One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the pre...One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the present work,a novel separation methodology was developed based on an aqueous two-phase system with inor-ganic salts.Calcium chloride was screened out for effective separation of butyric acid from butyric acid-water-salt systems.Within appropriate concentration range of butyric acid and salt,butyric acid was enriched in the upper phase and most of calcium ions remained in the lower phase.This"salting out"effect is very efficient to separate butyric acid from the simulated butyrate fermentation broth,which consists of butyric acid and acetic acid with concentration ratio of 4︰1,so that the final ratio of butyric acid/acetic acid in the upper phase is improved to 9.87. The aqueous two-phase system was used to separate butyric acid from the actual fermentation broth with satisfac-tory result.展开更多
The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this pape...The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this paper, we discussed the geochemical anomaly during hydrate formation in porous media. By doing so, we also investigated the temperature influence on hydrate formation under isobaric condition. It turns out that sub-cooling is an important factor to dominate hydrate formation. Larger subcooling provides more powerful driving force for hydrate formation. During the geochemical anomaly research, six kinds of ions and the total dissolved salt (TDS) were measured before and after the experiment in different porous media. The result is that all kinds of ionic concentration increased after hydrate formation which can be defined as salting out effect mainly affected by gas consumption. But the variation ratio of different ions is not equal. Ca^2+ seems to be the most significantly influenced one, and its variation ratio is up to 80%. Finally, we theoretically made a model to calculate the TDS variation, the result is in good accordance with measured one, especially when gas consumption is large.展开更多
The equilibrium and dynamic surface tension (DST) of the novel cationic surfactant, 3-(p-nonylphenoxy)-2-hydroxylpropyl trimethyl ammonium bromide, abbreviated as RTAB, were studied. The effect of sodium halide su...The equilibrium and dynamic surface tension (DST) of the novel cationic surfactant, 3-(p-nonylphenoxy)-2-hydroxylpropyl trimethyl ammonium bromide, abbreviated as RTAB, were studied. The effect of sodium halide such as NaCl, NaBr and NaI on the DST behavior of the RTAB solution below its CMC was studied in detail. Due to the preferential adsorption, the effect of hydration and salting out, the ability to reduce the DST values at the same concentration was in the order of NaI〉NaBr〉NaCl. Attributed to its high surface activity, the equilibrium time of the DST of the surfactant solution was insensitive to the ionic strength.展开更多
基金Supported by the National High Technology Research and Development Program of China(2009AA02Z206,2006AA02Z239)the National Basic Research Program of China(2007CB707805)the Ministry of Science and Technology,China
文摘One of the bottlenecks for bioproduction of butyric acid as bulk chemical is the difficulty in separating butyric acid from the fermentation broth,compared with the petroleum-based chemical synthesis method.In the present work,a novel separation methodology was developed based on an aqueous two-phase system with inor-ganic salts.Calcium chloride was screened out for effective separation of butyric acid from butyric acid-water-salt systems.Within appropriate concentration range of butyric acid and salt,butyric acid was enriched in the upper phase and most of calcium ions remained in the lower phase.This"salting out"effect is very efficient to separate butyric acid from the simulated butyrate fermentation broth,which consists of butyric acid and acetic acid with concentration ratio of 4︰1,so that the final ratio of butyric acid/acetic acid in the upper phase is improved to 9.87. The aqueous two-phase system was used to separate butyric acid from the actual fermentation broth with satisfac-tory result.
基金Supported by Natural Gas Hydrate in China Sea Exploration and Evaluation Project (G2H200200202)National Basic ResearchProgram of China (973 Program, Grant No. 2009CB219503)
文摘The natural occurrence of methane hydrates in marine sediments has been intensively studied over the past decades, and geochemical charac-teristic of hydrate is one of the most attractive research fields. In this paper, we discussed the geochemical anomaly during hydrate formation in porous media. By doing so, we also investigated the temperature influence on hydrate formation under isobaric condition. It turns out that sub-cooling is an important factor to dominate hydrate formation. Larger subcooling provides more powerful driving force for hydrate formation. During the geochemical anomaly research, six kinds of ions and the total dissolved salt (TDS) were measured before and after the experiment in different porous media. The result is that all kinds of ionic concentration increased after hydrate formation which can be defined as salting out effect mainly affected by gas consumption. But the variation ratio of different ions is not equal. Ca^2+ seems to be the most significantly influenced one, and its variation ratio is up to 80%. Finally, we theoretically made a model to calculate the TDS variation, the result is in good accordance with measured one, especially when gas consumption is large.
基金Project supported by the National Natural Science Foundation of China (No. 50472069) and the Ministry of Science and Technology of China (Nos. G2000078104 and 2003CCA02900).
文摘The equilibrium and dynamic surface tension (DST) of the novel cationic surfactant, 3-(p-nonylphenoxy)-2-hydroxylpropyl trimethyl ammonium bromide, abbreviated as RTAB, were studied. The effect of sodium halide such as NaCl, NaBr and NaI on the DST behavior of the RTAB solution below its CMC was studied in detail. Due to the preferential adsorption, the effect of hydration and salting out, the ability to reduce the DST values at the same concentration was in the order of NaI〉NaBr〉NaCl. Attributed to its high surface activity, the equilibrium time of the DST of the surfactant solution was insensitive to the ionic strength.