correctly and the mechanism of the rheological properties of the system is further understood.Therefore the model can be applied in the technological design and optimum conditions of the system and the reformation,evaluation and scale up of reactors.展开更多
基金supported by the Scientific Technology R&D Project of CCCC Asset Management Co.,Ltd.(RP2022015294).
文摘Traditional asphalt rejuvenators,like aromatic oil(AO),are known to be effective in improving the low-temperature properties and fatigue performances of aged SBS(styrene-butadiene-styrene)modified asphalt(SBSMA)binders and mixtures.However,these rejuvenators inevitably compromise their high-temperature properties and deformation resistances because they dilute asphalt binder but do not fix the damaged structures of aged SBS.In this study,a highly-active chemical called polymerized 4,4-diphenylmethane diisocyanate(PMDI)was used to assist the traditional AO asphalt rejuvenator.The physical and rheological characteristics of rejuvenated SBSMA binders and the moisture-induced damage and rut deformation performances of corresponding mixtures were comparatively evaluated.The results showed that the increasing proportion of AO compromises the hightemperature property and hardness of aged SBSMA binder,and an appropriate amount of PMDI works to compensate such losses;3%rejuvenator at mass ratio of AO:PMDI=70:30 can have a rejuvenated SBSMA binder with a high-temperature performance similar to that of fresh binder,approximately at 71.4°C;the use of AO can help reduce the viscosity of PMDI rejuvenated SBSMA binder for improving its workability;PMDI can help improve the resistance of AO rejuvenated SBSMA binder to deformation,especially at elevated temperatures,through its chemical reactions with aged SBS;moisture induction can enhance the resistance to damage of rejuvenated mixtures containing AO/PMDI or only PMDI;and the rejuvenator with a mass ratio of AO:PMDI=70:30 can lead the rejuvenated mixture to meet the application requirement,with a rut depth of only 2.973 mm,although more PMDI can result in a higher resistance of rejuvenated mixtures to high-temperature deformation.
基金Key Research and Development Program of Hubei Province(2022BCA082 and 2022BCA077).
文摘To achieve higher strength and better durability,ultra-high performance concrete(UHPC)typically employs a relatively small water-binder ratio.However,this generally leads to an undesired increase in the paste viscosity.In this study,the effects of liquid and powder polycarboxylate superplasticizers(PCE)on UHPC are compared and critically discussed.Moreover,the following influential factors are considered:air-entraining agents(AE),slump retaining agents(SA),and defoaming agents(DF)and the resulting flow characteristics,mechanical properties,and hydration properties are evaluated assuming UHPC containing 8‰powder PCE(PCE-based UHPC).It is found that the spread diameter of powder PCE is 5%higher than that of liquid PCE.Among the chemical admixtures studied,AEs have the best effect on improving UHPC workability,while DFs have the worst effect.When the addition of AE and SA is 1.25‰and 14.7%of PCE,paste viscosity reduces by 35%and 19%,respectively compared to the paste with only 8‰PCE.A low AE dosage(1.25‰)decreases compressive strength by 4.1%,while SA(8.1%)increases UHPC compressive strength by 9.1%.Both AE and SA significantly delay the UHPC hydration process,reducing the hydration heat release peaks by 76%and 27%,respectively.
基金This study was sponsored by the Research Funding for Outstanding Young University Faculty of China Ministry of Education (No. 2001-39), Fujian Provincial Innovation Fundation for Young Science and Technology Talents (No. 2004J012), and the National Natural Science Funda-tion of China (No. 30571461)
文摘The rheological behavior of low consistency thermomechanical pulp of Chinese fir harvested by intermediate thinning was analyzed. The results show that the apparent viscosity of pulp changed along with the beating degree, pulp consistency and shearing velocity. With the increasing of pulp consistency, the apparent viscosity of pulp increased gradually. Beating degree of pulp had an effect on microstructure of pulp. The apparent viscosity of pulp declined as beating degree of pulp increased, and the apparent viscosity of pulp fell along with the shearing velocity increasing. Based on the results, the rheological models are set up. The models showed that the fluid types of the low consistency pulp could be described as pseudoplastics fluids (non-Newtonian fluids).
基金The National Natural Science Foundation of China(No.51408043)the Natural Science Foundation of Shaanxi Province(No.2014JQ7278)
文摘The rheological properties including the complex modulus G* and the phase angle δof matrix and warm mix asphalt (WMA)binders were measured by using the dynamic shear rheometer (DSR ) test at the medium temperature ranging from 16 to 40 ℃,and the relationships between the fatigue factor G* sinδand the matrix binder property,WMA additive and test temperature were established.It is found that G* decreases with the increasing temperature while δincreases inversely,and G* of the asphalt binder with high WMA additive dosage is large,and δis small.G*sinδexponentially decreases with the increasing temperature and linearly increases with the increase in additive dosage,and the amplitudes of variation are large at low temperatures and high additive dosages.The effect of WMA additive on the rheological property is more remarkable for the matrix asphalt binder with low G*.Besides,aging has a great effect on the property of matrix asphalt binder,and a slight effect on the interaction between asphalt and additive.The high additive dosage can increase the fatigue cracking potential of the asphalt binder.
基金This research was supported by the National Natural Science Foundation of China(NSFC&RGC)under contract Nos.59809006 and 50279030and also supported by the Science Foundation of Tianjin Municipality under contract No.983702011,RGC of the Hong Kong Specia
文摘The Haihe cohesive sediment, which is typical in China, is studied systematically for its basic physical and incipient motion properties. Following the requirements of dredging works in the Haihe Estuary, cohesive sediment samples were taken from three locations. Laboratory experiments were conducted to determine the rheological properties of these samples and to examine the incipient motion of the cohesive sediment. It is found that the cohesive sediment has an obvious yield stress tau(b), which increases with the mud density in a manner of an exponential function, and so does the viscosity parameter eta. The cohesive sediment behaves like a Bingham fluid when its density is below 1.38 similar to 1.40 g/cm(3), and when denser than these values, it may become a power-law fluid. The incipient motion experiment also revealed that the incipient velocity of the cohesive sediment increases with die density in an exponential manner. Therefore, the incipient motion is primarily related to the density, which is different from the case for non-cohesive sediment in which the incipient motion is con-elated with the diameter of sand particles instead. The incipient motion occurs in two different ways depending on the concentration of mud in the bottom. For sufficiently fine particles and a concentration lower than 1.20 g/cm(3), the cohesive sediment appears as fluidized mud, and the incipient motion is in the form of instability of an internal wave. For a higher concentration, the cohesive sediment appears as general quasi-solid-mud, and the incipient motion can be described by a series of extended Shields curves each with a different porosity for newly deposited alluvial mud.
基金Project(2019zzts678)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In this study,different influence mechanisms associated with temperatures and pH values were investigated through cemented paste backfill(CPB)systems.CPB samples were prepared with temperatures ranging from 10 to 50℃ in 10℃ increments and pH values of 3,7,and 13.Then,the CPB mixture were subjected to rheological tests,thermogravimetric analysis(TG),derivative thermogravimetry analysis(DTG),Fourier-transform infrared spectroscopy(FT-IR),and scanning electron microscopy(SEM).Results demonstrated that the temperatures had significant effects on the rheological properties of CPB,whereas the effects of pH values were relatively unapparent.Higher temperatures(over 20℃)were prone to bring higher shear stress,yield stress,and apparent viscosity with the same pH value condition.However,an overly high temperature(50℃)cannot raise the apparent viscosity.Non-neutral conditions,for pH values of 3 and 13,could strengthen the shear stress and apparent viscosity at the same temperature.Two different yield stress curves could be discovered by uprising pH values,which also led to apparent viscosity of two various curves under the same temperatures(under 50℃).Microscopically,rheological properties of CPB were affected by temperatures and pH values which enhanced or reduced the cement hydration procedures,rates,products and space structures.
基金financially supported by the Training Program of the Major Research Plan of the National Natural Science Foundation of China(grant no.91634112)the Natural Science Foundation of Shanghai(grant no.16ZR1408100)+2 种基金the Fundamental Research Funds for the Central Universities of China(grant no.22A201514010)the Open Project of State Key Laboratory of Chemical Engineering(SKL-Ch E-16C01)the institutional funds from the Gene and Linda Voiland School of Chemical Engineering and Bioengineering at Washington State University
文摘The rheological properties of South China Sea (SCS) crude oil were studied. A group of synthetic long-chain polymers, including octadecyl acrylate-maleic anhydride bidodecyl amide copolymer (VR-D), octadecyl acrylate-maleic anhydride bioctadecyl amide copolymer (VR-O) and octadecyl acrylate-maleic anhydride phenly amide copolymer (VR-A), were employed to serve as viscosity reducers (VRs). Their performance was evaluated by both experimental and computational methodologies. The results suggest that the SCS crude oil has low wax content yet high resin and asphaltene contents, which lead to high viscosity through formation of association structures. Additionally, the SCS crude oil appears to be a pseudoplastic fluid showing linear shear stress-shear rate dependence at low temperature. Interestingly, it gradually evolves into a Newtonian fluid with exponential relationship between shear stress and shear rate at higher temperature. Synthetic VRs demonstrate desirable and effective performance on improvement of the rheological properties of SCS crude oil. Upon the introduction of 1000ppm VR-O, which is synthesized by using octadecylamine in the aminolysis reaction, the viscosity of SCS crude oil is decreased by 44.2% at 15 ℃ and 40.2% at 40℃. The computational study suggests significant energy level increase and shear stress decrease for VR-containing crude oil systems.
文摘Dynamic rheological properties of asphalt modified by Supramolecular UV resistant material—layered double hydroxides(LDHs) was studied by means of the dynamic shear rheometer(DSR) test.Two typical base asphalts were chosen and modified by 2 different LDHs contents.DSR tests were performed on the original samples,samples after exposed to outdoor and samples after the artificial accelerated UV aging tests respectively to analyze the rheological properties.It is found that when the LDHs content is between 3wt% and 5wt% of asphalt weight,the high temperature performance and fatigue resistant property of the modified asphalt become better,the UV aging resistance properties are improved.
基金Funded by the National Natural Science Foundation of China (No.50803017)
文摘The PAL was synthesized with BA,MMA and some monomers containing carboxyl groups(for example,acrylic acid(AA) and methacrylic acid(MAA)) as co-monomers by semi-continuous seeded emulsion polymerization technique.The influences of alkalinization temperature,the feeding manner of AA or MAA on the particles size,rheological properties and carboxyl distribution of the latex were discussed,and the rheological mechanism was analyzed.The experimental results show that the PAL system has preferable viscosity and particle size when the alkalinization temperature is 50 ℃.Different distribution of carboxyl group in the particles and different resultant rheological properties are obtained by different feeding manner of AA or MAA into the system.The TEM images show that the particle is a smooth globe with carboxyl group concentrating on the surface and stabilized with electric double layer and nonionic adsorbed layer.The concentration of carboxyl functional group on the surface of particles can be achieved by the specific polymerization technique.The rheologyical properties are determined by accretion of particle volume and variation of the two phase volume ratio resulted from the carboxyl group spreading layer.
基金the Special Funds for Major State Basic Research Projects,China(No.2003CB615705).
文摘The theological behavior of poly(vinylidene fluoride)(PVDF)samples of different molecular weights was investigated by means of high pressure capillary rheometer and rotational rheometer.Information on the rheological properties of such materials above melt temperatures is of interest as this can lead to an improved understanding of polymer behavior in processing and fabrication technologies.Shift factors derived from time-temperature superposition showed good fit to the Arrhenius equation with a flow activa...
基金supported by the cooperation project in industry, education and research of Guangdong province and Ministry of Education of China (2009B090300157)
文摘Effects of alginate gel at different concentrations on rheological properties of hair-tail (Trichiurus lepturus) surimi were investigated. Alginate gel (1% - 3%) exhibited enhanced effects, especially when alginate gel concentration increased. The rheological properties of mixture samples were studied by the time sweep, frequency sweep and temperature sweep. The critical strain values of the mixture samples for the onset of non-linear viscoelasticity were about 5%. The storage modulus G' of the mixture samples increased with time for 4 h. The frequency sweep showed that G' was greater than G" for all the mixture gels with different alginate gel concentrations, and values of both n' and n" for all samples were low (<0.2), these constants corresponding to G' and G", and indicating the elasticity of mixture gels. The values of storage modulus G' decreased during heating process and increased with decreasing temperature.
文摘This article studies the influence of the fineness of cement, fly ash(FA), its composite admixture and the amount and way mixed with superplasticizer on the rheological properties of micro fine cement(MC). By means of modern instruments and technologies (such as XRD, SEM, laser granulometer and superficial potential apparatus etc.), the article studies the mineral compositions, the appearance character of grains, particle size distribution and superficial potential of FA and its composite materials. And through that, the reducing mechanism of FA is thoroughly analyzed. The study shows that FA and its composite admixture are excellent components which can effectively improve the rheological properties of micro fine cement, and that the superplasticizer has a saturation point and the mixing way of it has a great influence on the rheological properties.
基金Sponsored by the Natgional Natural Science Foundation of China(Grant No.51208103)the China Postdoctoral Science Foundation(Grant No.2012M520976)the Basic Research Foundation of Southeast University
文摘This paper presents an investigation into modelling the rheological properties of epoxy asphalt concrete( EAC) by using the Huet-Sayegh model. Complex modulus tests were conducted on EAC specimens at various temperature and loading frequency conditions. Dynamic modulus and phase angles obtained from the complex modulus tests were used in the construction of the Huet-Sayegh model. The dynamic modulus master curve was developed by the Huet-Sayegh model as well as the Burgers model for comparison purpose. The results showed that EAC exhibits typical rheological behavior whose dynamic modulus decreases with the increase of temperature while increases with the increase of frequency,and phase angles increase with the decrease of frequencies and the increase of temperatures. The Huet-Sayegh model predicts the dynamic modulus master curve of EAC very well and much better than the Burgers model over a wide range of frequencies.
基金the financial support from the National Science and Technology Key Projects(2008ZX05056-002-03-04 and 2008ZX05030-005-07-03)
文摘With the rapid development of deepwater drilling operations,more and more complex technical challenges have to be faced due to the rigorous conditions encountered.One of these challenges is that the drilling fluid used must had good rheological properties at low temperatures and high ability to inhibit hydrate formation.Synthetic drilling fluid has been widely applied to deepwater drilling operations due to its high penetration rate,excellent rheological properties,good ability to prevent hydrate formation,and high biodegradability.A synthetic drilling fluid formulation was developed in our laboratory.The rheological properties of this drilling fluid at low temperatures (0-20 °C) were tested with a 6-speed viscometer and its ability to inhibit hydrate formation was evaluated at 20 MPa CH 4 gas and 0 °C by differential scanning calorimetry (DSC).Several factors influencing the low temperature rheological properties of this synthetic drilling fluid were studied in this paper.These included the viscosity of the base fluid,the amount of CEMU and organic clay,and the water volume fraction.
基金Funded by the National Natural Science Foundation of China(No.50878171)
文摘Modified asphalt binders were prepared by adding conductive materials, graphite and carbon fiber. The rotation thin film oven test (RTFOT) and pressure age vessel test (PAV) were conducted to simulate the binder aging in the field. Rheological properties of graphite and carbon fiber modified asphalt binder were investigated by the empirically rheological properties (penetration and softening point) and the dynamic shear rheometer (DSR) test. Results show that physical properties of asphalt binder change with conductive material mixed. DSR tests present that the values of complex modulus increase while phase angles decrease under a proper amount of graphite and carbon fiber. Rutting parameters point out that graphite can improve the rutting resistance of asphalts. Rheological parameters can be used to assess aging.
基金This study is financially supported by the Basic Research Operating Expenses Program of International Centre for Bamboo and Rattan(1632021002).
文摘In order to investigate the effect of the relative motion of nano CaCO_(3)reinforced bamboo pulp fiber(BPF)/HDPE composite components on the mechanical performance,a comparative study was performed.BPF was treated by nano CaCO_(3)blending(BM)and impregnation modification(IM)technology.The composites were produced using hot press(HPMP),extrusion(EMP)and injection molding process(IMP).The physical morphology of BPF was similar at different manufacturing processes.Compared to the samples manufactured by HPMP,a decrease in the(specific)flexural strength of BPF/HDPE composites and an increase in those of composites treated by nano CaCO_(3)manufactured by EMP and IMP were observed.The injection molded composites exhibited the best values in the(specific)impact strength,(specific)tensile properties.IM had a greater effect on the rheological behavior of the composites than BM,and nano CaCO_(3)treatment most effectively affected the performance of the extrusion molded composites.
基金Funded by the Science Foundation of the Science and Technology Department of Hubei Province(No.200029031).
文摘The material properties of surface and powder, rheological property, and mineral composition were investigated by means of SEM, XRD, Malvern laser granulometer and rotary, viscometer. The influence of a admixture on ultra-fine cement rheological properties and its mechanism, were studied in material theories. The results show that the ultra-fine fly ash has a higher zeta potential, and improves flowability of ultra-fine cement paste, decreases flowability loss as time prolonging, improves compatibility between superplasticizers and cement because of the electrostatic repulsion, ball bearing effect, filling and dispersing effect of admixtures and delay-releasing effect of superplasticizers.
基金National Natural Science Foundation of China (No.50303003)
文摘The rheological properties of soy protein isolate (SPI) and polyurethane (PU) in the PAN/DMSO solution were investigated in this study. The results showed that all these solutions possessed pseudo-plastic solution properties. There are opposite effects of SPI and PU in the PAN/DMSO solution. Their apparent viscosity, degree of non-Newtonian fluid, and extent of structuralization of blend system increase with the addition of SPI, whereas, all of these decrease with the addition of PU. Moreover, the theological properties of PAN/DMSO solution were affected when SPI and PU were added equally, and SPI presented more effect when the proportion of ingredient was less, and PU presented more effect when the proportion of ingredient was more.
文摘Maintaining the viscosity and fluid loss ability during drilling operation is core for a drilling fluid to perform its functions effectively. The unfriendly conditions such as high temperature and pressures encountered as drilling operations cut deeper into formations require robust drilling mud formulae that would provide thermal stabilization of the drilling fluids while maintaining their rheological integrity. This research work investigates the stability of the oxides of Iron nanoparticles on the rheological properties of water based bentonite mud. The work focused on the effect of the nanoparticles on the rheology of the bentonite drilling fluid, as well as, their degree of thermal stabilization on the working fluid. The interactive effects of the iron oxide nanoparticles, temperature and shear rate on the shear stress of the drilling were also analyzed. We also showed quantitative relationship of the nanoparticle, temperature and shear rate at the optimization points of the shear rate.
文摘This paper puts forward a physical and mathematical model for the rheological properties of a plant cell suspension culture system.The model can explain why the system is pseudoplastic satisfactorily,thus the rheological properties of the system as the effect of the flow behavior index on plant cell concentration are interpreted correctly and the mechanism of the rheological properties of the system is further understood.Therefore the model can be applied in the technological design and optimum conditions of the system and the reformation,evaluation and scale up of reactors.