Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The p...Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEAM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and mille TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test. Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.展开更多
The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, a...The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.展开更多
This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region.Using basalt fiber(BF)as the reinforcement material and magnesium oxychloride cement(MOC)as the gellin...This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region.Using basalt fiber(BF)as the reinforcement material and magnesium oxychloride cement(MOC)as the gelling material,a BF/MOC composite material was prepared.Firstly,the effect of BF addition content on the basic mechanical properties of the composites was investigated.Then,through the salt spray corrosion test,the durability damage deterioration evaluation analysis was carried out from both macroscopic and microscopic aspects using mass change,relative dynamic modulus of elasticity(RDME)change,SEM analysis and FT-IR analysis.Finally,a GM(1,1)-Markov model was established to predict the durability life of composite materials by using durability evaluation indicators.The results show that:when the BF content is 0.10%(by volumetric content),the composites have the best mechanical properties and resistance to salt spray corrosion.However,when the volume of BF content exceeds 0.10%,a large number of magnesium salt crystallization products are observed from the microscopic point of view,and the corrosion of the main strength phase of MOC is more serious.The prediction results of the GM(1,1)-Markov model are highly identical with the raw data.In addition,using the change of RDME as a predictor,RDME is more sensitive to environmental factor compared to the change of mass.Predictions using the change of RDME as a threshold indicate that MOC-BF0.10 has the longest durability life,which is 836 days.The model is important to promote the application of MOC composites in the salt lake region and to promote the healthy development of green building materials.展开更多
The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),...The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.展开更多
The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PE...The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PER-MEL) coating was investigated by differential thermal analysis (DTA), scanning electron microscopy (SEM), effective thermal conductivity (λ/d), X-ray photoelectron spectroscopy (XPS) and fire protection test. The chemical action and endothermic effect of ammonium polyphosphate, pentaerythritol and melamine in traditional flame retardant coating were damaged by salt spray condition, whereas the flame-retardant additives in the nano-coating demonstrated the good chemical interaction in salt spray condition. The uniformly dispersed nano-SiO2 particles could improve corrosion resistance of the coating, and hence nano-coating could remain the good fire-resistant properties even after 500 h salt spray test.展开更多
Galvanic corrosion on samples of AZ91D magnesium alloy coupled with 2A12 aluminum alloy during neutral salt spray test was investigated.The variations of the surface potential were measured using scanning kelvin probe...Galvanic corrosion on samples of AZ91D magnesium alloy coupled with 2A12 aluminum alloy during neutral salt spray test was investigated.The variations of the surface potential were measured using scanning kelvin probe(SKP).The results showed that galvanic effect on the corrosion of AZ91D magnesium alloy is closely related to the potential difference between the anodic and cathodic materials.In the initial period,corrosion only occurred in a narrow area at the coupling interface because of the limited distance galvanic current.Then,the corrosion rate of 2A12 aluminum alloy was accelerated due to its poor stability in strong alkali environment,which was attributed to the strong alkalization caused by the corrosion of AZ91D magnesium alloy.With the increase of the potential of 2A12 aluminum alloy as a result of the continuous covering of corrosion products,the potential difference between the two materials was enlarged,which enhanced the galvanic corrosion.展开更多
The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmos...The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment. The localized corrosion was accurately characterized by SKP in both coated and uncoated regions. The SKP results showed that Volta potential varied with the test time, and the more the corrosion products, the more positive the potential. The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time. The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP. The corrosion mechanism of partly coated steel in NaCl salt spray was discussed according to the potential maps and corrosion morphologies.展开更多
Anticorrosion epoxy coatings from Al and Zn based pigments were synthesized by adjusting their volume ratios, aiming at their increasing anticorrosion performances. The anticorrosion properties were examined via elec-...Anticorrosion epoxy coatings from Al and Zn based pigments were synthesized by adjusting their volume ratios, aiming at their increasing anticorrosion performances. The anticorrosion properties were examined via elec- trochemical impedance spectroscopy, Tafel polarization curve analysis and salt spray test. The coating morphologies before and after the salt spray tests were studied via scanning electron microscopy(SEM). The elemental and chemical compositions of the corroded surfaces of the coatings were analyzed by means of X-ray photoelectron spectroscopy(XPS). The results indicate that the coating composed of Al/Zn at 10:1(volume ratio) displays the maximum anticorrosion performances, which are superior to those of pristine Al or Zn based pigment.展开更多
A two-stage process was used to produce nano-composite epoxy coatings. The first step involved preparing nano-AI concentrates with high concentration and low viscosity, and the second step produced nano- composite epo...A two-stage process was used to produce nano-composite epoxy coatings. The first step involved preparing nano-AI concentrates with high concentration and low viscosity, and the second step produced nano- composite epoxy coatings by mixing the nano-AI concentrates and epoxy resin. Later, the coating was examined with immersion and salt spray tests. The coatings were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the 5% nano-AI significantly improves the corrosion resistance of the coatings. There are two effects of nano-AI on the coating. Nano-AI is corroded initially to protect the substrate from corrosion, and then the aluminum oxide and aluminum hydroxide were produced after corrosion of nano-AI, which hindered the transmission of corrosion fluid into the coatings.展开更多
基金the National Natural Science Foundation of China (No. 50171026)the Natu-ral Science Foundation of Heilongjiang Province, China (No. E2007-36).
文摘Ceramic coatings were prepared on Ti-6Al-4V alloy in NaAlO2 solution by micro-plasma oxidation (MPO). The salt spray tests of the coated samples and the substrates were carded out in a salt spray test machine. The phase composition and surface morphology of the coatings were investigated by XRD and SEAM. Severe corrosion occurred on the substrate surface, while there were no obvious corrosion phenomena on the coated samples. The coatings were composed of Al2TiO5 and a little α-Al2O3 and mille TiO2, and the salt spray test did not change the composition of the coatings. The weight loss rate of the coatings decreased with increasing MPO time because of the increase in density and thickness of the coatings. The surface morphology of the coatings was influenced by salt spray corrosion test. Among the coated samples, the coating prepared for 2 h has the best corrosion resistance under salt spray test.
基金financially supported by the Major State Basic Research Development Program of China (No. 2014CB643300)
文摘The corrosion failure mechanism of M152 was studied using the neutral salt-spray test to better understand the corrosion behavior of 1Cr12Ni3Mo2VN(M152), provide a basis for the optimization of material selection, and prevent the occurrence of failure. Moreover, the mechanism was investigated using the mass loss method, polarization curves, electrochemical impedance spectroscopy(EIS), stereology microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy(EDS). The results show that M152 steel suffers severe corrosion, especially pitting corrosion, in a high-salt-spray environment. In the early stage of the experiment, the color of the corrosion products was mainly orange. The products then gradually evolved into a dense, brown substance, which coincided with a decrease of corrosion rate. Correspondingly, the EIS spectrum of M152 in the late test also exhibited three time constants and presented Warburg impedance at low frequencies.
基金the financial support provided by National Natural Science Foundation of China(Grant Nos.52178216,51868044).
文摘This study was designed to solve the problem of magnesium hazards due to potash extraction in the salt lake region.Using basalt fiber(BF)as the reinforcement material and magnesium oxychloride cement(MOC)as the gelling material,a BF/MOC composite material was prepared.Firstly,the effect of BF addition content on the basic mechanical properties of the composites was investigated.Then,through the salt spray corrosion test,the durability damage deterioration evaluation analysis was carried out from both macroscopic and microscopic aspects using mass change,relative dynamic modulus of elasticity(RDME)change,SEM analysis and FT-IR analysis.Finally,a GM(1,1)-Markov model was established to predict the durability life of composite materials by using durability evaluation indicators.The results show that:when the BF content is 0.10%(by volumetric content),the composites have the best mechanical properties and resistance to salt spray corrosion.However,when the volume of BF content exceeds 0.10%,a large number of magnesium salt crystallization products are observed from the microscopic point of view,and the corrosion of the main strength phase of MOC is more serious.The prediction results of the GM(1,1)-Markov model are highly identical with the raw data.In addition,using the change of RDME as a predictor,RDME is more sensitive to environmental factor compared to the change of mass.Predictions using the change of RDME as a threshold indicate that MOC-BF0.10 has the longest durability life,which is 836 days.The model is important to promote the application of MOC composites in the salt lake region and to promote the healthy development of green building materials.
文摘The effects of rare earths on the properties of the microarc oxidation(MAO) coating on a magnesium alloy were investigated by means of scanning electron microscopy(SEM),energy dispersive X-ray spectroscopy(EDS),and electrochemistry methods.The results show that a nice and compact MAO coating was successfully obtained when the magnesium alloy was treated in nitrate solutions as the pre-treatment of MAO.However,the MAO was not successfully completed for the silicate electrolytes with the addition of rare earths.After the magnesium alloy being treated by rare earth nitrate,the obtained MAO coating has advantages such as uniform distribution of thickness,improved corrosion resistance,and nice-uniform surface,as compared with the untreated magnesium alloy.In addition,the time of non-ESP,the voltage and current density of the MAO process obviously decrease.Cerium oxide doped on the surface of the magnesium alloy can significantly improve the corrosion resistance of the MAO coating and decrease the current density of the MAO process,as compared with lanthanum oxide,whereas the doped rare earths have no significant effect on the components of the MAO coating.
文摘The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PER-MEL) coating was investigated by differential thermal analysis (DTA), scanning electron microscopy (SEM), effective thermal conductivity (λ/d), X-ray photoelectron spectroscopy (XPS) and fire protection test. The chemical action and endothermic effect of ammonium polyphosphate, pentaerythritol and melamine in traditional flame retardant coating were damaged by salt spray condition, whereas the flame-retardant additives in the nano-coating demonstrated the good chemical interaction in salt spray condition. The uniformly dispersed nano-SiO2 particles could improve corrosion resistance of the coating, and hence nano-coating could remain the good fire-resistant properties even after 500 h salt spray test.
基金Funded by the National Natural Science Foundation of China(No.51271032)
文摘Galvanic corrosion on samples of AZ91D magnesium alloy coupled with 2A12 aluminum alloy during neutral salt spray test was investigated.The variations of the surface potential were measured using scanning kelvin probe(SKP).The results showed that galvanic effect on the corrosion of AZ91D magnesium alloy is closely related to the potential difference between the anodic and cathodic materials.In the initial period,corrosion only occurred in a narrow area at the coupling interface because of the limited distance galvanic current.Then,the corrosion rate of 2A12 aluminum alloy was accelerated due to its poor stability in strong alkali environment,which was attributed to the strong alkalization caused by the corrosion of AZ91D magnesium alloy.With the increase of the potential of 2A12 aluminum alloy as a result of the continuous covering of corrosion products,the potential difference between the two materials was enlarged,which enhanced the galvanic corrosion.
基金the National Natural Science Foundation of China (Nos.50871021and50701006)
文摘The corrosion behavior of partly coated carbon steel was investigated by salt spray test and scanning Kelvin probe (SKP) in order to understand the long-term corrosion behavior of coated carbon steel in marine atmosphere environment. The localized corrosion was accurately characterized by SKP in both coated and uncoated regions. The SKP results showed that Volta potential varied with the test time, and the more the corrosion products, the more positive the potential. The borderline between coated and uncoated regions of partly coated steel shifted towards the coated side with the increasing of test time. The coating disbonding rate could be determined according to the shift of potential borderline measured by SKP. The corrosion mechanism of partly coated steel in NaCl salt spray was discussed according to the potential maps and corrosion morphologies.
基金Supported by the National High Technology Research and Development Program of China(Nos.2010AA09Z203, 2010AA065104), the National Natural Science Foundation of China(Nos.51003099, 51102219) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAB 15B02).
文摘Anticorrosion epoxy coatings from Al and Zn based pigments were synthesized by adjusting their volume ratios, aiming at their increasing anticorrosion performances. The anticorrosion properties were examined via elec- trochemical impedance spectroscopy, Tafel polarization curve analysis and salt spray test. The coating morphologies before and after the salt spray tests were studied via scanning electron microscopy(SEM). The elemental and chemical compositions of the corroded surfaces of the coatings were analyzed by means of X-ray photoelectron spectroscopy(XPS). The results indicate that the coating composed of Al/Zn at 10:1(volume ratio) displays the maximum anticorrosion performances, which are superior to those of pristine Al or Zn based pigment.
基金the National Key Technology R&D Program (Grant No.2012BAB15B00) for supporting these studies
文摘A two-stage process was used to produce nano-composite epoxy coatings. The first step involved preparing nano-AI concentrates with high concentration and low viscosity, and the second step produced nano- composite epoxy coatings by mixing the nano-AI concentrates and epoxy resin. Later, the coating was examined with immersion and salt spray tests. The coatings were characterized by electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results showed that the 5% nano-AI significantly improves the corrosion resistance of the coatings. There are two effects of nano-AI on the coating. Nano-AI is corroded initially to protect the substrate from corrosion, and then the aluminum oxide and aluminum hydroxide were produced after corrosion of nano-AI, which hindered the transmission of corrosion fluid into the coatings.