Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substr...Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.展开更多
The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical mode...The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.展开更多
Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a sin...Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.展开更多
The strong stiction of adjacent surfaces with meniscus is a major design concern in the devices with a micro-sized interface. Today, more and more research works are devoted to understand the adhesion mechanism. This ...The strong stiction of adjacent surfaces with meniscus is a major design concern in the devices with a micro-sized interface. Today, more and more research works are devoted to understand the adhesion mechanism. This paper concerns the elastic-plastic adhesion of a fractal rough surface contacting with a perfectly wetted rigid plane. The topography of rough surface is modeled with a two-variable Weierstrass-Mandelbrot fractal function. The Laplace pressure is dealt with the Dugdale approximation. Then the adhesion model of the plastically deformed asperities with meniscus can be established with the fractal microcontact model. According to the plastic flow criterion, the elastic-plastic adhesion model of the contacting rough surfaces with meniscus can be solved by combining the Maugis-Dugdale (MD) model and its extension with the Morrow method. The necessity for considering the asperities' plastic deformation has been validated by comparing the simulation result of the presented model with that of the elastic adhesion model. The stiction mechanism of rough surfaces with meniscus is also discussed.展开更多
A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinite...A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.展开更多
This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, th...This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.展开更多
Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography sa...Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.展开更多
An efficiently iterative analytical-numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The b...An efficiently iterative analytical-numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.展开更多
A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. T...A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing.展开更多
Three types of rough surface were processed by laser irradiation on the 3Cr2W8V material hot-work die steel surface. The wear experiments with smooth surface and rough surface samples were repeated on the pin-tray wea...Three types of rough surface were processed by laser irradiation on the 3Cr2W8V material hot-work die steel surface. The wear experiments with smooth surface and rough surface samples were repeated on the pin-tray wear machine. According to the wear results, we studied the regularity of wear resistance of different rough surface samples. The results indicated that bionic rough surface can improve the wear resistance of the material and the wear resistance can be increased 1-2 times, compared with the smooth surface. Also, the wear resistance of the rough surface was affected by laser current and duration of impulse. The bigger the laser current or the impulse duration, the better is the wear resistance. When the distance between the same kind of units which are distributed on the surfaces is changed, the wear resistance changes. The wear resistance of a bionic rough surface on which the grid units were distributed at spacing of 1 mm was the best. And we designed the wear models.展开更多
Adhesion of bio-inspired microfibre arrays to a rough surface is studied theoretically. The array consists of vertical elastic rods fixed on a rigid backing layer, and the surface is modeled by rigid steps with a norm...Adhesion of bio-inspired microfibre arrays to a rough surface is studied theoretically. The array consists of vertical elastic rods fixed on a rigid backing layer, and the surface is modeled by rigid steps with a normally distributed height. Analytical expressions are obtained for the adhesion forces in both the approach and retraction processes. It is shown that, with the increasing preload, the pull-off force increases at first and then attains a plateau value. The results agree with the previous experiments and are expected helpful in adhesion control of the array in practical applications.展开更多
This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimensional Gaussian rough surface. Using the electric field integra...This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimensional Gaussian rough surface. Using the electric field integral equation (EFIE), it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Gaussian rough surface on personal computer (PC) clusters. The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters. It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem. The influences of the root-mean-square height, the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed.展开更多
Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model o...Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model of thermal elasto-plastic contact of rough surfaces are developed respectively in this paper.The proposed model is based on the normal contact mechanics model of fractal theory of anisotropic and thermal elasto-plastic contact theory which can be used to characterize the rough surface thermodynamic properties.Then the validity of the model is verified.Finally,the influence of main parameters on the total normal load and the whole normal stiffness of thermal elasto-plastic contact at the interface is analyzed by contact simulation.The results show that the total normal load of thermal elasto-plastic contact increases with the increases of temperature.The whole normal stiffness of thermal elasto-plastic contact increases with increasing coefficient of linear expansion,scale factor,temperature difference or fractal dimension,but decreases with increasing fractal roughness.This model expands basic theory and applications of traditional models,and can be used to calculate and analyze the contacts when the temperature changes.展开更多
An efficient multiregion model is introduced to calculate the electromagnetic scattering from a perfectly electrical conducting (PEC) rough surface with or without a PEC target above it. In the multiregion model, th...An efficient multiregion model is introduced to calculate the electromagnetic scattering from a perfectly electrical conducting (PEC) rough surface with or without a PEC target above it. In the multiregion model, the rough surface is split into multiple regions depending on their position along the rough surface. Two intermediate regions are chosen as the dominant region. If a target is located above the rough surface, the target will also be included in the dominant region. The method of moments (MOM) is only adopted on the dominant region to ensure validity. Hence, the new model can greatly reduce the number of unknowns associated with full MOM analysis. The induced electric currents on the other regions are obtained by approximately considering the mutual coupling between different regions along the rough surface. Compared with the published hybrid method, this new model is not only suitable for EM scattering from a target above a rough surface but also applicable for just rough surfaces. Several numerical simulations are presented to show the validity and efficiency of the multiregion model.展开更多
Since rough surface scattering has a great impact on the accuracy of the propagation prediction algorithm,an integrated algorithm for indoor propagation prediction including rough surface scattering is proposed here.T...Since rough surface scattering has a great impact on the accuracy of the propagation prediction algorithm,an integrated algorithm for indoor propagation prediction including rough surface scattering is proposed here.This algorithm is composed of a three dimensional(3D) ray tracing algorithm based on binary space partitioning(BSP) and a diffuse scattering algorithm based on Oren-Nayar's theory.Lack of accuracy and prohibitive time consumption are the main drawbacks of the existing ray tracing based propagation prediction models.To defy these shortcomings,the balanced BSP tree is used in the proposed algorithm to accelerate the ray tracing,while the nearest object priority technique(NOP) and in contact surface(ICS) is used to eliminate the repeated rayobject intersection tests.Therefore,the final criteria of this study are the time consumption as well as accuracy by predicting the field strength and the number of received signals.Using the proposed approaches,our algorithm becomes faster and more accurate than the existing algorithms.A detailed comparative study with existing algorithms shows that the proposed algorithm has at most 37.83%higher accuracy and 34.44%lower time consumption.Moreover,effects of NOP and ICS techniques and scattering factor on time and ray prediction accuracy are also presented.展开更多
A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equa...A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method(PILE+FB-SA),and the back scattering data are obtained.Then,a conventional synthetic aperture radar(SAR) imaging procedure called back projection method is used to generate a two-dimensional(2D) image of the layered rough surfaces.Combined with the relative dielectric permittivity of realistic soil,the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces.Since the back scattering data are computed by using the fast numerical method,this method can be used to study layered rough surfaces with any parameter,which has a great application value in the detection and remote sensing areas.展开更多
A numerical simulation method based on inverse discrete Fourier transform(IDFT)is presented for generating Gaussian rough surface with a desired autocorrelation function(ACF). The probability density function of the h...A numerical simulation method based on inverse discrete Fourier transform(IDFT)is presented for generating Gaussian rough surface with a desired autocorrelation function(ACF). The probability density function of the height distribution of the generated Gaussian surface and the root-mean-square height of the rough surface are also considered. It is found that the height distribution of the generated surface follows the Gaussian distribution, the deviation of the root-mean-square height of the modeled rough surface from the desired value is smaller than that of Patir's method, and the autocorrelation function of the modeled surface is also in good agreement with the desired autocorrelation function. Compared with Patir's method, the modeled surface generated by the IDFT method is in better agreement with the desired autocorrelation function, especially when the correlation length is relatively large.展开更多
The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.Th...The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.展开更多
A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and roug...A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.展开更多
The “shooting and bouncing rays” (SBR) technique is used to analyze the electromagnetic scattering characters of ocean rough surfaces varying with time. Some numerical results are presented and compared with the met...The “shooting and bouncing rays” (SBR) technique is used to analyze the electromagnetic scattering characters of ocean rough surfaces varying with time. Some numerical results are presented and compared with the method of moments, and some factors, such as the incident angle, polarization and frequency are investigated which influence on electromagnetic scattering characters of ocean rough surfaces.展开更多
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.10575039) and the Chinese Specialized Research Fund for the Doctoral Program of Higher Education (No.2004057408).
文摘Large scale homogenous growth of microcrystalline silicon (μ.c-Si:H) on cheap substrates by inductively coupled plasma (ICP) of Ar diluted Sill4 has been studied. From XRD and Raman spectrum, we find that substrates can greatly affect the crystalline orientation, and the μc-Si:H films are comprised of small particles. Thickness detection by surface profilometry shows that the thin μc-Si:H films are homogenous in large scale. Distributions of both ion density and electron temperature are found to be uniform in the vicinity of substrate by means of diagnosis of Langmuir probe. Based on these experimental results, it can be proposed that rough surfaces play important roles in the crystalline network formation and Ar can affect the reaction process and improve the characteristics of μc-Si:H films. Also, ICP reactor can deposit the thin film in large scale.
基金supported by National Natural Science Foundation of China (Grant Nos. 50975276,50475164)National Basic Research Program of China (973 Program,Grant No. 2007CB607605)+1 种基金Doctoral Programs Foundation of Ministry of Education of China (Grant No.200802900513)Priority Academic Program Development of Jiangsu Higher Education Institutions of China (PAPD)
文摘The thermal contact conductance problem is an important issue in studying the heat transfer of engineering surfaces, which has been widely studied since last few decades, and for predicting which many theoretical models have been established. However, the models which have been existed are lack of objectivity due to that they are mostly studied based on the statistical methodology characterization for rough surfaces and simple partition for the deformation formats of contact asperity. In this paper, a fractal prediction model is developed for the thermal contact conductance between two rough surfaces based on the rough surface being described by three-dimensional Weierstrass and Mandelbrot fractal function and assuming that there are three kinds of asperity deformation modes: elastic, elastoplastic and fully plastic. Influences of contact load and contact area as well as fractal parameters and material properties on the thermal contact conductance are investigated by using the presented model. The investigation results show that the thermal contact conductance increases with the increasing of the contact load and contact area. The larger the fractal dimension, or the smaller the fractal roughness, the larger the thermal contact conductance is. The thermal contact conductance increases with decreasing the ratio of Young's elastic modulus to the microhardness. The results obtained indicate that the proposed model can effectively predict the thermal contact conductance at the interface, which provide certain reference to the further study on the issue of heat transfer between contact surfaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.51105304,51475364)Shaanxi Provincial Natural Science Basic Research Plan of China(Grant No.2015JM5212)
文摘Because the result of the MB fractal model contradicts with the classical contact mechanics, a revised elastoplastic contact model of a single asperity is developed based on fractal theory. The critical areas of a single asperity are scale dependent, with an increase in the contact load and contact area, a transition from elastic, elastoplastic to full plastic deformation takes place in this order. In considering the size distribution function, analytic expression between the total contact load and the real contact area on the contact surface is obtained. The elastic, elastoplastic and full plastic contact load are obtained by the critical elastic contact area of the biggest asperity and maximun contact area of a single asperity. The results show that a rough surface is firstly in elastic deformation. As the load increases, elastoplastic or full plastic deformation takes place. For constant characteristic length scale G, the slope of load-area relation is proportional to fractal dimension D. For constant fractal dimension D, the slope of load-area relation is inversely proportional to G. For constant D and G, the slope of load-area relation is inversely proportional to property of the material ~b, namely with the same load, the material of rough surface is softer, and the total contact area is larger. The contact mechanics model provides a foundation for study of the friction, wear and seal performance of rough surfaces.
基金supported by China Post-doctor Science Foundation (Grant No. 20070420748)Fujian Provincial Natural Science Foundation of China (Grant No. E0610032)
文摘The strong stiction of adjacent surfaces with meniscus is a major design concern in the devices with a micro-sized interface. Today, more and more research works are devoted to understand the adhesion mechanism. This paper concerns the elastic-plastic adhesion of a fractal rough surface contacting with a perfectly wetted rigid plane. The topography of rough surface is modeled with a two-variable Weierstrass-Mandelbrot fractal function. The Laplace pressure is dealt with the Dugdale approximation. Then the adhesion model of the plastically deformed asperities with meniscus can be established with the fractal microcontact model. According to the plastic flow criterion, the elastic-plastic adhesion model of the contacting rough surfaces with meniscus can be solved by combining the Maugis-Dugdale (MD) model and its extension with the Morrow method. The necessity for considering the asperities' plastic deformation has been validated by comparing the simulation result of the presented model with that of the elastic adhesion model. The stiction mechanism of rough surfaces with meniscus is also discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education, China
文摘A current based hybrid method (HM) is proposed which combines the method of moment (MOM) with the Kirchhoff approximation (KA) for the analysis of scattering interaction between a two-dimensional (2D) infinitely long conducting target with arbitrary cross section and a one-dimensional (1D) Gaussian rough surface. The electromagnetic scattering region in the HM is split into KA region and MOM region. The electric field integral equation (EFIE) in MOM region (target) is derived, the computational time of the HM depends mainly on the number of unknowns of the target. The bistatic scattering coefficient for the infinitely long cylinder above the rough surface with Gaussian roughness spectrum is calculated, and the numerical results are compared and verified with those obtained by the conventional MOM, which shows the high efficiency of the HM. Finally, the influence of the size, location of the target, the rms height and correlation length of the rough surface on the bistatic scattering coefficient with different polarizations is discussed in detail.
基金Project supported by the National Natural Science Foundation of China (Grant No 60571058)the National Defense Foundation of China
文摘This paper proposes a hybrid method based on the forward-backward method (FBM) and the reciprocity theorem (RT) for evaluating the scattering field from dielectric rough surface with a 2D target above it. Here, the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM, and the scattered field from the isolated target is obtained utilizing the method of moments (MOM). Meanwhile, the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT. Our hybrid method is first validated by available MOM results. Then, the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude, incident and scattering angles are numerically simulated and discussed. This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.
基金Projects(51535012,U1604255)supported by the National Natural Science Foundation of ChinaProject(2016JC2001)supported by the Key Research and Development Project of Hunan Province,China
文摘Modeling of rough surfaces with given roughness parameters is studied,where surfaces with Gaussian height distribution and exponential auto-correlation function(ACF) are concerned.A large number of micro topography samples are randomly generated first using the rough surface simulation method with FFT.Then roughness parameters of the simulated roughness profiles are calculated according to parameter definition,and the relationship between roughness parameters and statistical distribution parameters is investigated.The effects of high-pass filtering with different cut-off lengths on the relationship are analyzed.Subsequently,computing formulae of roughness parameters based on standard deviation and correlation length are constructed with mathematical regression method.The constructed formulae are tested with measured data of actual topographies,and the influences of auto-correlation variations at different lag lengths on the change of roughness parameter are discussed.The constructed computing formulae provide an approach to active modeling of rough surfaces with given roughness parameters.
基金supported by the National Natural Science Foundation for Distinguished Young Scholars of China(Grant No.61225002)the Aeronautical Science Fund and Aviation Key Laboratory of Science and Technology on Avionics Integrated Sensor System Simulation,China(Grant No.20132081015)the Fundamental Research Funds for the Central Universities,China(Grant No.SPSZ031403)
文摘An efficiently iterative analytical-numerical method is proposed for two-dimensional (2D) electromagnetic scattering from a perfectly electric conducting (PEC) target buried under a dielectric rough surface. The basic idea is to employ the Kirchhoff approximation (KA) to accelerate the boundary integral method (BIM). Below the rough surface, an iterative system is designed between the rough surface and the target. The KA is used to simulate the initial field on the rough surface based on the Fresnel theory, while the target is analyzed by the boundary integral method to obtain a precise result. The fields between the rough surface and the target can be linked by the boundary integral equations below the rough surface. The technique presented here is highly efficient in terms of computational memory, time, and versatility. Numerical simulations of two typical models are carried out to validate the method.
基金supported by the National Natural Science Foundation of China (Grant No 60571058)Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No 20070701010)
文摘A normalized two-dimensional band-limited Weierstrass fractal function is used for modelling the dielectric rough surface. An analytic solution of the scattered field is derived based on the Kirchhoff approximation. The variance of scattering intensity is presented to study the fractal characteristics through theoretical analysis and numerical calculations. The important conclusion is obtained that the diffracted envelope slopes of scattering pattern can be approximated as a slope of linear equation. This conclusion will be applicable for solving the inverse problem of reconstructing rough surface and remote sensing.
文摘Three types of rough surface were processed by laser irradiation on the 3Cr2W8V material hot-work die steel surface. The wear experiments with smooth surface and rough surface samples were repeated on the pin-tray wear machine. According to the wear results, we studied the regularity of wear resistance of different rough surface samples. The results indicated that bionic rough surface can improve the wear resistance of the material and the wear resistance can be increased 1-2 times, compared with the smooth surface. Also, the wear resistance of the rough surface was affected by laser current and duration of impulse. The bigger the laser current or the impulse duration, the better is the wear resistance. When the distance between the same kind of units which are distributed on the surfaces is changed, the wear resistance changes. The wear resistance of a bionic rough surface on which the grid units were distributed at spacing of 1 mm was the best. And we designed the wear models.
基金Project supported by the National Natural Science Foundation of China(No.11132009)the Collaborative Innovation Center of Suzhou Nano Science and Technology
文摘Adhesion of bio-inspired microfibre arrays to a rough surface is studied theoretically. The array consists of vertical elastic rods fixed on a rigid backing layer, and the surface is modeled by rigid steps with a normally distributed height. Analytical expressions are obtained for the adhesion forces in both the approach and retraction processes. It is shown that, with the increasing preload, the pull-off force increases at first and then attains a plateau value. The results agree with the previous experiments and are expected helpful in adhesion control of the array in practical applications.
基金supported by the National Natural Science Foundation of China (Grant No 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No 20070701010)
文摘This paper firstly applies the finite impulse response filter (FIR) theory combined with the fast Fourier transform (FFT) method to generate two-dimensional Gaussian rough surface. Using the electric field integral equation (EFIE), it introduces the method of moment (MOM) with RWG vector basis function and Galerkin's method to investigate the electromagnetic beam scattering by a two-dimensional PEC Gaussian rough surface on personal computer (PC) clusters. The details of the parallel conjugate gradient method (CGM) for solving the matrix equation are also presented and the numerical simulations are obtained through the message passing interface (MPI) platform on the PC clusters. It finds significantly that the parallel MOM supplies a novel technique for solving a two-dimensional rough surface electromagnetic-scattering problem. The influences of the root-mean-square height, the correlation length and the polarization on the beam scattering characteristics by two-dimensional PEC Gaussian rough surfaces are finally discussed.
基金Project(52130501)supported by the National Natural Science Foundation of ChinaProject(LY20E050012)supported by the Natural Science Foundation of Zhejiang Province,ChinaProject(Y201942581)supported by the Scientific Research Project of Education Department of Zhejiang Province,China。
文摘Without considering the influence of heat,existing fractal contact models are not applicable to analyze the contacts when the temperature changes.For this problem,the normal load model and the normal stiffness model of thermal elasto-plastic contact of rough surfaces are developed respectively in this paper.The proposed model is based on the normal contact mechanics model of fractal theory of anisotropic and thermal elasto-plastic contact theory which can be used to characterize the rough surface thermodynamic properties.Then the validity of the model is verified.Finally,the influence of main parameters on the total normal load and the whole normal stiffness of thermal elasto-plastic contact at the interface is analyzed by contact simulation.The results show that the total normal load of thermal elasto-plastic contact increases with the increases of temperature.The whole normal stiffness of thermal elasto-plastic contact increases with increasing coefficient of linear expansion,scale factor,temperature difference or fractal dimension,but decreases with increasing fractal roughness.This model expands basic theory and applications of traditional models,and can be used to calculate and analyze the contacts when the temperature changes.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60971067)the Specialized Research Fund for the Doctoral Program of Higher Education,China (Grant No. 20100203110016)the Fundamental Research Funds for the Central Universities,China (Grant No. K50510070001)
文摘An efficient multiregion model is introduced to calculate the electromagnetic scattering from a perfectly electrical conducting (PEC) rough surface with or without a PEC target above it. In the multiregion model, the rough surface is split into multiple regions depending on their position along the rough surface. Two intermediate regions are chosen as the dominant region. If a target is located above the rough surface, the target will also be included in the dominant region. The method of moments (MOM) is only adopted on the dominant region to ensure validity. Hence, the new model can greatly reduce the number of unknowns associated with full MOM analysis. The induced electric currents on the other regions are obtained by approximately considering the mutual coupling between different regions along the rough surface. Compared with the published hybrid method, this new model is not only suitable for EM scattering from a target above a rough surface but also applicable for just rough surfaces. Several numerical simulations are presented to show the validity and efficiency of the multiregion model.
基金financial support under the University of Malaya Research Grant(UMRG) scheme(RG098/12ICT)
文摘Since rough surface scattering has a great impact on the accuracy of the propagation prediction algorithm,an integrated algorithm for indoor propagation prediction including rough surface scattering is proposed here.This algorithm is composed of a three dimensional(3D) ray tracing algorithm based on binary space partitioning(BSP) and a diffuse scattering algorithm based on Oren-Nayar's theory.Lack of accuracy and prohibitive time consumption are the main drawbacks of the existing ray tracing based propagation prediction models.To defy these shortcomings,the balanced BSP tree is used in the proposed algorithm to accelerate the ray tracing,while the nearest object priority technique(NOP) and in contact surface(ICS) is used to eliminate the repeated rayobject intersection tests.Therefore,the final criteria of this study are the time consumption as well as accuracy by predicting the field strength and the number of received signals.Using the proposed approaches,our algorithm becomes faster and more accurate than the existing algorithms.A detailed comparative study with existing algorithms shows that the proposed algorithm has at most 37.83%higher accuracy and 34.44%lower time consumption.Moreover,effects of NOP and ICS techniques and scattering factor on time and ray prediction accuracy are also presented.
基金Project supported by the State Key Laboratory Fund of Millimeter Waves,Nanjing,China (Grant No. K201201)the Natural Science Foundation Research Programs of Shannxi Province,China (Grant No. 2011JM8025)
文摘A quick and exact imaging method for one-dimensional layered rough surfaces is proposed in this paper to study the scattering characteristics of a layered medium that exists widely in nature.The boundary integral equations of layered rough surfaces are solved by using the propagation-inside-layer expansion combined with the forward and backward spectral acceleration method(PILE+FB-SA),and the back scattering data are obtained.Then,a conventional synthetic aperture radar(SAR) imaging procedure called back projection method is used to generate a two-dimensional(2D) image of the layered rough surfaces.Combined with the relative dielectric permittivity of realistic soil,the random rough surfaces with Gauss spectrum are used to simulate the layered medium with rough interfaces.Since the back scattering data are computed by using the fast numerical method,this method can be used to study layered rough surfaces with any parameter,which has a great application value in the detection and remote sensing areas.
基金Supported by the National Basic Research Program of China("973"Program,No.2013CB632305)
文摘A numerical simulation method based on inverse discrete Fourier transform(IDFT)is presented for generating Gaussian rough surface with a desired autocorrelation function(ACF). The probability density function of the height distribution of the generated Gaussian surface and the root-mean-square height of the rough surface are also considered. It is found that the height distribution of the generated surface follows the Gaussian distribution, the deviation of the root-mean-square height of the modeled rough surface from the desired value is smaller than that of Patir's method, and the autocorrelation function of the modeled surface is also in good agreement with the desired autocorrelation function. Compared with Patir's method, the modeled surface generated by the IDFT method is in better agreement with the desired autocorrelation function, especially when the correlation length is relatively large.
基金Project(2009AA05Z215) supported by the National High-Tech Research and Development Program of China
文摘The radiative properties of three different materials surfaces with one-dimensional microscale random roughness were obtained with the finite difference time domain method(FDTD) and near-to-far-field transformation.The surface height conforms to the Gaussian probability density function distribution.Various computational modeling issues that affect the accuracy of the predicted properties were discussed.The results show that,for perfect electric conductor(PEC) surfaces,as the surface roughness increases,the magnitude of the spike reduces and eventually the spike disappears,and also as the ratio of root mean square roughness to the surface correlation distance increases,the retroreflection becomes evident.The predicted values of FDTD solutions are in good agreement with the ray tracing and integral equation solutions.The overall trend of bidirectional reflection distribution function(BRDF) of PEC surfaces and silicon surfaces is the same,but the silicon's is much less than the former's.The BRDF difference from two polarization modes for the gold surfaces is little for smaller wavelength,but it is much larger for the longer wavelength and the FDTD simulation results agree well with the measured data.In terms of PEC surfaces,as the incident angle increases,the reflectivity becomes more specular.
基金Project supported by the National Natural Science Foundation of China(Grant No.61771407)
文摘A parabolic equation (PE) based method for analyzing composite scattering under an electromagnetic wave incidence at low grazing angle, which composes of three-dimensional (3-D) electrically large targets and rough surface, is presented and discussed. A superior high-order PE version is used to improve the accuracy at wider paraxial angles, and along with the alternating direction implicit (ADI) differential technique, the computational efficiency is further improved. The formula of bistatic normalized radar cross section is derived by definition and near-far field transformation. Numerical examples are given to show the validity and accuracy of the proposed approach, in which the results are compared with those of Kirchhoff approximation (KA) and moment of method (MoM). Furthermore, the bistatic scattering properties of composite model in which the 3-D PEC targets on or above the two-dimensional Gaussian rough surfaces under the tapered wave incidence are analyzed.
文摘The “shooting and bouncing rays” (SBR) technique is used to analyze the electromagnetic scattering characters of ocean rough surfaces varying with time. Some numerical results are presented and compared with the method of moments, and some factors, such as the incident angle, polarization and frequency are investigated which influence on electromagnetic scattering characters of ocean rough surfaces.