This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and ...This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.展开更多
A WAVEWATCH III version 3.14(WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave he...A WAVEWATCH III version 3.14(WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave height acquired from the model with different packages have been performed based on wave observation radar and HY-2 altimetry significant wave height data through five experiments in the South China Sea domain spanning latitudes of 0°–35°N and longitudes of 100°–135°E. The sensitivity of the wind speed correction parameter in the TC96 package also has been analyzed. From the results, the model is unable to dissipate the wave energy efficiently during a swell propagation with either source packages. It is found that TC96 formulation with the "effective wind speed" strategy performs better than WAM3 and WAM4 formulations. The wind speed correction parameter in the TC96 source package is very sensitive and needs to be calibrated and selected before the WW3 model can be applied to a specific region.展开更多
An analysis of high-resolution precipitation data for 1978-2006 indicates that the precipitation over southern China in June experienced a low-value period in 1980-1989 and a high-value period in 1992-2001.It also rev...An analysis of high-resolution precipitation data for 1978-2006 indicates that the precipitation over southern China in June experienced a low-value period in 1980-1989 and a high-value period in 1992-2001.It also reveals that exceptional heavy(light) precipitation occurred in June 2005(2004) since 1951.For these variations on both interdecadal and interannual timescales,fairly uniform anomalies of precipitation appeared over Vietnam,southern China,and southeastern China.Corresponding to positive(negative) precipitation anomalies,anomalous southeasterly(northwesterly) flow at 850 hPa reached Vietnam and anomalous southwesterly(northeasterly) flow expanded to the coastal regions of southern and southeastern China.Precedent to the positive(negative) precipitation anomalies during 1992-2001(1980-1989),positive(negative) anomalies of sea surface temperature appeared over the extratropical northwestern Pacific in the winter and spring seasons,associated with a strong(weak) extension of the warm Kuroshio Current that affects the coastal region of eastern China.The above-normal precipitation in June 2005 was associated with the pseudo-ENSO event in the previous winter,and the below-normal precipitation in June 2004 was associated with negative anomalies of sea surface temperature over the equatorial central Pacific and positive anomalies over the equatorial western and eastern Pacific.展开更多
The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are prese...The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are presented by adopting GPS sounding data obtained by the 4th–6th Arctic expeditions of China and NCEP(National Centre for Environmental Prediction) reanalysis data. Obvious differences are observed regarding the tropopause, boundary layer height, temperature inversion, and vertical structure of wind speed and direction in the center Arctic Ocean in the summer of 2012, 2010, and 2014. These differences can be explained by the relations between temperature and changes in sea ice extent in September from 1979 to 2014. In September 2012, the Arctic sea ice extent decreased by 44% an with obvious warming process. In September 2010 and 2014, it decreased by 22.6% and 17% with an obvious cooling process, respectively. A comparison of the two processes shows that sea ice change has a significant influence on the structure of the atmospheric boundary layer. In the recent 30 years, the temperature changes of 1000 and 850 h Pa in the center of the Arctic Ocean have displayed an obvious warming trend and negative correlation with sea ice extent. These changes indicate that the continuous reduction of Arctic sea ice will continue the warming of the troposphere middle layer.展开更多
Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(...Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(TEP)from preceding September to June by using an atmospheric general circulation model (AGCM).We constructed composite positive/negative SST anomalies(P-SSTAs/N-SSTAs)based on the observational SST anomalies over the TEP from September 1997 to June 1998.The results show that:(1) the response of the precipitation in the Yangtze River basin and its southern area(YRBS)to El Nino with different durations varies with the maximum amplitude of the precipitation anomalies appearing when the imposed duration is from November to next June,and the minimum appearing when the SST anomalies is only imposed in June.The anomalies of the precipitation are reduced when the duration of the forcing SST anomalies over the TEP is shortened and the positive SST anomalies in the preceding autumn tend to cause significantly more rainfall in the YRBS.This is in agreement with previous diagnostic analysis results.(2)The simulated precipitation anomalies over the YRBS are always obviously positive under strong or weak positive SST anomalies over the TEP.The intensity of the precipitation anomalies increases with increasing intensity of the SST anomalies in the experiments.The simulation results are consistent with the observations during the warm SST events,suggesting reasonable modeling results.(3)When negative SST anomalies in the TEP are put into the model,the results are different from those of the diagnostic analysis of La Nina events.Negative precipitation anomalies in YRBS could be reproduced only when the negative SST anomalies are strong enough.展开更多
Despite marked improvements in tropical cyclone(TC) track ensemble forecasting,forecasters still have difficulty in making quick decisions when facing multiple potential predictions,so it is demanding to develop post-...Despite marked improvements in tropical cyclone(TC) track ensemble forecasting,forecasters still have difficulty in making quick decisions when facing multiple potential predictions,so it is demanding to develop post-processing techniques reducing the uncertainty in TC track forecasts,and one of such techniques is the cluster-based methods.To improve the effect and efficiency of the previous cluster-based methods,this study adopts recombination clustering(RC) by optimizing the use of limited TC variables and constructing better features that can accurately capture the good TC track forecasts from the ensemble prediction system(EPS) of the China Meteorological Administration Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS).The RC technique is further optimized by constraining the number of clusters using the absolute track bias between the ensemble mean(EM) and ensemble spread(ES).Finally,the RC-based deterministic and weighted probabilistic forecasts are compared with the TC track forecasts from traditional methods.It is found that(1) for deterministic TC track forecasts,the RC-based TC track forecasts outperform all other methods at 12–72-h lead times;compared with the skillful EM(118.6 km),the improvements introduced by the use of RC reach up to 10.8%(8.1 km),10.2%(13.7 km),and 8.7%(20.5 km) at forecast times of 24,48,and 72 h,respectively.(2) For probabilistic TC track forecasts,RC yields significantly more accurate and discriminative forecasts than traditional equal-weight track forecasts,by increasing the weight of the best cluster,with a decrease of 4.1% in brier score(BS) and an increase of 1.4% in area under the relative operating characteristic curve(AUC).(3) In particular,for cases with recurved tracks,such as typhoons Saudel(2017) and Bavi(2008),RC significantly reduces track errors relative to EM by 56.0%(125.5 km) and 77.7%(192.2 km),respectively.Our results demonstrate that the RC technique not only improves TC track forecasts but also helps to unravel skillful ensemble members,and is likely useful for feature construction in machine learning.展开更多
基金supported by the Natural Environment Research Council (Grant No.NE/M006123/1)
文摘This study examines pre-industrial control simulations from CMIP5 climate models in an effort to better understand the complex relationships between Arctic sea ice and the stratosphere, and between Arctic sea ice and cold winter temperatures over Eurasia. We present normalized regressions of Arctic sea-ice area against several atmospheric variables at extended lead and lag times. Statistically significant regressions are found at leads and lags, suggesting both atmospheric precursors of, and responses to, low sea ice; but generally, the regressions are stronger when the atmosphere leads sea ice, including a weaker polar stratospheric vortex indicated by positive polar cap height anomalies. Significant positive midlatitude eddy heat flux anomalies are also found to precede low sea ice. We argue that low sea ice and raised polar cap height are both a response to this enhanced midlatitude eddy heat flux. The so-called "warm Arctic, cold continents" anomaly pattern is present one to two months before low sea ice, but is absent in the months following low sea ice, suggesting that the Eurasian cooling and low sea ice are driven by similar processes. Lastly, our results suggest a dependence on the geographic region of low sea ice, with low Barents–Kara Sea ice correlated with a weakened polar stratospheric vortex, whilst low Sea of Okhotsk ice is correlated with a strengthened polar vortex. Overall, the results support a notion that the sea ice, polar stratospheric vortex and Eurasian surface temperatures collectively respond to large-scale changes in tropospheric circulation.
基金The National Natural Science Foundation of China under contract No.41406007the National Key Research and Development Project of China under contract No.2016YFC1401800+1 种基金the National Natural Science Foundation of China under contract No.41306002the Fundamental Research Funds for the Central Universities of China under contract Nos 16CX02011A and 15CX08011A
文摘A WAVEWATCH III version 3.14(WW3) wave model is used to evaluate input/dissipation source term packages WAM3, WAM4 and TC96 considering the effect of atmospheric instability. The comparisons of a significant wave height acquired from the model with different packages have been performed based on wave observation radar and HY-2 altimetry significant wave height data through five experiments in the South China Sea domain spanning latitudes of 0°–35°N and longitudes of 100°–135°E. The sensitivity of the wind speed correction parameter in the TC96 package also has been analyzed. From the results, the model is unable to dissipate the wave energy efficiently during a swell propagation with either source packages. It is found that TC96 formulation with the "effective wind speed" strategy performs better than WAM3 and WAM4 formulations. The wind speed correction parameter in the TC96 source package is very sensitive and needs to be calibrated and selected before the WW3 model can be applied to a specific region.
基金Project for Popularizing Novel Meteorological Technology from China Meteorological Administration (CMATG2008M49)Science Highlands from Guangxi Zhuang Autonomous Region(0719005-3-2+1 种基金0993002-4)Science Project from Education Bureau of Guangxi Region (200911MS151)
文摘An analysis of high-resolution precipitation data for 1978-2006 indicates that the precipitation over southern China in June experienced a low-value period in 1980-1989 and a high-value period in 1992-2001.It also reveals that exceptional heavy(light) precipitation occurred in June 2005(2004) since 1951.For these variations on both interdecadal and interannual timescales,fairly uniform anomalies of precipitation appeared over Vietnam,southern China,and southeastern China.Corresponding to positive(negative) precipitation anomalies,anomalous southeasterly(northwesterly) flow at 850 hPa reached Vietnam and anomalous southwesterly(northeasterly) flow expanded to the coastal regions of southern and southeastern China.Precedent to the positive(negative) precipitation anomalies during 1992-2001(1980-1989),positive(negative) anomalies of sea surface temperature appeared over the extratropical northwestern Pacific in the winter and spring seasons,associated with a strong(weak) extension of the warm Kuroshio Current that affects the coastal region of eastern China.The above-normal precipitation in June 2005 was associated with the pseudo-ENSO event in the previous winter,and the below-normal precipitation in June 2004 was associated with negative anomalies of sea surface temperature over the equatorial central Pacific and positive anomalies over the equatorial western and eastern Pacific.
基金supported by the Program of China Polar Environment Investigation and Assessment (2016–2020)by the Project of MOST 973 (Grant No. 2015CB953900)
文摘The atmospheric vertical structure and changed characteristics of boundary layer parameters, as well as their relations with sea ice and temperature changes in the center of Arctic Ocean(80°–88°N) are presented by adopting GPS sounding data obtained by the 4th–6th Arctic expeditions of China and NCEP(National Centre for Environmental Prediction) reanalysis data. Obvious differences are observed regarding the tropopause, boundary layer height, temperature inversion, and vertical structure of wind speed and direction in the center Arctic Ocean in the summer of 2012, 2010, and 2014. These differences can be explained by the relations between temperature and changes in sea ice extent in September from 1979 to 2014. In September 2012, the Arctic sea ice extent decreased by 44% an with obvious warming process. In September 2010 and 2014, it decreased by 22.6% and 17% with an obvious cooling process, respectively. A comparison of the two processes shows that sea ice change has a significant influence on the structure of the atmospheric boundary layer. In the recent 30 years, the temperature changes of 1000 and 850 h Pa in the center of the Arctic Ocean have displayed an obvious warming trend and negative correlation with sea ice extent. These changes indicate that the continuous reduction of Arctic sea ice will continue the warming of the troposphere middle layer.
基金the National Natural Science Foundation of China under Grant No.40675034,China-Japan inter governmental cooperation program of the Japan International Cooperation Agency under Grant No.2009LASWZF04the program of Ministryof Science and Technology of China under Grant No.2009DFB20540the Science and Technology Innovation Program ofJiangsu Province under Grant No.CX09B-221Z
文摘Numerical experiments are performed to simulate the response of the atmospheric circulation and pre-cipitation over East China in June to the sea surface temperature(SST)anomalies over the tropical eastern Pacific(TEP)from preceding September to June by using an atmospheric general circulation model (AGCM).We constructed composite positive/negative SST anomalies(P-SSTAs/N-SSTAs)based on the observational SST anomalies over the TEP from September 1997 to June 1998.The results show that:(1) the response of the precipitation in the Yangtze River basin and its southern area(YRBS)to El Nino with different durations varies with the maximum amplitude of the precipitation anomalies appearing when the imposed duration is from November to next June,and the minimum appearing when the SST anomalies is only imposed in June.The anomalies of the precipitation are reduced when the duration of the forcing SST anomalies over the TEP is shortened and the positive SST anomalies in the preceding autumn tend to cause significantly more rainfall in the YRBS.This is in agreement with previous diagnostic analysis results.(2)The simulated precipitation anomalies over the YRBS are always obviously positive under strong or weak positive SST anomalies over the TEP.The intensity of the precipitation anomalies increases with increasing intensity of the SST anomalies in the experiments.The simulation results are consistent with the observations during the warm SST events,suggesting reasonable modeling results.(3)When negative SST anomalies in the TEP are put into the model,the results are different from those of the diagnostic analysis of La Nina events.Negative precipitation anomalies in YRBS could be reproduced only when the negative SST anomalies are strong enough.
基金Supported by the National Natural Science Foundation of China (42375002, 41975136, U2242201, and 42105146)Hunan Provincial Natural Science Foundation of China (2021JC0009)。
文摘Despite marked improvements in tropical cyclone(TC) track ensemble forecasting,forecasters still have difficulty in making quick decisions when facing multiple potential predictions,so it is demanding to develop post-processing techniques reducing the uncertainty in TC track forecasts,and one of such techniques is the cluster-based methods.To improve the effect and efficiency of the previous cluster-based methods,this study adopts recombination clustering(RC) by optimizing the use of limited TC variables and constructing better features that can accurately capture the good TC track forecasts from the ensemble prediction system(EPS) of the China Meteorological Administration Tropical Regional Atmosphere Model for the South China Sea(CMA-TRAMS).The RC technique is further optimized by constraining the number of clusters using the absolute track bias between the ensemble mean(EM) and ensemble spread(ES).Finally,the RC-based deterministic and weighted probabilistic forecasts are compared with the TC track forecasts from traditional methods.It is found that(1) for deterministic TC track forecasts,the RC-based TC track forecasts outperform all other methods at 12–72-h lead times;compared with the skillful EM(118.6 km),the improvements introduced by the use of RC reach up to 10.8%(8.1 km),10.2%(13.7 km),and 8.7%(20.5 km) at forecast times of 24,48,and 72 h,respectively.(2) For probabilistic TC track forecasts,RC yields significantly more accurate and discriminative forecasts than traditional equal-weight track forecasts,by increasing the weight of the best cluster,with a decrease of 4.1% in brier score(BS) and an increase of 1.4% in area under the relative operating characteristic curve(AUC).(3) In particular,for cases with recurved tracks,such as typhoons Saudel(2017) and Bavi(2008),RC significantly reduces track errors relative to EM by 56.0%(125.5 km) and 77.7%(192.2 km),respectively.Our results demonstrate that the RC technique not only improves TC track forecasts but also helps to unravel skillful ensemble members,and is likely useful for feature construction in machine learning.