The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial fo...The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.展开更多
A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces ...A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.展开更多
It*ss very important to identify the load on rotor bearing system. Based on load identification in time domain, a new method combined with transfer matrix method is applied in rubbing rotor bearing system to estimat...It*ss very important to identify the load on rotor bearing system. Based on load identification in time domain, a new method combined with transfer matrix method is applied in rubbing rotor bearing system to estimate the force on rubbing rotor for the first time. Avoiding calculating the modal parameters, the outside excitation force on multi point and the distribute of internal forces on rubbing rotor bearing system can be identified by this way at the same time. Finally, the simulation is made on partial lateral rubbing rotor bearing system. For the faulty of rotor/stator rub, the point where rubbing occurs and the change of impact forces can be detected by this method in order to improve the accuracy of rotor/stator rub faulty diagnosis.展开更多
To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics...To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.展开更多
The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled ...The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled rigid/elastic blended element based on the fle xible multibody system theory in this paper. It accounts for the effects of prec one, sweep, and the moderately large elastic deflections on the blade and elasti city of shaft and fuselage of the helicopter. The dynamic coupling between the r igid motion of blades about the flap, lag and pitch hinges of articulated rotor and moderately large elastic deflections are included. There is no restriction o n the rotation amplitudes of flap, lag and pitch in the formulation. The stabili ty of periodic solution is studied using the Floquet theory. The transition matr ix is calculated by the Newmark integration method. The aeromechanical stability of a new helicopter is studied. The results show that it is stable in the given forward flight. But the instability arises with the decrease of the bending and torsion stiffness of the shaft.展开更多
The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount o...The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.展开更多
In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carr...In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.展开更多
The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic ...The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic stiffness and its effect mechanism have been rarely incorporated in open studies of the rotor system.Therefore,this study theoretically reveals the effect mechanism of dynamic stiffness on the rotor system.Then,the numerical study and experimental verification are conducted on the dynamic stiffness characteristics of a squirrel cage,which is a common support structure for aero-engine.Moreover,the static stiffness experiment is also performed for comparison.Finally,a rotor system model considering the dynamic stiffness of the support structure is presented.The presented rotor model is used to validate the results of the theoretical analysis.The results illustrate that the dynamic stiffness reduces the critical speed of the rotor system and may lead to a new resonance.展开更多
When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Tak...When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.展开更多
The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not ...The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.展开更多
A non-linear dynamic model of one type of high-speed rotor system with gassupporting system is set up. The laws between the capacity force and the parameters of bearing, thestatic equilibrium position and rotating spe...A non-linear dynamic model of one type of high-speed rotor system with gassupporting system is set up. The laws between the capacity force and the parameters of bearing, thestatic equilibrium position and rotating speed are studied on the basis of above model. Then, thefailure rotating, speed is given in the working state, and the relation between the minimum failurerotating speed and clearance of bearing is also studied. At last, the stability and failurecondition are discussed in different working conditions.展开更多
In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method fo...In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.展开更多
The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into considera...The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into consideration. According to the nonlinearity of thehydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique withfree-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system.According to physical character of oil film, variational constrain approach is introduced tocontinuously revise the variational form of Reynolds equation at every step of dynamic integrationand iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametricfinite element method without the increasing of computing efforts. Nonlinear oil film forces andtheir Jacobians are simultaneously calculated and their compatible accuracy is obtained. Theperiodic motions are obtained by using the Poincare -Newton-Floquet (PNF) method. A method,combining the predictor-corrector mechanism to the PNF method, is presented to calculate thebifurcation point of periodic motions to be subject to change of system parameters. The localstability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaoticmotions of the bearing-rotor system are investigated by power spectrum. The numerical examples showthat the scheme of this study saves computing efforts but also is of good precision.展开更多
Modelica-based object-orient method is proved to be rapid, accurate and easy to modify, which is suitable for prototype modeling and simulation of rotor system, whose parameters need to be modified frequently. Classic...Modelica-based object-orient method is proved to be rapid, accurate and easy to modify, which is suitable for prototype modeling and simulation of rotor system, whose parameters need to be modified frequently. Classical non-object-orient method appears to be inefficient because the code is difficult to modify and reuse. An adequate library for object-orient modeling of rotor system with multi-faults is established, a comparison with non-object-orient method on Jeffcott rotor system and a case study on turbo expander with multi-faults are implemented. The relative tolerance between object-orient method and non-object-orient is less than 0.03%, which proves that these two methods are as accurate as each other. Object-orient modeling and simulation is implemented on turbo expander with crack, rub-impact, pedestal looseness and multi-faults simultaneously. It can be conclude from the case study that when acting on compress side of turbo expander separately, expand wheel is not influenced greatly by crack fault, the existence of rub-impact fault forces expand wheel into quasi-periodic motion and the orbit of expand wheel is deformed and enhanced almost 1.5 times due to pedestal looseness. When acting simultaneously, multi-faults cannot be totally decomposed but can be diagnosed from the feature of vibration. Object-orient method can enhance the efficiency of modeling and simulation of rotor system with multi-faults, which provides an efficient method on prototype modeling and simulation.展开更多
This paper describes systematic measurement of fiber migration and distribution pattern of twist at different radial positions of rotor spun yarn mixed tracer fiber by Hi-Scope Video Microscope System. The positions o...This paper describes systematic measurement of fiber migration and distribution pattern of twist at different radial positions of rotor spun yarn mixed tracer fiber by Hi-Scope Video Microscope System. The positions of tracer fibers were measured in three dimensions accurately, and the migration index and the twist distribution at different radial positions of rotor yarn were calculated and analyzed. This research result serves to provide useful references for further study on the structural mechanics of rotor spun yarn.展开更多
The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation f...The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.展开更多
Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute ...Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor.展开更多
Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing syste...Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.展开更多
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ...Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.展开更多
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
文摘The dual-rotor structure serves as the primary source of vibration in aero-engines. Understanding itsdynamical model and analyzing dynamic characteristics, such as critical speed and unbalanced response, arecrucial for rotor system dynamics. Previous work introduced a coaxial dual-rotor-support scheme for aeroengines,and a physical model featuring a high-speed flexible inner rotor with a substantial length-to-diameter ratiowas designed. Then a finite element (FE) dynamic model based on the Timoshenko beam elements and rigid bodykinematics of the dual-rotor system is modeled, with the Newmark method and Newton–Raphson method used forthe numerical calculation to study the dynamic characteristics of the system. Three different simulation models,including beam-based FE (1D) model, solid-based FE (3D) model, and transfer matrix model, were designed tostudy the characteristics of mode and the critical speed characteristic of the dual-rotor system. The unbalancedresponse of the dual-rotor system was analyzed to study the influence of mass unbalance on the rotor system. Theeffect of different disk unbalance phases and different speed ratios on the dynamic characteristics of the dual-rotorsystem was investigated in detail. The experimental result shows that the beam-based FE model is effective andsuitable for studying the dual-rotor system.
基金National Natural Science Foundation of China(50575054)973Program(2007CB607602)
文摘A rotor system supported by roller beatings displays very complicated nonlinear behaviors due to nonlinear Hertzian contact forces, radial clearances and bearing waviness. This paper presents nonlinear bearing forces of a roller bearing under four-dimensional loads and establishes 4-DOF dynamics equations of a rotor roller bearing system. The methods of Newmark-β and of Newton-Laphson are used to solve the nonlinear equations. The dynamics behaviors of a rigid rotor system are studied through the bifurcation, the Poincar è maps, the spectrum diagrams and the axis orbit of responses of the system. The results show that the system is liable to undergo instability caused by the quasi-periodic bifurcation, the periodic-doubling bifurcation and chaos routes as the rotational speed increases. Clearances, outer race waviness, inner race waviness, roller waviness, damping, radial forces and unbalanced forces-all these bring a significant influence to bear on the system stability. As the clearance increases, the dynamics behaviors become complicated with the number and the scale of instable regions becoming larger. The vibration frequencies induced by the roller bearing waviness and the orders of the waviness might cause severe vibrations. The system is able to eliminate non-periodic vibration by reasonable choice and optimization of the parameters.
文摘It*ss very important to identify the load on rotor bearing system. Based on load identification in time domain, a new method combined with transfer matrix method is applied in rubbing rotor bearing system to estimate the force on rubbing rotor for the first time. Avoiding calculating the modal parameters, the outside excitation force on multi point and the distribute of internal forces on rubbing rotor bearing system can be identified by this way at the same time. Finally, the simulation is made on partial lateral rubbing rotor bearing system. For the faulty of rotor/stator rub, the point where rubbing occurs and the change of impact forces can be detected by this method in order to improve the accuracy of rotor/stator rub faulty diagnosis.
文摘To reduce the excessive vibration of a high-speed rotor system at the critical speed, a friction damper with a flexible support structure is introduced. The mechanism of vibration reduction and support characteristics are analyzed and a friction damper is designed. The effect on an unbalanced response is studied. Results show that the stiffness factor and the friction-damping factor of the damper are related to the cone angle and the friction factor of the inner-ring when adopting a proper structure. By changing these parameters and the Z-directional stiffness of the outer-ring, the stiffness and the damping characteristic of the damper can be varied. Introducing a friction damper into the support can reduce the stiffness and increase the damping of the support, thus decreasing the critical speed to avoid the operating speed, suppress the resonant response of a rotor system, and attenuate vibration forces to the outside.
文摘The aeromechanical st ability for the coupled rotor/fuselage system of helicopters in forward flight i s investigated. The periodic time-varying equations of motion are developed thr ough building a new 24DOF coupled rigid/elastic blended element based on the fle xible multibody system theory in this paper. It accounts for the effects of prec one, sweep, and the moderately large elastic deflections on the blade and elasti city of shaft and fuselage of the helicopter. The dynamic coupling between the r igid motion of blades about the flap, lag and pitch hinges of articulated rotor and moderately large elastic deflections are included. There is no restriction o n the rotation amplitudes of flap, lag and pitch in the formulation. The stabili ty of periodic solution is studied using the Floquet theory. The transition matr ix is calculated by the Newmark integration method. The aeromechanical stability of a new helicopter is studied. The results show that it is stable in the given forward flight. But the instability arises with the decrease of the bending and torsion stiffness of the shaft.
基金supported by National Natural Science Foundation of China(Grant No. 10772061)Heilongjiang Provincial Natural Science Foundation of China(Grant No. ZJG0704)
文摘The condition of rotor system must be assessed in order to develop condition-based maintenance for rotating machinery. It is determined by multiple variables such as unbalance degree, misalignment degree, the amount of bending deformation of the shaft, occurrence of shaft crack of rotor system and so on. The estimation of the degrees of unbalance and misalignment in flexible coupling-rotor system is discussed. The model-based approach is employed to solve this problem. The models of the equivalent external loads for unbalance and misalignment are derived and analyzed. Then, the degrees of unbalance and misalignment are estimated by analyzing the components of the equivalent external loads of which the frequencies are equal to the 1 and 2 times running frequency respectively. The equivalent external loads are calculated according to the dynamic equation of the original rotor system and the differences between the dynamical responses in normal case and the vibrations when the degree of unbalance or misalignment or both changes. The denoise method based on bandpass filter is used to decrease the effect of noise on the estimation accuracy. The numerical examples are given to show that the proposed approach can estimate the degrees of unbalance and misalignment of the flexible coupling-rotor system accurately.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046205)
文摘In order to investigate the aerodynamic characteristics of 6-MW wind turbine, experimental study on the aerodynamic characteristics of the model rotor system and on characterization of a wind generation system is carried out. In the test, a thrust-matched rotor system and a geometry-matched rotor system, which utilize redesigned thrustmatched and original geometry-matched blades, respectively, are applied. The 6-MW wind turbine system is introduced briefly. The proper scaling laws for model tests are established in the paper, which are then implemented in the construction of a model wind turbine with optimally designed blades. And the parameters of the model are provided. The aerodynamic characteristics of the proposed 6-MW wind rotor system are explored by testing a 1:65.3 scale model at the State Key Laboratory of Ocean Engineering at Shanghai Jiao Tong University. Before carrying out the wind rotor system test, the turbulence intensity and spatial uniformity of the wind generation system are tested and results demonstrate that the characterization of the wind generation system is satisfied and the average turbulence intensity of less than 10% within the wind rotor plane is proved in the test. And then, the aerodynamic characteristics of 6-MW wind rotor system are investigated. The response characteristic differences between the thrust-matched rotor system and the geometry-matched rotor system are presented. Results indicate that the aerodynamic characteristics of 6-MW wind rotor with the thrust-matched rotor system are satisfied. The conclusion is that the thrust-matched rotor system can better reflect the characteristics of the prototype wind turbine. A set of model test method is proposed in the work and preparations for further model basin test of the 6-MW SPAR-type floating offshore wind turbine system are made.
基金the National Natural Science Foundation of China(Nos.11872148 and U1908217)the Fundamental Research Funds for the Central Universities of China(Nos.N2224001-4 and N2003013)the Basic and Applied Basic Research Foundation of Guangdong Province of China(No.2020B1515120015)。
文摘The support structure of a rotor system is subject to vibration excitation,which results in the stiffness of the support structure varying with the excitation frequency(i.e.,the dynamic stiffness).However,the dynamic stiffness and its effect mechanism have been rarely incorporated in open studies of the rotor system.Therefore,this study theoretically reveals the effect mechanism of dynamic stiffness on the rotor system.Then,the numerical study and experimental verification are conducted on the dynamic stiffness characteristics of a squirrel cage,which is a common support structure for aero-engine.Moreover,the static stiffness experiment is also performed for comparison.Finally,a rotor system model considering the dynamic stiffness of the support structure is presented.The presented rotor model is used to validate the results of the theoretical analysis.The results illustrate that the dynamic stiffness reduces the critical speed of the rotor system and may lead to a new resonance.
基金Project supported by National Basic Research Program(973 Program)of China(No.2015CB057400)
文摘When an aircraft is hovering or doing a dive-hike flight at a fixed speed, a constant additional inertial force will be induced to the rotor system of the aero-engine, which can be called a constant maneuver load. Take hovering as an example. A Jeffcott rotor system with a biased rotor and several nonlinear elastic supports is modeled, and the vibration characteristics of the rotor system under a constant maneuver load are analytically studied. By using the multiple-scale method, the differential equations of the system are solved, and the bifurcation equations are obtained. Then, the bifurcations of the system are analyzed by using the singularity theory for the two variables. In the EG-plane, where E refers to the eccentricity of the rotor and G represents the constant maneuver load, two hysteresis point sets and one double limit point set are obtained. The bifurcation diagrams are also plotted. It is indicated that the resonance regions of the two variables will shift to the right when the aircraft is maneuvering. Furthermore, the movement along the horizontal direction is faster than that along the vertical direction. Thus, the different overlapping modes of the two resonance regions will bring about different bifurcation modes due to the nonlinear coupling effects. This result lays a theoretical foundation for controlling the stability of the aero-engine's rotor system under a maneuver load.
基金supported by National Natural Science Foundation of China(Grant Nos.51675258,51261024,51265039)State Key Laboratory of Mechani-cal System and Vibration(Grant No.MSV201914)Laboratory of Science and Technology on Integrated Logistics Support,National University of Defense Technology(Grant No.6142003190210).
文摘The traditional modeling method of rotor system with a slant crack considers only integer-order calculus.However,the model of rotor system based on integer-order calculus can merely describe local characteristics,not historical dependent process.The occur of fractional order calculus just makes up for the deficiency in integer-order calculus.Therefore,a new dynamic model with a slant crack based on fractional damping is proposed.Here,the stiffness of rotor system with a slant crack is solved by zero stress intensity factor method.The proposed model is simulated by Runge-Kutta method and continued fraction Euler method.The influence of the fractional order,rotating speed,and crack depth on the dynamic characteristics of rotor system is discussed.The simulation results show that the amplitude of torsional excitation frequency increases significantly with the increase of the fractional order.With the increase of the rotating speed,the amplitude of first harmonic component becomes gradually larger,the amplitude of the second harmonic becomes smaller,while the amplitude of the other frequency components is almost invariant.The shaft orbit changes gradually from an internal 8-type shape to an ellipse-type shape without overlapping.With the increase of the slant crack depth,the amplitude of the transverse response frequency in the rotor system with a slant crack increases,and the amplitude in the second harmonic component also increases significantly.In addition,the torsional excitation frequency and other coupling frequency components also occur.The proposed model is further verified by the experiment.The valuable conclusion can provide an important guideline for the fault diagnosis of rotor system with a slant crack.
基金This project is supported by National Natural Science Foundation of China (No.50475112).
文摘A non-linear dynamic model of one type of high-speed rotor system with gassupporting system is set up. The laws between the capacity force and the parameters of bearing, thestatic equilibrium position and rotating speed are studied on the basis of above model. Then, thefailure rotating, speed is given in the working state, and the relation between the minimum failurerotating speed and clearance of bearing is also studied. At last, the stability and failurecondition are discussed in different working conditions.
文摘In the application of active magnetic bearings (AMB), one of the key problems to be solved is the safety and stability in the sense of rotor dynamics. The project related to the present paper deals with the method for analyzing bearing rotor systems with high rotation speed and specially supported by active magnetic bearings, and studies its rotor dynamics performance, including calculation of the natural frequencies with their distribution characteristics, and the critical speeds of the system. One of the targets of this project is to formulate a theory and method valid for the analysis of the dynamic performance of the active magnetic bearing rotor system by combining the traditional theory and method of rotor dynamics with the analytical theory and design method based on modern control theory of the AMB system.
基金This project is supported by National Natural Science Foundation of China (No.50275116) National 863 of China(No.2002AA414060, No.2002AA-503020).
文摘The nonlinear dynamic behaviors of flexible rotor system with hydrodynamicbearing supports are analyzed. The shaft is modeled by using the finite element method that takesthe effect of inertia and shear into consideration. According to the nonlinearity of thehydrodynamic journal bearing-flexible rotor system, a modified modal synthesis technique withfree-interface is represented to reduce degrees-of-freedom of model of the flexible rotor system.According to physical character of oil film, variational constrain approach is introduced tocontinuously revise the variational form of Reynolds equation at every step of dynamic integrationand iteration. Fluid lubrication problem with Reynolds boundary is solved by the isoparametricfinite element method without the increasing of computing efforts. Nonlinear oil film forces andtheir Jacobians are simultaneously calculated and their compatible accuracy is obtained. Theperiodic motions are obtained by using the Poincare -Newton-Floquet (PNF) method. A method,combining the predictor-corrector mechanism to the PNF method, is presented to calculate thebifurcation point of periodic motions to be subject to change of system parameters. The localstability and bifurcation behaviors of periodic motions are obtained by Floquet theory. The chaoticmotions of the bearing-rotor system are investigated by power spectrum. The numerical examples showthat the scheme of this study saves computing efforts but also is of good precision.
基金supported by National Basic Research Program of China(973 Program,Grant No.2011CB706502)
文摘Modelica-based object-orient method is proved to be rapid, accurate and easy to modify, which is suitable for prototype modeling and simulation of rotor system, whose parameters need to be modified frequently. Classical non-object-orient method appears to be inefficient because the code is difficult to modify and reuse. An adequate library for object-orient modeling of rotor system with multi-faults is established, a comparison with non-object-orient method on Jeffcott rotor system and a case study on turbo expander with multi-faults are implemented. The relative tolerance between object-orient method and non-object-orient is less than 0.03%, which proves that these two methods are as accurate as each other. Object-orient modeling and simulation is implemented on turbo expander with crack, rub-impact, pedestal looseness and multi-faults simultaneously. It can be conclude from the case study that when acting on compress side of turbo expander separately, expand wheel is not influenced greatly by crack fault, the existence of rub-impact fault forces expand wheel into quasi-periodic motion and the orbit of expand wheel is deformed and enhanced almost 1.5 times due to pedestal looseness. When acting simultaneously, multi-faults cannot be totally decomposed but can be diagnosed from the feature of vibration. Object-orient method can enhance the efficiency of modeling and simulation of rotor system with multi-faults, which provides an efficient method on prototype modeling and simulation.
文摘This paper describes systematic measurement of fiber migration and distribution pattern of twist at different radial positions of rotor spun yarn mixed tracer fiber by Hi-Scope Video Microscope System. The positions of tracer fibers were measured in three dimensions accurately, and the migration index and the twist distribution at different radial positions of rotor yarn were calculated and analyzed. This research result serves to provide useful references for further study on the structural mechanics of rotor spun yarn.
基金supported by National Natural Science Foundation of China (Grant No. 50635060)National Hi-tech Research and Development Program of China (863 Program,Grant No.2007AA050501)+1 种基金National Key Basic Research Program of China (973 Program,Grant No. 2007CB707705,Grant No. 2007CB707706)Research Funds for the Central Universities of China
文摘The recent research on stability of gas bearing-rotor systems still mostly adopts the same method as in oil-lubricated bearing-rotor systems.The dynamic coefficients of gas bearings in the case that the perturbation frequencies are same as the rotating speed are used to carry out the stability analysis of rotor systems.This method does not contact the frequency characteristics of dynamic stiffness and damping coefficients of gas bearings with the dynamical behaviors of rotor systems.Furthermore,the effects of perturbation frequencies on the stability of systems are not taken into account.In this paper,the dynamic stiffness and damping coefficients of tilting-pad gas bearings are calculated by the partial derivative method.On the base of solution of dynamic coefficients,two computational models are produced for stability analysis on rotor systems supported by tilting-pad gas bearings according to whether the degrees of the freedom of pads tilting motions are included in the equations of motion or not.In the condition of considering the frequency effects of dynamic coefficients of tilting-pad gas bearings,the corresponding eigenvalues of the rigid and first five vibration modes of the system with the working speeds of 8-30 kr/min are computed through iteratively solving the equations of motion of rotor-system by using two computational models,respectively.According to the obtained eigenvalues,the stability of rotor system is analyzed.The results indicate that the eigenvalues and the stability of rotor system obtained by these two computational models are well agreement each other.They all can more accurately analyze the stability of rotor systems supported by tilting-pad gas bearings.This research has important meaning for perfecting the stability analysis method of rotor systems supported by gas bearings.
基金supported by the Key Program (Grant. No. 50635010)General Program (Grant. No. 50975018) of National Natural Science Foundation of China
文摘Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor.
基金Supported by National Basic Research Program of China(973 Program,Grant No.2012CB026000)
文摘Extensive studies on rotor systems with single or coupled multiple faults have been carried out. However these studies are limited to single-span rotor systems. A finite element model for a complex rotor-bearing system with coupled faults is presented. The dynamic responses of the rotor-bearing system are obtained by using the rotor dynamics theory and the modern nonlinear dynamics theory in connection with the continuation-shooting algorithm(commonly used for obtaining a periodic solution for a nonlinear system) for a range of rub-impact clearances and crack depths. The stability and Hopf instability of the periodic motion of the rotor-bearing system with coupled faults are analyzed by using the procedure described. The results indicate that the finite element method is an effective way for determining the dynamic responses of such complex rotor-bearing systems. Further for a rotor system with rub-impact and crack faults, the influences of the clearances are significantly different for different rub-impact stiffness. On the contrary, the influence of crack depths is rather small. The instability speeds of the rotor-bearing system increase due to the presence of the crack fault. The results obtained using the new finite element model, presented for computation and analysis of dynamic responses of the rotor-bearing systems with coupled faults, are in accordance with measurements in experiment. The formulations given can be used for diagnosis of faults, vibration control, and safe and stable operations of real rotor-bearing systems.
基金the National Basic Research Program of China(No.2012CB026000)Key Laboratory Fund for Ship Vibration and Noise(No.614220406020717)National Science and Technology Major Project(No.2017-IV-0010-0047).
文摘Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces.