Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only imm...Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only immense economic importance but also ecological significance.The purpose of the study was to map the landslide-prone areas along KKH using two different techniquesAnalytical Hierarchy Process(AHP)and Scoops 3 D model.The causative parameters for running AHP include the lithology,presence of thrust,land use land cover,precipitation,and Digital Elevation Model(DEM)derived variables(slope,curvature,aspect,and elevation).The AHP derived final landslide susceptibility map was classified into four zones,i.e.,low,moderate,high,and extremely high.Over 80%of the study area falls under the moderate(43%)and high(40%)landslide susceptible zones.To assess the slope stability of the study area,the Scoops 3 D model was used by integrating with the earthquake loading data.The results of the limit equilibrium analysis categorized the area into four groups(low,moderate,high,and extremely high mass)of slope failure.The areas around Main Mantle Thrust(MMT)including Dubair,Jijal,and Kohistan regions,had high volumes of potential slope failures.The results from AHP and Scoops 3 D techniques were validated with the landslides inventory record of the Geological Survey of Pakistan and Google Earth.The results from both the techniques showed similar output that coincides with the known landslides areas.However,Scoops 3 D provides not only susceptible zones but also the range of volume of the potential slope failures.Further,these techniques could be used in other mountainous areas,which could help in the landslide mitigation measures.展开更多
Chinese film director Tian Zhuangzhuang walked away with the best director award at the 10th Shanghai International Film Festival that concluded on June 24.
Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitu...Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitude for tackling complex non-linear problems.However,the prevailing models often disregard qualitative research,leading to limited interpretability and mistakes in extracting negative samples,i.e.inaccurate non-landslide samples.In this study,Scoops 3D(a three-dimensional slope stability analysis tool)was utilized to conduct a qualitative assessment of slope stability in the Yunyang section of the Three Gorges Reservoir area.The depth of the bedrock was predicted utilizing a Convolutional Neural Network(CNN),incorporating local boreholes and building on the insights from prior research.The Random Forest(RF)algorithm was subsequently used to execute a data-driven landslide susceptibility analysis.The proposed methodology demonstrated a notable increase of 29.25%in the evaluation metric,the area under the receiver operating characteristic curve(ROC-AUC),outperforming the prevailing benchmark model.Furthermore,the landslide susceptibility map generated by the proposed model demonstrated superior interpretability.This result not only validates the effectiveness of amalgamating mathematical and mechanistic insights for such analyses,but it also carries substantial academic and practical implications.展开更多
As the load and working environment temperature increasing,high efficiency oil lubrication was urgently needed for the main bearing of aeroengine.However,the low oil capture efficiency of radial oil scoop affects the ...As the load and working environment temperature increasing,high efficiency oil lubrication was urgently needed for the main bearing of aeroengine.However,the low oil capture efficiency of radial oil scoop affects the application of under-race lubrication structure with radial oil collection.In this work,a novel design of curved blade oil scoop for under-race lubrication is proposed to improve the oil capture efficiency.First of all,the principle of relative velocity optimization is proposed by analyzing the collision process between blade and oil jet for theoretical research.Then,the theoretical curve equations of blade inlet under three different oil jet incidence conditions are solved.After that,the monotonicity of the theoretical curves is analyzed.The effects of rotation speed,oil jet velocity,eccentric distance of oil jet,and include angle of curve are analyzed.The location of the collision points of proposed theoretical curves are also been optimized.Finally,a transient Computational Fluid Dynamics(CFD)simulation of the novel oil scoop design was carried out.The simulation results show that the capture efficiency of curved blade oil scoop can be improved by 30%comparing to the traditional design.展开更多
Leaf senescence plays a critical role in a plant’s overall reproductive success due to its involvement in nutrient remobilization and allocation.However,our current understanding of the molecular mechanisms controlli...Leaf senescence plays a critical role in a plant’s overall reproductive success due to its involvement in nutrient remobilization and allocation.However,our current understanding of the molecular mechanisms controlling leaf senescence remains limited.In this study,we show that the receptor-like kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2(MIK2)functions as a negative regulator of leaf senescence.We found that the SERINE-RICH ENDOGENOUS PEPTIDE 12,previously known to physically interact with MIK2,competes with SCOOP10 to regulate MIK2-dependent leaf senescence.We observed that increased expression of SCOOP10 or the application of exogenous SCOOP10 peptides accelerated leaf senescence in a MIK2-dependent manner.Conversely,SCOOP12 acted as a suppressor of MIK2-dependent leaf senescence regulation.Biochemical assays showed that SCOOP12 enhances while SCOOP10 diminishes MIK2 phosphorylation.Thus,the SCOOP12-MIK2 module might function antagonistically on SCOOP10-MIK2 signaling at late senescing stages,allowing for fine-tuned modulation of the leaf senescence process.Our study sheds light on the complex mechanisms underlying leaf senescence and provides valuable insights into the interplay between receptors,peptides,and the regulation of plant senescence.展开更多
文摘Landslides are prevalent,regular,and expensive hazards in the Karakoram Highway(KKH)region.The KKH connects Pakistan with China in the present China-Pakistan Economic Corridor(CPEC)context.This region has not only immense economic importance but also ecological significance.The purpose of the study was to map the landslide-prone areas along KKH using two different techniquesAnalytical Hierarchy Process(AHP)and Scoops 3 D model.The causative parameters for running AHP include the lithology,presence of thrust,land use land cover,precipitation,and Digital Elevation Model(DEM)derived variables(slope,curvature,aspect,and elevation).The AHP derived final landslide susceptibility map was classified into four zones,i.e.,low,moderate,high,and extremely high.Over 80%of the study area falls under the moderate(43%)and high(40%)landslide susceptible zones.To assess the slope stability of the study area,the Scoops 3 D model was used by integrating with the earthquake loading data.The results of the limit equilibrium analysis categorized the area into four groups(low,moderate,high,and extremely high mass)of slope failure.The areas around Main Mantle Thrust(MMT)including Dubair,Jijal,and Kohistan regions,had high volumes of potential slope failures.The results from AHP and Scoops 3 D techniques were validated with the landslides inventory record of the Geological Survey of Pakistan and Google Earth.The results from both the techniques showed similar output that coincides with the known landslides areas.However,Scoops 3 D provides not only susceptible zones but also the range of volume of the potential slope failures.Further,these techniques could be used in other mountainous areas,which could help in the landslide mitigation measures.
文摘Chinese film director Tian Zhuangzhuang walked away with the best director award at the 10th Shanghai International Film Festival that concluded on June 24.
基金funded by the Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01)High-end Foreign Expert Introduction program(Grant No.G2022165004L)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.HZ2021001).
文摘Landslide susceptibility mapping is an integral part of geological hazard analysis.Recently,the emphasis of many studies has been on data-driven models,notably those derived from machine learning,owing to their aptitude for tackling complex non-linear problems.However,the prevailing models often disregard qualitative research,leading to limited interpretability and mistakes in extracting negative samples,i.e.inaccurate non-landslide samples.In this study,Scoops 3D(a three-dimensional slope stability analysis tool)was utilized to conduct a qualitative assessment of slope stability in the Yunyang section of the Three Gorges Reservoir area.The depth of the bedrock was predicted utilizing a Convolutional Neural Network(CNN),incorporating local boreholes and building on the insights from prior research.The Random Forest(RF)algorithm was subsequently used to execute a data-driven landslide susceptibility analysis.The proposed methodology demonstrated a notable increase of 29.25%in the evaluation metric,the area under the receiver operating characteristic curve(ROC-AUC),outperforming the prevailing benchmark model.Furthermore,the landslide susceptibility map generated by the proposed model demonstrated superior interpretability.This result not only validates the effectiveness of amalgamating mathematical and mechanistic insights for such analyses,but it also carries substantial academic and practical implications.
文摘As the load and working environment temperature increasing,high efficiency oil lubrication was urgently needed for the main bearing of aeroengine.However,the low oil capture efficiency of radial oil scoop affects the application of under-race lubrication structure with radial oil collection.In this work,a novel design of curved blade oil scoop for under-race lubrication is proposed to improve the oil capture efficiency.First of all,the principle of relative velocity optimization is proposed by analyzing the collision process between blade and oil jet for theoretical research.Then,the theoretical curve equations of blade inlet under three different oil jet incidence conditions are solved.After that,the monotonicity of the theoretical curves is analyzed.The effects of rotation speed,oil jet velocity,eccentric distance of oil jet,and include angle of curve are analyzed.The location of the collision points of proposed theoretical curves are also been optimized.Finally,a transient Computational Fluid Dynamics(CFD)simulation of the novel oil scoop design was carried out.The simulation results show that the capture efficiency of curved blade oil scoop can be improved by 30%comparing to the traditional design.
基金Agricultural Science and Technology Innovation Program,Chinese Academy of Agricultural Sciences(ASTIP-TRIO2 to Y.G.)National Natural Science Foundation of China(32270332 to Y.G.,32370337 to J.W.and 31970204 to W.L.)European Research Council(ERC)under the EU Horizon 2020 Research and Innovation Programme(grant agreement 724321 to C.T.).
文摘Leaf senescence plays a critical role in a plant’s overall reproductive success due to its involvement in nutrient remobilization and allocation.However,our current understanding of the molecular mechanisms controlling leaf senescence remains limited.In this study,we show that the receptor-like kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2(MIK2)functions as a negative regulator of leaf senescence.We found that the SERINE-RICH ENDOGENOUS PEPTIDE 12,previously known to physically interact with MIK2,competes with SCOOP10 to regulate MIK2-dependent leaf senescence.We observed that increased expression of SCOOP10 or the application of exogenous SCOOP10 peptides accelerated leaf senescence in a MIK2-dependent manner.Conversely,SCOOP12 acted as a suppressor of MIK2-dependent leaf senescence regulation.Biochemical assays showed that SCOOP12 enhances while SCOOP10 diminishes MIK2 phosphorylation.Thus,the SCOOP12-MIK2 module might function antagonistically on SCOOP10-MIK2 signaling at late senescing stages,allowing for fine-tuned modulation of the leaf senescence process.Our study sheds light on the complex mechanisms underlying leaf senescence and provides valuable insights into the interplay between receptors,peptides,and the regulation of plant senescence.