Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead...Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil.展开更多
Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthe...Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthermore, a process-based model was built to evaluate the dynamics of four herbaceous ecosystems (including dynamics of above-ground biomass, below-ground biomass, and litter biomass), each dominated by Aneurolepidium chinense (Trin.) Kitag., Chloris virgata Sw., Puccinellia tenuiflora (Turcz.) Scribn. et Merr. and Suaeda glauca Bunge. This model is a daily-time step model, suitable for simulating hydrological, alkalization/de-alkalization and salinization/desalinization processes of heterogeneous soil, and growth dynamics of different grassland communities. With climatic data and experimental data of Changling Experimental Site in Jilin Province, the soil moisture content (in 1991, 1996, 1997 and 1998), soil salt concentration, exchangeable cation percentage and pH in soil and growth dynamics of these four sorts of grassland communities (in 1991) were simulated and the results were verified to be in accord with observed data.展开更多
Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plas...Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.展开更多
Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wh...Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002-2003 and 2003-2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.展开更多
Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period ca...Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period can be divided into three stages:1.formation of a salt peak,2.the salt peak moving downwards till the appearance of the summit of the salt peak,3.the salt peak moving further downwards with the peak value decreasing.Results show that the maximum salt peak appears at the same depth if soil texture and outflow condition are the same.Factors affecting salt and water movement and ion components in the outflow solution underinfiltration are discussed.展开更多
Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced tech...Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.展开更多
Taking an area of about 2.3×10~4 km~2 of southeastern Iran, this study aims to detect and predict regional-scale salt-affected lands. Three sets of Landsat images, each set containing 4 images for 1986, 2000, and...Taking an area of about 2.3×10~4 km~2 of southeastern Iran, this study aims to detect and predict regional-scale salt-affected lands. Three sets of Landsat images, each set containing 4 images for 1986, 2000, and 2015 were acquired as the main source of data. Radiometric, atmospheric and cutline blending methods were used to improve the quality of images and help better classify salinized land areas under the support vector machine method. A set of landscape metrics was also employed to detect the spatial pattern of salinized land expansion from 1986 to 2015. Four factors including distance to sea, distance to sea water channels, slope, and elevation were identified as the main contributing factors to land salinization. These factors were then integrated using the multi-criteria evaluation (MCE) procedure to generate land sensitivity map to salinization and also to calibrate the cellular-automata (CA) Markov chain (CA-Markov) model for simulation of salt-affected lands up to 2030, 2040 and 2050. The results of this study showed a dramatic dispersive expansion of salinized land from 7.7 % to 12.7% of the total study area from 1986 to 2015. The majority of areas prone to salinization and the highest sensitivity of land to salinization was found to be in the southeastern parts of the region. The result of the MCE-informed CA-Markov model revealed that 20.3% of the study area is likely to be converted to salinized lands by 2050. The findings of this research provided a view of the magnitude and direction of salinized land expansion in a past-to-future time period which should be considered in future land development strategies.展开更多
Cotton is the main economically important crop in Xinjiang,China,but soil salinization and shortage of water and nutrients have restricted its production.A field experiment was carried out in the salinity-affected ari...Cotton is the main economically important crop in Xinjiang,China,but soil salinization and shortage of water and nutrients have restricted its production.A field experiment was carried out in the salinity-affected arid area of Northwest China from 2018 to 2019 to explore the effects of nitrogen and water regulation on physiological growth,yield,water and nitrogen use efficiencies,and economic benefit of cotton.The salinity levels were 7.7(SL)and 12.5 dS/m(SM).Drip irrigation was used with low,medium and adequate irrigation levels representing 60%,80%and 100%of cotton crop water demand,respectively,and three nitrogen applications,i.e.,206,275 and 343 kg/hm^(2),accounting for 75%,100%and 125%of local N application,respectively were used.The multi-objective optimization based on spatial analysis showed that,at SL salinity,water use efficiency(WUE),nitrogen use efficiency(NUE),economic benefit and yield simultaneously reached more than 85%of their maxima at 379.18-398.32 mm irrigation and 256.69-308.87 kg/hm^(2).At SM salinity,WUE,yield and economic benefit simultaneously reached more than 85%of their maxima when irrigation was 351.24-376.30 mm and nitrogen application was 230.18-289.89 kg/hm^(2).NUE,yield and economic benefit simultaneously reached their maxima at 428.01-337.72 mm irrigation,and nitrogen application range was 222.14-293.93 kg/hm^(2).The plants at SL salinity had 21.58%-46.59%higher WUE rates,14.91%-34.35%higher NUE rates and 20.71%-35.34%higher yields than those at SM salinity.The results are of great importance for the nutrient and water management in cotton field in the arid saline area.展开更多
In order to study the distribution and evolution features of saline soil, the correlations between the groundwater depth, salinity and salinization of soil are examined through analyzing the hydrometeorological data a...In order to study the distribution and evolution features of saline soil, the correlations between the groundwater depth, salinity and salinization of soil are examined through analyzing the hydrometeorological data and distribution maps of saline soil, groundwater depth and salinity in 1957 and 2005. The results show that the area of salinization has generally decreased. The area of salinization decreases with the increasing groundwater depth, and the dynamic evolution characteristics appeared between the groundwater depth and area of salinization. The area of heavy salinization is greatest when the groundwater salinity is > 5 g/L, the area of moderate salinization is greatest when the groundwater salinity is between 2-5 g/L, the area of light salinization is greatest when the groundwater salinity is 1-2 g/L and the area of non-salinization is greatest when the groundwater salinity is <1 g/L. The area of heavy salinization was characterized with groundwater depth <2.5 m and salinity >1.8 g/L. The area of non-salinization was characterized with groundwater depth >4.0 m and salinity 0.2-1.5 g/L.展开更多
Zinc (Zn (II) HEDTA) was used to determine their effect on salt-induced damages in maize plants. The aim of this study was to investigate the antioxidant capacity and the levels of enhanced total phenolic (TPC), total...Zinc (Zn (II) HEDTA) was used to determine their effect on salt-induced damages in maize plants. The aim of this study was to investigate the antioxidant capacity and the levels of enhanced total phenolic (TPC), total flavonoid (TFC) contents and their antioxidant activity in leaves of two maize cultivars Single cross 10 (SC10) and Single cross 162 (SC162) grown in two levels of salinity 0.00 and 100 mmol in response to 20 μmol Zn (II) HEDTA foliar spray treatments. Significant differences (P ≤ 0.05) in amounts of TPC ranged from (2.55 to 4.62 mg/gdw as Gallic) in Single cross 10 (SC10) and from (2.53 to 4.38 mg/gdw as Gallic) in Single cross 162 (SC162), TFC (ranged 1.53 to 2.41 mg/gdw as qurestien) in Single cross 10 (SC10) and from (1.28 to 2.41 mg/gdw as qurestien) in Single cross 162 (SC162) among all treated plants were observed. The levels of their compounds increase related to foliar spraying of Zn (II) HEDTA. A significant positive correlation between TPC, TFC and DPPH scavenging activity and iron chelating activity was observed which shows that phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by showing enhanced antioxidant activity which resulted in reduced membrane damage and hence improved growth. According to the results obtained, the adverse effects of salt stress on maize plants can partly be alleviated with application of Zn (II)-HEDTA chelates. It is concluded that the application of Zn (II) HEDTA to maize plants grown in salt conditions leads to the increase of antioxidant compounds and maize tolerance.展开更多
The salinized sandy lands are the important reclaimable reserve wastelands in thesouth area of the Xinjiang Uygur Autonomous Region of China. But it is necessary that the eco-logical environment of the area is not des...The salinized sandy lands are the important reclaimable reserve wastelands in thesouth area of the Xinjiang Uygur Autonomous Region of China. But it is necessary that the eco-logical environment of the area is not destroyed by action of oasis development. The main factor tohinder oasis development is land salinization. Rational oasis establishment rebuilds wastelandswith lower productivity and utilization efficiency for the growth of agriculture, forestry, and stock raising. The results of surveying sub-soil environment of Aimugaike. Awati oasis in Hotian County ofthe Xinjiang Uygur Autonomous Region show that the underground water and soil environment arenot deteriorated under the rational management and administration, which could be coordinatedfor obtaining economic and environmental benefit. During the oasis establishment period from1997 to 1999, the plowland area has reached 166.7 hm2, and the seed cotton yield per unit areahas reached 2250 kg @ hm-2, the area of timber forest and active sand break forest has reached 20hm2, the area of fruit trees is 71.5 hm2; and the soil moisture has decreased from 22.07% to18.12%. In the first year of oasis establishment, the soil type has changed salt soil into light saltsoil, in the second year the soil has been out of salt harm; and the content of soil organic matter intopsoil has increased obviously.展开更多
Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinit...Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.展开更多
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc...The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.展开更多
To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC res...To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides.展开更多
Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,an...Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.展开更多
The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Ar...The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub...Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.展开更多
Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination a...Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands.展开更多
Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this ...Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this study,we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1(COI1)-mediated JA signaling for this process.Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN(JAZ)repressors during salinity stress-enhanced JA signaling.Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1(ABF1),AREB1/ABF2,ABF3,and AREB2/ABF4,which belong to the basic leucine zipper(bZIP)transcription factor family and respond to salinity stress.Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition.Furthermore,ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-D3A plants.Moreover,ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE(AOS)transcription,but this activation was inhibited by JAZ1.In addition,ABF3 competitively bind to JAZ1,thereby decreasing the interaction between JAZ1 and MYC2,which is the master transcription factor controlling JA signaling.Collectively,our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.展开更多
基金the National Natural Science Foundation of China(No.42107513)the Key Projects of Natural Science Foundation of Gansu Province(No.22JR5RA051)+1 种基金the Gansu Province Science and Technology project(No.21JR7RA070)the Key Research and Development Program of Gansu Province(No.21YF5FA151).
文摘Salinized soil is an important reserved arable land resource in China.The management and utilization of salinized soil can safeguard the current size of arable land and a stable grain yield.Salt accumulation will lead to the deterioration of soil properties,destroy soil production potential and damage soil ecological functions,which in turn will threaten global water and soil resources and food security,and affect sustainable socio-economic development.Microorganisms are important components of salinized soil.Microbial remediation is an important research tool in improving salinized soil and is key to realizing sustainable development of agriculture and the ecosystem.Knowledge about the impact of salinization on soil properties and measures using microorganisms in remediation of salinized soil has grown over time.However,the mechanisms governing these impacts and the ecological principles for microbial remediation are scarce.Thus,it is imperative to summarize the effects of salinization on soil physical,chemical,and microbial properties,and then review the related mechanisms of halophilic and halotolerant microorganisms in salinized soil remediation via direct and indirect pathways.The stability,persistence,and safety of the microbial remediation effect is also highlighted in this review to further promote the application of microbial remediation in salinized soil.The objective of this review is to provide reference and theoretical support for the improvement and utilization of salinized soil.
文摘Using Object-oriented design and a new programming language JAVA, a physically-based model was built to simulate the hydrological, alkalization/de-alkalization and salinization/desalinization processes in soil. Furthermore, a process-based model was built to evaluate the dynamics of four herbaceous ecosystems (including dynamics of above-ground biomass, below-ground biomass, and litter biomass), each dominated by Aneurolepidium chinense (Trin.) Kitag., Chloris virgata Sw., Puccinellia tenuiflora (Turcz.) Scribn. et Merr. and Suaeda glauca Bunge. This model is a daily-time step model, suitable for simulating hydrological, alkalization/de-alkalization and salinization/desalinization processes of heterogeneous soil, and growth dynamics of different grassland communities. With climatic data and experimental data of Changling Experimental Site in Jilin Province, the soil moisture content (in 1991, 1996, 1997 and 1998), soil salt concentration, exchangeable cation percentage and pH in soil and growth dynamics of these four sorts of grassland communities (in 1991) were simulated and the results were verified to be in accord with observed data.
基金funded by the National Natural Science Foundation of China(31471455,31000692 and 31070002)the Fundamental Research Funds for National Public Research Institutions,China(ZYQHS2015-25)the Beijing Natural Science Foundation,China(5152017)
文摘Salt stress has been increasingly constraining crop productivity in arid lands of the world. In our recent study, salt stress was aleviated and crop productivity was improved remarkably by straw layer burial plus plastic iflm mulching in a saline soil. However, its impact on the microlfora diversity is not wel documented. Field micro-plot experiments were conducted from 2010 to 2011 using four tilage methods: (i) deep tilage with plastic iflm mulching (CK), (i) straw layer burial at 40 cm (S), (ii) straw layer burial plus surface soil mulching with straw material (S+S), and (iv) plastic iflm mulching plus buried straw layer (P+S). Culturable microbes and predominant bacterial communities were studied; based on 16S rDNA, bacterial com-munity structure and abundance were characterized using denaturing gradient gel electrophoresis (DGGE) and polymerase chain reaction (PCR). Results showed that P+S was the most favorable for culturable bacteria, actinomyces and fungi and induced the most diverse genera of bacteria compared to other tilage methods. Soil temperature had signiifcant positive correlations with the number of bacteria, actinomyces and fungi (P〈0.01). However, soil water was poorly correlated with any of the microbes. Salt content had a signiifcant negative correlation with the number of microbers, especialy for bacteria and fungi (P〈0.01). DGGE analysis showed that the P+S exhibited the highest diversity of bacteria with 20 visible bands folowed by S+S, S and CK. Moreover, P+S had the highest similarity (68%) of bacterial communities with CK. The major bacterial genera in al soil samples wereFirmicutes,Proteobacteria andActinobacteria. Given the considerable increase in microbial growth, the combined use of straw layer burial and plastic iflm mulching could be a practical option for aleviating salt stress effects on soil microbial community and thereby improving crop production in arid saline soils.
基金Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2002AA2Z404), and the Key Innovation Project (No. KZCX3-SW-446) from Chinese Academy of Sciences,China
文摘Freshwater shortage is the main problem in Heilonggang lower-lying plain, while a considerable amount of underground saline water is available. We wanted to find an effective way to use the brackish water in winter wheat production. Surface mulch has significant effect in reducing evaporation and decreasing soil salinity level. This research was aimed at comparing the effect of different mulch materials on winter wheat production. The experiment was conducted during 2002-2003 and 2003-2004. Four treatments were setup: (1) no mulch, (2) mulch with plastic film, (3) mulch with corn straw, (4) mulch with concrete slab between the rows. The result indicated that concrete mulch and straw mulch was effective in conserving soil water compared to plastic film mulch which increased soil temperature. Concrete mulch decreases surface soil salinity better in comparison to other mulches used. Straw mulch conserved more soil water but decreased wheat grain yield probably due to low temperature. Concrete mulch had similar effect with plastic film mulch on promoting winter wheat development and growth.
文摘Continuous monitoring of salt and water movement in the soil profile of highly salinized topsoil under steadystate infiltration was conducted.It gives that salt and water dynamics during convection-diffusion period can be divided into three stages:1.formation of a salt peak,2.the salt peak moving downwards till the appearance of the summit of the salt peak,3.the salt peak moving further downwards with the peak value decreasing.Results show that the maximum salt peak appears at the same depth if soil texture and outflow condition are the same.Factors affecting salt and water movement and ion components in the outflow solution underinfiltration are discussed.
基金supported by the International Platform for Dryland Research and Education, Tottori University and the National Key R&D Program of China (2016YFC0500909)
文摘Soil salinization is a serious ecological and environmental problem because it adversely affects sustainable development worldwide, especially in arid and semi-arid regions. It is crucial and urgent that advanced technologies are used to efficiently and accurately assess the status of salinization processes. Case studies to determine the relations between particular types of salinization and their spectral reflectances are essential because of the distinctive characteristics of the reflectance spectra of particular salts. During April 2015 we collected surface soil samples(0–10 cm depth) at 64 field sites in the downstream area of Minqin Oasis in Northwest China, an area that is undergoing serious salinization. We developed a linear model for determination of salt content in soil from hyperspectral data as follows. First, we undertook chemical analysis of the soil samples to determine their soluble salt contents. We then measured the reflectance spectra of the soil samples, which we post-processed using a continuum-removed reflectance algorithm to enhance the absorption features and better discriminate subtle differences in spectral features. We applied a normalized difference salinity index to the continuum-removed hyperspectral data to obtain all possible waveband pairs. Correlation of the indices obtained for all of the waveband pairs with the wavebands corresponding to measured soil salinities showed that two wavebands centred at wavelengths of 1358 and 2382 nm had the highest sensitivity to salinity. We then applied the linear regression modelling to the data from half of the soil samples to develop a soil salinity index for the relationships between wavebands and laboratory measured soluble salt content. We used the hyperspectral data from the remaining samples to validate the model. The salt content in soil from Minqin Oasis were well produced by the model. Our results indicate that wavelengths at 1358 and 2382 nm are the optimal wavebands for monitoring the concentrations of chlorine and sulphate compounds, the predominant salts at Minqin Oasis. Our modelling provides a reference for future case studies on the use of hyperspectral data for predictive quantitative estimation of salt content in soils in arid regions. Further research is warranted on the application of this method to remotely sensed hyperspectral data to investigate its potential use for large-scale mapping of the extent and severity of soil salinity.
文摘Taking an area of about 2.3×10~4 km~2 of southeastern Iran, this study aims to detect and predict regional-scale salt-affected lands. Three sets of Landsat images, each set containing 4 images for 1986, 2000, and 2015 were acquired as the main source of data. Radiometric, atmospheric and cutline blending methods were used to improve the quality of images and help better classify salinized land areas under the support vector machine method. A set of landscape metrics was also employed to detect the spatial pattern of salinized land expansion from 1986 to 2015. Four factors including distance to sea, distance to sea water channels, slope, and elevation were identified as the main contributing factors to land salinization. These factors were then integrated using the multi-criteria evaluation (MCE) procedure to generate land sensitivity map to salinization and also to calibrate the cellular-automata (CA) Markov chain (CA-Markov) model for simulation of salt-affected lands up to 2030, 2040 and 2050. The results of this study showed a dramatic dispersive expansion of salinized land from 7.7 % to 12.7% of the total study area from 1986 to 2015. The majority of areas prone to salinization and the highest sensitivity of land to salinization was found to be in the southeastern parts of the region. The result of the MCE-informed CA-Markov model revealed that 20.3% of the study area is likely to be converted to salinized lands by 2050. The findings of this research provided a view of the magnitude and direction of salinized land expansion in a past-to-future time period which should be considered in future land development strategies.
基金The study was supported by the National Natural Science Foundation of China(U1803244,51669029,2020DB01)the National Key Research and Development Program of China(2016YFC0501406).
文摘Cotton is the main economically important crop in Xinjiang,China,but soil salinization and shortage of water and nutrients have restricted its production.A field experiment was carried out in the salinity-affected arid area of Northwest China from 2018 to 2019 to explore the effects of nitrogen and water regulation on physiological growth,yield,water and nitrogen use efficiencies,and economic benefit of cotton.The salinity levels were 7.7(SL)and 12.5 dS/m(SM).Drip irrigation was used with low,medium and adequate irrigation levels representing 60%,80%and 100%of cotton crop water demand,respectively,and three nitrogen applications,i.e.,206,275 and 343 kg/hm^(2),accounting for 75%,100%and 125%of local N application,respectively were used.The multi-objective optimization based on spatial analysis showed that,at SL salinity,water use efficiency(WUE),nitrogen use efficiency(NUE),economic benefit and yield simultaneously reached more than 85%of their maxima at 379.18-398.32 mm irrigation and 256.69-308.87 kg/hm^(2).At SM salinity,WUE,yield and economic benefit simultaneously reached more than 85%of their maxima when irrigation was 351.24-376.30 mm and nitrogen application was 230.18-289.89 kg/hm^(2).NUE,yield and economic benefit simultaneously reached their maxima at 428.01-337.72 mm irrigation,and nitrogen application range was 222.14-293.93 kg/hm^(2).The plants at SL salinity had 21.58%-46.59%higher WUE rates,14.91%-34.35%higher NUE rates and 20.71%-35.34%higher yields than those at SM salinity.The results are of great importance for the nutrient and water management in cotton field in the arid saline area.
基金funded by 973 Program Special Item (2010CB428805-1)
文摘In order to study the distribution and evolution features of saline soil, the correlations between the groundwater depth, salinity and salinization of soil are examined through analyzing the hydrometeorological data and distribution maps of saline soil, groundwater depth and salinity in 1957 and 2005. The results show that the area of salinization has generally decreased. The area of salinization decreases with the increasing groundwater depth, and the dynamic evolution characteristics appeared between the groundwater depth and area of salinization. The area of heavy salinization is greatest when the groundwater salinity is > 5 g/L, the area of moderate salinization is greatest when the groundwater salinity is between 2-5 g/L, the area of light salinization is greatest when the groundwater salinity is 1-2 g/L and the area of non-salinization is greatest when the groundwater salinity is <1 g/L. The area of heavy salinization was characterized with groundwater depth <2.5 m and salinity >1.8 g/L. The area of non-salinization was characterized with groundwater depth >4.0 m and salinity 0.2-1.5 g/L.
文摘Zinc (Zn (II) HEDTA) was used to determine their effect on salt-induced damages in maize plants. The aim of this study was to investigate the antioxidant capacity and the levels of enhanced total phenolic (TPC), total flavonoid (TFC) contents and their antioxidant activity in leaves of two maize cultivars Single cross 10 (SC10) and Single cross 162 (SC162) grown in two levels of salinity 0.00 and 100 mmol in response to 20 μmol Zn (II) HEDTA foliar spray treatments. Significant differences (P ≤ 0.05) in amounts of TPC ranged from (2.55 to 4.62 mg/gdw as Gallic) in Single cross 10 (SC10) and from (2.53 to 4.38 mg/gdw as Gallic) in Single cross 162 (SC162), TFC (ranged 1.53 to 2.41 mg/gdw as qurestien) in Single cross 10 (SC10) and from (1.28 to 2.41 mg/gdw as qurestien) in Single cross 162 (SC162) among all treated plants were observed. The levels of their compounds increase related to foliar spraying of Zn (II) HEDTA. A significant positive correlation between TPC, TFC and DPPH scavenging activity and iron chelating activity was observed which shows that phenolic compounds were involved in the mechanism of salt tolerance of the two cultivars by showing enhanced antioxidant activity which resulted in reduced membrane damage and hence improved growth. According to the results obtained, the adverse effects of salt stress on maize plants can partly be alleviated with application of Zn (II)-HEDTA chelates. It is concluded that the application of Zn (II) HEDTA to maize plants grown in salt conditions leads to the increase of antioxidant compounds and maize tolerance.
文摘The salinized sandy lands are the important reclaimable reserve wastelands in thesouth area of the Xinjiang Uygur Autonomous Region of China. But it is necessary that the eco-logical environment of the area is not destroyed by action of oasis development. The main factor tohinder oasis development is land salinization. Rational oasis establishment rebuilds wastelandswith lower productivity and utilization efficiency for the growth of agriculture, forestry, and stock raising. The results of surveying sub-soil environment of Aimugaike. Awati oasis in Hotian County ofthe Xinjiang Uygur Autonomous Region show that the underground water and soil environment arenot deteriorated under the rational management and administration, which could be coordinatedfor obtaining economic and environmental benefit. During the oasis establishment period from1997 to 1999, the plowland area has reached 166.7 hm2, and the seed cotton yield per unit areahas reached 2250 kg @ hm-2, the area of timber forest and active sand break forest has reached 20hm2, the area of fruit trees is 71.5 hm2; and the soil moisture has decreased from 22.07% to18.12%. In the first year of oasis establishment, the soil type has changed salt soil into light saltsoil, in the second year the soil has been out of salt harm; and the content of soil organic matter intopsoil has increased obviously.
基金financed by the National Key Research and Development Program,China(Grant Nos.2022YFE0113400 and 2022YFD1500402)National Natural Science Foundation of China(Grant No.32001466)+3 种基金Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology,China(Grant Nos.BE2022304 and BE2022305)Joints Funds of the National Natural Science Foundation of China(Grant No.U20A2022)Postdoctoral Research Foundation of China(Grant No.2020M671628)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China.
文摘Simultaneous stresses of salinity and drought often coincide during rice-growing seasons in saline lands,primarily due to insufficient water resources and inadequate irrigation facilities.Consequently,combined salinity-drought stress poses a major threat to rice production.In this study,two salinity levels(NS,non-salinity;HS,high salinity)along with three drought treatments(CC,control condition;DJ,drought stress imposed at jointing;DH,drought stress imposed at heading)were performed to investigate their combined influences on leaf photosynthetic characteristics,biomass accumulation,and rice yield formation.Salinity,drought,and their combination led to a shortened growth period from heading to maturity,resulting in a reduced overall growth duration.Grain yield was reduced under both salinity and drought stress,with a more substantial reduction under the combined salinity-drought stress.The combined stress imposed at heading caused greater yield losses in rice compared with the stress imposed at jointing.Additionally,the combined salinity-drought stress induced greater decreases in shoot biomass accumulation from heading to maturity,as well as in shoot biomass and nonstructural carbohydrate(NSC)content in the stem at heading and maturity.However,it increased the harvest index and NSC remobilization reserve.Salinity and drought reduced the leaf area index and SPAD value of flag leaves and weakened the leaf photosynthetic characteristics as indicated by lower photosynthetic rates,transpiration rates,and stomatal conductance.These reductions were more pronounced under the combined stress.Salinity,drought,and especially their combination,decreased the activities of ascorbate peroxidase,catalase,and superoxide dismutase,while increasing the contents of malondialdehyde,hydrogen peroxide,and superoxide radical.Our results indicated a more significant yield loss in rice when subjected to combined salinity-drought stress.The individual and combined stresses of salinity and drought diminished antioxidant enzyme activities,inhibited leaf photosynthetic functions,accelerated leaf senescence,and subsequently lowered assimilate accumulation and grain yield.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42076202, 42122046, 42206208 and 42261134536)the Open Research Cruise NORC2022-10+NORC2022-303 supported by NSFC shiptime Sharing Projects 42149910+7 种基金the new Cornerstone Science Foundation through the XPLORER PRIZE, DAMO Academy Young Fellow, Youth Innovation Promotion Association, Chinese Academy of SciencesNational Key Scientific and Technological Infrastructure project “Earth System Science Numerical Simulator Facility” (EarthLab)sponsored by the US National Science Foundationsupported by NASA Awards 80NSSC17K0565, 80NSSC21K1191, and 80NSSC22K0046by the Regional and Global Model Analysis (RGMA) component of the Earth and Environmental System Modeling Program of the U.S. Department of Energy’s Office of Biological & Environmental Research (BER) via National Science Foundation IA 1947282supported by NOAA (Grant No. NA19NES4320002 to CISESS-MD at the University of Maryland)supported by the Young Talent Support Project of Guangzhou Association for Science and Technologyfunded by the Istituto Nazionale di Geofisica e Vulcanologia (INGV) in agreement between INGV, ENEA, and GNV SpA shipping company that provides hospitality on its commercial vessels
文摘The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023.
基金supported by the National Natural Science Foundation of China(Nos.42176166,41776024).
文摘To study the stratified stability of a water column in the North Passage of the Yangtze River Estuary,a numerical model of the hydrodynamics of this estuary is established using the EFDC model.On the basis of EFDC results,this paper derives and pro-vides the discriminative index of water body stability caused by salinity and analyzes the along-range variation in water body strati-fication stability in the North Passage of the Yangtze River Estuary and the periodic variation at a key location(bend area)based on the simulation results of the numerical model.This work shows that the water body in the bend area varies between mixed and strati-fied types,and the vertical average flow velocity has a good negative correlation with the differential velocity between the surface and bottom layers of the water body.The model simulation results validate the formulae for the stratified stability discriminant during spring tides.
文摘Cotton is one of the most important fiber crops that plays a vital role in the textile industry.Its production has been unstable over the years due to climate change induced biotic stresses such as insects,diseases,and weeds,as well as abiotic stresses including drought,salinity,heat,and cold.Traditional breeding methods have been used to breed climate resilient cotton,but it requires a considerable amount of time to enhance crop tolerance to insect pests and changing climatic conditions.A promising strategy for improving tolerance against these stresses is genetic engineering.This review article discusses the role of genetic engineering in cotton improvement.The essential concepts and techniques include genome editing via clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9(CRISPR-Cas9),overexpression of target genes,downregulation using RNA interference(RNAi),and virus-induced gene silencing(VIGS).Notably,the Agrobacterium-mediated transformation has made significant contributions to using these techniques for obtaining stable transgenic plants.
基金supported by the Key R&D Program of Xinjiang Uygur Autonomous Region,China(2022B03021)the Strategic Priority Research Program of Chinese Academy of Sciences(XDA20030101)the Tianshan Talent Training Program of Xinjiang Uygur Autonomous Region,China(2022TSYCLJ0011).
文摘The Aral Sea was the fourth largest lake in the world but it has shrunk dramatically as a result of irrational human activities, triggering the "Aral Sea ecological crisis". The ecological problems of the Aral Sea have attracted widespread attention, and the alleviation of the Aral Sea ecological crisis has reached a consensus among the five Central Asian countries(Kazakhstan, Uzbekistan, Tajikistan, Kyrgyzstan, and Turkmenistan). In the past decades, many ecological management measures have been implemented for the ecological restoration of the Aral Sea. However, due to the lack of regional planning and zoning, the results are not ideal. In this study, we mapped the ecological zoning of the Aral Sea from the perspective of ecological restoration based on soil type, soil salinity, surface water, groundwater table, Normalized Difference Vegetation Index(NDVI), land cover, and aerosol optical depth(AOD) data. Soil salinization and salt dust are the most prominent ecological problems in the Aral Sea. We divided the Aral Sea into 7 first-level ecological restoration subregions(North Aral Sea catchment area in the downstream of the Syr Darya River(Subregion Ⅰ);artificial flood overflow area in the downstream of the Aral Sea(Subregion Ⅱ);physical/chemical remediation area of the salt dust source area in the eastern part of the South Aral Sea(Subregion Ⅲ);physical/chemical remediation area of severe salinization in the central part of the South Aral Sea(Subregion Ⅳ);existing water surface and potential restoration area of the South Aral Sea(Subregion Ⅴ);Aral Sea vegetation natural recovery area(Subregion Ⅵ);and vegetation planting area with slight salinization in the South Aral Sea(Subregion Ⅶ)) and 14 second-level ecological restoration subregions according to the ecological zoning principles. Implementable measures are proposed for each ecological restoration subregion. For Subregion Ⅰ and Subregion Ⅱ with lower elevations, artificial flooding should be carried out to restore the surface of the Aral Sea. Subregion Ⅲ and Subregion Ⅳ have severe salinization, making it difficult for vegetation to grow. In these subregions, it is recommended to cover and pave the areas with green biomatrix coverings and environmentally sustainable bonding materials. In Subregion Ⅴ located in the central and western parts of the South Aral Sea, surface water recharge should be increased to ensure that this subregion can maintain normal water levels. In Subregion Ⅵ and Subregion Ⅶ where natural conditions are suitable for vegetation growth, measures such as afforestation and buffer zones should be implemented to protect vegetation. This study could provide a reference basis for future comprehensive ecological management and restoration of the Aral Sea.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
基金financially supported by the National Natural Sciences Foundation of China(42330503,42171068)the Third Xinjiang Scientific Expedition Program(2022xjkk0901)the Tianshan Talent Training Program(2023TSYCLJ0048).
文摘Soil salinization may affect biodiversity and species composition,leading to changes in the plant community structure.However,few studies have explored the spatial pattern of soil salinization and its effects on shrub community structure at the ecosystem scale.Therefore,we conducted a transect sampling of desert shrublands in Northwest China during the growing season(June–September)in 2021.Soil salinization(both the degree and type),shrub community structure(e.g.,shrub density and height),and biodiversity parameters(e.g.,Simpson diversity,Margalf abundance,Shannon-Wiener diversity,and Pielou evenness indices)were used to assess the effects of soil salinization on shrub community structure.The results showed that the primary degree of soil salinization in the study area was light salinization,with the area proportion of 69.8%.Whereas the main type of soil salinization was characterized as sulfate saline soil,also accounting for 69.8%of the total area.Notably,there was a significant reduction in the degree of soil salinization and a shift in the type of soil salinization from chloride saline soil to sulfate saline soil,with an increase in longitude.Regional mean annual precipitation(MAP),mean annual evapotranspiration(MAE),elevation,and slope significantly contributed to soil salinization and its geochemical differentiation.As soil salinization intensified,shrub community structure displayed increased diversity and evenness,as indicated by the increases in the Simpson diversity,Shannon-Wiener diversity,and Pielou evenness indices.Moreover,the succulent stems and leaves of Chenopodiaceae and Tamaricaceae exhibited clear advantages under these conditions.Furthermore,regional climate and topography,such as MAP,MAE,and elevation,had greater effects on the distribution of shrub plants than soil salinization.These results provide a reference for the origin and pattern of soil salinization in drylands and their effects on the community structure of halophyte shrub species.
基金supported by the Foundation of Major Projects in Hainan Province,China(ZDKJ202001)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Salinity is one of the most significant risks to crop production and food security as it harms plant physiology and biochemistry.The salt stress during the rice emergence stages severely hampers the seed germination and seedling growth of direct-seeded rice.Recently,nanoparticles(NPs)have been reported to be effectively involved in many plant physiological processes,particularly under abiotic stresses.To our knowledge,no comparative studies have been performed to study the efficiency of conventional,chemical,and seed nanopriming for better plant stress tolerance.Therefore,we conducted growth chamber and field experiments with different salinity levels(0,1.5,and 3‰),two rice varieties(CY1000 and LLY506),and different priming techniques such as hydropriming,chemical priming(ascorbic acid,salicylic acid,and γ-aminobutyric acid),and nanopriming(zinc oxide nanoparticles).Salt stress inhibited rice seed germination,germination index,vigor index,and seedling growth.Also,salt stress increased the over accumulation of reactive oxygen species(H_(2)O_(2) and O_(2)^(-)·)and malondialdehyde(MDA)contents.Furthermore,salt-stressed seedlings accumulated higher sodium(Na^(+))ions and significantly lower potassium(K^(+))ions.Moreover,the findings of our study demonstrated that,among the different priming techniques,seed nanopriming with zinc oxide nanoparticles(NanoZnO)significantly contributed to rice salt tolerance.ZnO nanopriming improved rice seed germination and seedling growth in the pot and field experiments under salt stress.The possible mechanism behind ZnO nanopriming improved rice salt tolerance included higher contents of α-amylase,soluble sugar,and soluble protein and higher activities of antioxidant enzymes to sustain better seed germination and seedling growth.Moreover,another mechanism of ZnO nanopriming induced rice salt tolerance was associated with better maintenance of(K^(+))ions content.Our research concluded that NanoZnO could promote plant salt tolerance and be adopted as a practical nanopriming technique,promoting global crop production in saltaffected agricultural lands.
基金supported by the Natural Science Foundation of China(32270613,31922009,and 31870259)the Yunnan Fundamental Research Projects(202201AS070051,202001AV070009,2019FI006,202001AT070118,and 202101AW070005,202401AT070220)+1 种基金the CAS“Light of West China”Program(to X.H.)the Youth Innovation Promotion Association of the of Chinese Academy of Sciences(Y201973 and 2022399).
文摘Salinity is a severe abiotic stress that affects plant growth and yield.Salinity stress activates jasmonate(JA)signaling in Arabidopsis thaliana,but the underlying molecular mechanism remains to be elucidated.In this study,we confirmed the activation of JA signaling under saline conditions and demonstrated the importance of the CORONATINE INSENSITIVE1(COI1)-mediated JA signaling for this process.Phenotypic analyses reflected the negative regulation of JASMONATE ZIM-DOMAIN(JAZ)repressors during salinity stress-enhanced JA signaling.Mechanistic analyses revealed that JAZ proteins physically interact with ABSCISIC ACID-RESPONSIVE ELEMENT BINDING FACTOR1(ABF1),AREB1/ABF2,ABF3,and AREB2/ABF4,which belong to the basic leucine zipper(bZIP)transcription factor family and respond to salinity stress.Analyses on the ABF3 overexpression plants and ABF mutants indicated the positive role of ABF3 in regulating JA signaling under saline condition.Furthermore,ABF3 overexpression partially recovered the JA-related phenotypes of JAZ1-D3A plants.Moreover,ABF3 was observed to indirectly activate ALLENE OXIDE SYNTHASE(AOS)transcription,but this activation was inhibited by JAZ1.In addition,ABF3 competitively bind to JAZ1,thereby decreasing the interaction between JAZ1 and MYC2,which is the master transcription factor controlling JA signaling.Collectively,our findings have clarified the regulatory effects of ABF3 on JA signaling and provide new insights into how JA signaling is enhanced following an exposure to salinity stress.