期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
Suitable region of dynamic optimal interpolation for efficiently altimetry sea surface height mapping
1
作者 Jiasheng Shi Taoyong Jin 《Geodesy and Geodynamics》 EI CSCD 2024年第2期142-149,共8页
The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compa... The dynamic optimal interpolation(DOI)method is a technique based on quasi-geostrophic dynamics for merging multi-satellite altimeter along-track observations to generate gridded absolute dynamic topography(ADT).Compared with the linear optimal interpolation(LOI)method,the DOI method can improve the accuracy of gridded ADT locally but with low computational efficiency.Consequently,considering both computational efficiency and accuracy,the DOI method is more suitable to be used only for regional applications.In this study,we propose to evaluate the suitable region for applying the DOI method based on the correlation between the absolute value of the Jacobian operator of the geostrophic stream function and the improvement achieved by the DOI method.After verifying the LOI and DOI methods,the suitable region was investigated in three typical areas:the Gulf Stream(25°N-50°N,55°W-80°W),the Japanese Kuroshio(25°N-45°N,135°E-155°E),and the South China Sea(5°N-25°N,100°E-125°E).We propose to use the DOI method only in regions outside the equatorial region and where the absolute value of the Jacobian operator of the geostrophic stream function is higher than1×10^(-11). 展开更多
关键词 Dynamic optimal interpolation Linearoptimal interpolation Satellite altimetry sea surface height Suitable region
下载PDF
Study of the ability of SWOT to detect sea surface height changes caused by internal solitary waves
2
作者 Hao Zhang Chenqing Fan +1 位作者 Lina Sun Junmin Meng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期54-64,共11页
Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims t... Surface Water and Ocean Topography(SWOT)is a next-generation radar altimeter that offers high resolution,wide swath,imaging capabilities.It has provided free public data worldwide since December 2023.This paper aims to preliminarily analyze the detection capabilities of the Ka-band radar interferometer(KaRIn)and Nadir altimeter(NALT),which are carried out by SWOT for internal solitary waves(ISWs),and to gather other remote sensing images to validate SWOT observations.KaRIn effectively detects ISW surface features and generates surface height variation maps reflecting the modulations induced by ISWs.However,its swath width does not completely cover the entire wave packet,and the resolution of L2/L3 level products(about 2 km)cannot be used to identify ISWs with smaller wavelengths.Additionally,significant wave height(SWH)images exhibit blocky structures that are not suitable for ISW studies;sea surface height anomaly(SSHA)images display systematic leftright banding.We optimize this imbalance using detrending methods;however,more precise treatment should commence with L1-level data.Quantitative analysis based on L3-level SSHA data indicates that the average SSHA variation induced by ISWs ranges from 10 cm to 20 cm.NALTs disturbed by ISWs record unusually elevated SWH and SSHA values,rendering the data unsuitable for analysis and necessitating targeted corrections in future retracking algorithms.For the normalized radar cross section,Ku-band and four-parameter maximum likelihood estimation retracking demonstrated greater sensitivity to minor changes in the sea surface,making them more suitable for ISW detection.In conclusion,SWOT demonstrates outstanding capabilities in ISW detection,significantly advancing research on the modulation of the sea surface by ISWs and remote sensing imaging mechanisms. 展开更多
关键词 internal solitary waves surface Water and Ocean Topography(SWOT) Ka-band radar interferometer(KaRIn) Nadir altimeter(NALT) sea surface height anomaly(SSHA) normalized radar cross section(NRCS)
下载PDF
Obtaining accurate measurements of the sea surface height from a GPS buoy 被引量:1
3
作者 Wanlin Zhai Jianhua Zhu +5 位作者 Chuntao Chen Wu Zhou Longhao Yan Yufei Zhang Xiaoqi Huang Kai Guo 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2023年第6期78-88,共11页
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have... A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions. 展开更多
关键词 GPS buoy sea surface height baseline length precise point positioning satellite altimeter HY-2
下载PDF
Sea surface height anomaly and geostrophic circulation variations in the South China Sea from TOPEX/POSEIDON altimetry 被引量:2
4
作者 刘克修 马继瑞 +2 位作者 许建平 韩桂军 范振华 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2002年第3期345-354,共10页
The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tida... The sea surface height anomaly (SSHA) and geostrophic circulation in the South ChinaSea (SCS) are studied using TOPEX/POSEIDON (T/P) altimetry data. The SSHA, which is obtained after tidal correction based on the tidal results from T/P data, is predominated by seasonal alternating monsoons. The results reveal that the SSHA in the central part of the SCS is positive in spring and summer, but negative in autumn and winter. It is also found that the SSHA in the SCS can be approached with the sum of tidal constituents SA and SSA. The geostrophic circulations in the SCS are calculated according to sea surface dynamic topography, which is the sum of SSHA and mean sea surface height. It is suggested that the circulation in the upper layer of the SCS is generally cyclonic and notably western intensified during autumn and winter, while the western intensification is weak during spring and summer. It is also indicated that the Kuroshio intrudes into the northeastern SCS throuth the Luzon Strait in winter. But there is no indication of Kuroshio intruding into the SCS in summer. 展开更多
关键词 The South China sea sea surface height CIRCULATION TOPEX/POSEIDON
下载PDF
Application of deep learning technique to the sea surface height prediction in the South China Sea 被引量:2
5
作者 Tao Song Ningsheng Han +4 位作者 Yuhang Zhu Zhongwei Li Yineng Li Shaotian Li Shiqiu Peng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第7期68-76,共9页
A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal featu... A deep-learning-based method,called ConvLSTMP3,is developed to predict the sea surface heights(SSHs).ConvLSTMP3 is data-driven by treating the SSH prediction problem as the one of extracting the spatial-temporal features of SSHs,in which the spatial features are“learned”by convolutional operations while the temporal features are tracked by long short term memory(LSTM).Trained by a reanalysis dataset of the South China Sea(SCS),ConvLSTMP3 is applied to the SSH prediction in a region of the SCS east off Vietnam coast featured with eddied and offshore currents in summer.Experimental results show that ConvLSTMP3 achieves a good prediction skill with a mean RMSE of 0.057 m and accuracy of 93.4%averaged over a 15-d prediction period.In particular,ConvLSTMP3 shows a better performance in predicting the temporal evolution of mesoscale eddies in the region than a full-dynamics ocean model.Given the much less computation in the prediction required by ConvLSTMP3,our study suggests that the deep learning technique is very useful and effective in the SSH prediction,and could be an alternative way in the operational prediction for ocean environments in the future. 展开更多
关键词 deep learning sea surface height prediction convolutional operation long short term memory
下载PDF
Assessment of reprocessed sea surface height measurements derived from HY-2A radar altimeter and its application to the observation of 2015–2016 El Nino 被引量:1
6
作者 JIANG Maofei XU Ke +2 位作者 LIU Yalong ZHAO Jin WANG Lei 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2018年第1期115-129,共15页
Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH... Haiyang-2A(HY-2A) is China's first ocean dynamic environment satellite and the radar altimeter is one of its main payloads. One of the main purposes of the radar altimeter is to measure the sea surface height(SSH). The SSH determined from the altimeter range measurements includes some range and geophysical corrections. These corrections largely affect the accuracy of the SSH measurements. The range and the geophysical corrections are reprocessed and the altimeter waveforms in HY-2A sensor interim geophysical data set records(S-IGDR) are retracked from June 1, 2014 to June 14, 2014, and the accuracy of the reprocessed SSH measurements is evaluated.The methods of the range and geophysical corrections used to reprocess HY-2A altimeter data are validated by using these methods to reprocess the Jason-2 range and geophysical corrections and comparing the results with the range and geophysical corrections in Jason-2 geophysical dataset records(GDR) product. A crossover analysis is used to evaluate the accuracy of the reprocessed HY-2A SSH measurements. The standard deviation(STD) of the crossover SSH differences for HY-2A is around 4.53 cm while the STD of the SSH differences between HY-2A and Jason-2 is around 5.22 cm. The performance of the reprocessed HY-2A SSH measurements is significantly improved with respect to the SSH measurements derived from HY-2A interim geophysical dataset records(IGDR)product. The 2015–2016 El Ni?o has been the strongest El Ni?o event since 1997–1998. The range and the geophysical corrections in HY-2A IGDR are reprocessed and sea level anomalies are used to monitor the2015–2016 El Ni?o. The results show that the HY-2A altimeter can well observe the 2015–2016 El Ni?o. 展开更多
关键词 HY-2A radar altimeter sea surface height El Ni?o
下载PDF
Variability of sea surface height in the South China Sea and its relationship to Pacific oscillations 被引量:2
7
作者 PEI Yuhua ZHANG Rong-Hua +2 位作者 ZHANG Xiangming JIANG Lianghong WEI Yanzhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2015年第12期80-92,共13页
The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pa... The spatio-temporal variability modes of the sea surface height in the South China Sea(SCS-SSH) are obtained using the Cyclostationary Empirical Orthogonal Function(CSEOF) method, and their relationships to the Pacific basin scale oscillations are examined. The first CSEOF mode of the SCS-SSH is a strongly phase-locked annual cycle that is modulated by a slowly varying principal component(PC); the strength of this annual cycle becomes reduced during El Ni?o events(at largest by 30% off in 1997/98) and enhanced during La Ni?a events. The second mode is a low frequency oscillation nearly on decadal time scale, with its spatial structure exhibiting an obscure month-dependence; the corresponding PC is highly correlated with the Pacific Decadal Oscillation(PDO) index.Five independent oscillations in the Pacific are isolated by using the independent component(IC) analysis(ICA)method, and their effects on the SCS-SSH are examined. It is revealed that the pure ENSO mode(which resembles the east Pacific ENSO) has little effect on the low frequency variability of the SCS-SSH while the ENSO reddening mode(which resembles the central Pacific ENSO) has clear effect. As the ENSO reddening mode is an important constituent of the PDO, this explains why the PDO is more important than ENSO in modulating the low frequency variability of SCS-SSH. Meridional saddle like oscillation mode, the Kuroshio extension warming mode, and the equatorial cooling mode are also successfully detected by the ICA, but they have little effect on the low frequency variability of the SCS-SSH. Further analyses suggest the Pacific oscillations are probably influencing the variability of the SCS-SSH in ways that are different from that of the sea surface temperature(SST) in the SCS. 展开更多
关键词 South China sea sea surface height ENSO PDO
下载PDF
Sea surface height measuring using InSAR altimeter 被引量:1
8
作者 Xiaohong Sui Running Zhang +2 位作者 Falin Wu Yang Li Xiaoyun Wan 《Geodesy and Geodynamics》 2017年第4期278-284,共7页
Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is ... Satellite altimetry has been widely used in measuring ocean topography from space. The conventional altimeter system is the nadir radar altimeter system which has the limitations of one-dimensional measurement and is unable to get both high temporal and spatial resolution. The InSAR altimetry system using InSAR altimeter instead of nadir radar altimeter is an improvement which can get both high cross-track and along-track resolution and wide swath. However, the conventional SAR interferometry only can achieve meter level height accuracy. This paper focuses on a method of radar echo-tracking for InSAR altimeter system in order to correct the slant range measurements and finally to improve the height measurement accuracy to several centimeters' level. Radar slant range (from observed pixels to radar antenna) estimation error affects the height measurement accuracy badly, nevertheless not considered in the conventional SAR interferometry. The proposed method is ameliorated based on the traditional echo-model used in nadir radar altimeter system, focusing on the echo signals from observed pixels with different incident angles. Simulations of sea surface height measurements are performed in the last part of this paper, and the conclusions are drawn that, with corrected slant range, the accuracy of InSAR altimetry can be much better than the conventional SAR interferometry. 展开更多
关键词 InSAR altimeter Nadir radar altimeter sea surface height Echo-tracking
下载PDF
Slowdown of sea surface height rises in the Nordic seas and related mechanisms
9
作者 SHI Wenqi ZHAO Jinping +2 位作者 LIAN Xihu WANG Xiaoyu CHEN Weibin 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第8期20-33,共14页
A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 199... A slowdown of sea surface height (SSH) rise occurred in the Nordic (GIN) seas around 2004. In this study, SSH satellite data and constructed steric height data for the decades before and after 2004 (i.e., May 1994 to April 2014) were used for comparative analysis. The findings indicate that the rate of slowdown of SSH rises in the GIN seas (3.0 mm/a) far exceeded that of the global mean (0.6 mm/a). In particular, the mean steric height of the GIN seas increased at a rate of 4.5 mm/a and then decreased at a slower pace. This was the main factor responsible for the stagnation of the SSH rises, while the mass factor only increased slightly. The Norwegian Sea particularly experienced the most prominent slowdown in SSH rises, mainly due to decreased warming of the 0-600 m layer. The controlling factors of this decreased warming were cessation in the increase of volume of the Atlantic inflow and stagnation of warming of the inflow. However, variations in air-sea thermal flux were not a major factor. In the recent two decades, mean halosteric components of the GIN seas decreased steadily and remained at a rate of 2 mm/a or more because of increased flow and salinity of the Atlantic inflow during the first decade, and reduction in freshwater inputs from the Arctic Ocean in the second decade. 展开更多
关键词 Nordic seas sea surface height steric height slowdown in sea level rises
下载PDF
On the contribution of Rossby waves driven by surface buoyancy fluxes to low-frequency North Atlantic steric sea surface height variations
10
作者 Peter Kowalski 《Atmospheric and Oceanic Science Letters》 CSCD 2022年第3期51-55,共5页
Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven R... Previous studies have shown that wind-forced baroclinic Rossby waves can capture a large portion of lowfrequency steric sea surface height(SSH)variations in the North Atlantic.In this paper,the classical wind-driven Rossby wave model derived in a 1.5-layer ocean is extended to include surface buoyancy forcing,and the new model is then used to assess the contribution from buoyancy-forced Rossby waves to low-frequency North Atlantic steric SSH variations.Buoyancy forcing is determined from surface heating as freshwater fluxes are negligible.It is found that buoyancy-forced Rossby waves are important in only a few regions belonging to the subtropicaltomidlatitude and eastern subpolar North Atlantic.In these regions,the new Rossby wave model accounts for 25%-70% of low-frequency steric SSH variations.Furthermore,as part of the analysis it is also shown that a simple static model driven by local surface heat fluxes captures 60%-75% of low-frequency steric SSH variations in the Labrador Sea,which is a region where Rossby waves are found to have no influence on the steric SSH. 展开更多
关键词 sea surface height Rossby waves Subpolar North Atlantic 1.5-Layer ocean
下载PDF
Retrieval of Sea Surface Height from CYGNSS Data with Tropospheric Delay
11
作者 李大伟 刘宇迪 +3 位作者 李元祥 于方杰 苏昱丞 林上金 《Journal of Tropical Meteorology》 SCIE 2021年第3期282-290,共9页
An analysis of the delay Doppler maps(DDMs) data from the CYGNSS satellites is implemented to derive the sea surface height(SSH). An SSH estimation algorithm, the leading edge derivation(LED) method which is applied t... An analysis of the delay Doppler maps(DDMs) data from the CYGNSS satellites is implemented to derive the sea surface height(SSH). An SSH estimation algorithm, the leading edge derivation(LED) method which is applied to the delay waveforms, is applied to the DDMs, while the tropospheric delay methods, the Saastamoinen method(SM)and the numerical method(NM) are used. The results show that when the SSH from Jason-2 is referred to as the truth, if the tropospheric delay is corrected, the SSH bias can decrease. The resulted SSH bias from the Jason-2 SSH by the LED retrieval method is of order meter. The resulted SSH deviation from the truth by the NM scheme is half as small as that by the SM scheme. Since the SM scheme is not applicable to the nonhydrostatical condition, the resulted bias is larger.The work can be applied to the Beidou system in the future. 展开更多
关键词 CYGNSS sea surface height numerical method leading edge derivation method
下载PDF
DATA ASSIMILATION ON SEASONAL CYCLE OF SEA SURFACE HEIGHT ANOMALY IN THE SOUTH CHINA SEA 被引量:2
12
作者 王卫强 王东晓 谢强 《Acta meteorologica Sinica》 SCIE 2003年第S1期238-248,共11页
The Sea Surface Height Anomaly (SSHA) from the TOPEX/Poseidon altimeter data in 1994 is assimilated into a high-resolution model of the South China Sea (SCS) with nudging method. The model results can reveal the seaso... The Sea Surface Height Anomaly (SSHA) from the TOPEX/Poseidon altimeter data in 1994 is assimilated into a high-resolution model of the South China Sea (SCS) with nudging method. The model results can reveal the seasonal variations of SSHA and its time-space migration characters,at the same time,verify the effect of assimilation.Compared with non-assimilation results,assimilation results can show the seasonal variations of SSHA better,particularly in winter.Futhermore,it can distinguish temporal-spatial migration characters of SSHA clearly,i.e. cold signal of SSHA in northern SCS propagating westward and warm signal of SSHA in central SCS propagating eastward.It shows that as an easy and effective method,data assimilation of the SSHA with nudging method could make the simulated results closer to the available observations. 展开更多
关键词 sea surface height anomaly (SSHA) nudging method ASSIMILATION
原文传递
STUDY OF NON-BOUSSINESQ EFFCET ON SEA SURFACE HEIGHT
13
作者 CHENXian-yao WANGXuan +1 位作者 WANGXiu-hong QIAOFang-li 《Journal of Hydrodynamics》 SCIE EI CSCD 2004年第5期518-524,共7页
A set of equations was derived for a non-Boussinesq ocean model in thispaper. A new time-splitting scheme was introduced which incorporates the 4th-order Runge-Kuttaexplicit scheme of low-frequency mode and an implici... A set of equations was derived for a non-Boussinesq ocean model in thispaper. A new time-splitting scheme was introduced which incorporates the 4th-order Runge-Kuttaexplicit scheme of low-frequency mode and an implicit scheme of high-frequency mode. With thismodel, potential temperature, salinity fields and sea surface height were calculated simultaneouslysuch that the numerical error of extrapolation of density field from the current time level to thenext one could be reduced while using the equation of mass conservation to determine sea surfaceheight. The non-Bouss-inesq effect on the density field and sea surface height was estimated bynumerical experiments in the final part of this paper. 展开更多
关键词 non-boussinesq effect time-splitting scheme sea surface height ocean model
原文传递
The global mean sea surface model WHU2013 被引量:4
14
作者 Taoyong Jin Jiancheng Li Weiping Jiang 《Geodesy and Geodynamics》 2016年第3期202-209,共8页
The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84... The mean sea surface (MSS) model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80° S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P), Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM) data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM) data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH), and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data) are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD) of the differences between the models is about S cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data. 展开更多
关键词 Satellite altimetry Mean sea surface height sea level variation Collinear adjustment Crossover adjustment
下载PDF
Measurement of the sea surface using a GPS towing-body in Wanshan area 被引量:1
15
作者 Wanlin Zhai Jianhua Zhu +4 位作者 Chaofei Ma Xiaohui Fan Longhao Yan He Wang Chuntao Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2020年第5期123-132,共10页
Wanshan area has been chosen to be the specified field to calibrate and validate(Cal/Val)the HY-2 altimeter and its follow-on satellites.In March 2018,an experiment has been conducted to determine the sea surface heig... Wanshan area has been chosen to be the specified field to calibrate and validate(Cal/Val)the HY-2 altimeter and its follow-on satellites.In March 2018,an experiment has been conducted to determine the sea surface height(SSH)under the HY-2 A ground track(Pass No.203).A GPS towing-body(GPS-TB)was designed to measure the SSH covering an area of about 6 km×28 km wide centered on the HY-2 A altimeter satellite ground track.Three GPS reference stations,one tide gauge and a GPS buoy were placed in the research area,in order to process and resolve the kinematic solution and check the precision of the GPS-TB respectively.All the GPS data were calculated by the GAMIT/GLOBK software and TRACK module.The sea surface was determined by the GPS-TB solution and the tide gauge placed on Zhiwan Island.Then the sea surface of this area was interpolated by Arc GIS10.2 with ordinary Kriging method.The results showed that the precision of the GPS-TB is about 1.10 cm compared with the tide gauge placed nearby,which has an equivalent precision with the GPS buoy.The interpolated sea surface has a bias of–1.5–4.0 cm with standard deviation of 0.2–2.4 cm compared with the checking line.The gradient of the measured sea surface is about 1.62 cm/km along the HY-2 orbit which shows a good agreement compared with the CLS11 mean sea surface(MSS).In the Cal/Val of satellites,the sea surface between the tide gauge/GPS buoy and the footprint of altimeter can be improved by this work. 展开更多
关键词 GPS towing-body sea surface height GPS buoy GPS reference station tide gauge sea surface
下载PDF
CAS-ESM2.0 Dataset for the Carbon Dioxide Removal Model Intercomparison Project(CDRMIP)
16
作者 Jiangbo JIN Duoying JI +9 位作者 Xiao DONG Kece FEI Run GUO Juanxiong HE Yi YU Zhaoyang CHAI He ZHANG Dongling ZHANG Kangjun CHEN Qingcun ZENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期989-1000,共12页
Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation stra... Understanding the response of the Earth system to varying concentrations of carbon dioxide(CO_(2))is critical for projecting possible future climate change and for providing insight into mitigation and adaptation strategies in the near future.In this study,we generate a dataset by conducting an experiment involving carbon dioxide removal(CDR)—a potential way to suppress global warming—using the Chinese Academy of Sciences Earth System Model version 2.0(CASESM2.0).A preliminary evaluation is provided.The model is integrated from 200–340 years as a 1%yr^(−1) CO_(2) concentration increase experiment,and then to~478 years as a carbon dioxide removal experiment until CO_(2) returns to its original value.Finally,another 80 years is integrated in which CO_(2) is kept constant.Changes in the 2-m temperature,precipitation,sea surface temperature,ocean temperature,Atlantic meridional overturning circulation(AMOC),and sea surface height are all analyzed.In the ramp-up period,the global mean 2-m temperature and precipitation both increase while the AMOC weakens.Values of all the above variables change in the opposite direction in the ramp-down period,with a delayed peak relative to the CO_(2) peak.After CO_(2) returns to its original value,the global mean 2-m temperature is still~1 K higher than in the original state,and precipitation is~0.07 mm d^(–1) higher.At the end of the simulation,there is a~0.5°C increase in ocean temperature and a 1 Sv weakening of the AMOC.Our model simulation produces similar results to those of comparable experiments previously reported in the literature. 展开更多
关键词 CAS-ESM2.0 CDRMIP carbon dioxide removal AMOC temperature PRECIPITATION sea surface height
下载PDF
A combined denoising method of empirical mode decomposition and singular spectrum analysis applied to Jason altimeter waveforms: A case of the Caspian Sea
17
作者 Wenguan Jiang Wei You 《Geodesy and Geodynamics》 CSCD 2022年第4期327-342,共16页
During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical m... During the satellite pulse propagation and reception, the altimeter waveform is inevitably affected by noise. To reduce the noise level in Jason altimeter waveforms, we used singular spectrum analysis(SSA),empirical mode decomposition(EMD), and the combination of SSA and EMD to obtain the denoised waveforms. The advantages of the combined method were verified and the accuracy of the mean sea surface height(MSSH) model was improved. Comparing the denoising effect of the three methods, the results show that the signal-to-noise ratio(SNR), correlation coefficient and root-mean-square error are effectively improved by the combination of SSA and EMD. The sea surface heights(SSHs) were remeasured with a 50% threshold retracker of denoised waveforms, and the MSSH model of the Caspian Sea with a grid of 1’× 1’was established from the retracked SSHs of Jason-1/2/3. Taking the mean value of the four models as a control, it is found that the model calculated by the combined denoising method has the highest accuracy. This indicates that using the combined denoising method to reduce the noise level is beneficial to improve the accuracy of the MSSH model. 展开更多
关键词 Altimetry waveforms Jason-1/2/3 Combined method Waveform retracking Mean sea surface height
下载PDF
南海海平面高度年循环的特征(英文) 被引量:10
18
作者 刘秦玉 贾英来 +1 位作者 王小华 杨海军 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2001年第4期613-622,共10页
The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Mode... The annual cycle characteristics of the SSH in the South China Sea (SCS) are analyzed based on the Sea Surface Height (SSH) anomaly data from the TOPEX / POSEIDON-ERS altimeter data and the Parallel Ocean Climate Model (POCM) prediction. The results show that the distributions of the SSH anomalies of the SCS in January, March and May, are opposite to those in July, September and November respectively; In January (July) there is the SSH negative (positive) anomaly in the deep water basin and at the Luzon Strait, while there is positive (negative) anomaly on the most of continental shelves in the west and south of South China Sea; In March (September) the SSH anomalies are similar to those in January (July), although their magnitudes have decreased and a small positive (negative) anomaly appears in the center of the South China Sea; The amplitude of the SSH annual cycle reaches its maximum in the Northwest of the Luzon Island; The seasonal variability of the wind stress is dominant in the formation of the SSH seasonal variability. 展开更多
关键词 sea surface height South China sea MONSOON Parallel Ocean Climate Model
下载PDF
Upper ocean responses to category 5 typhoon Megi in the western north Pacific 被引量:4
19
作者 CHEN Xiaoyan PAN Delu +2 位作者 HE Xianqiang BAI Yan WANG Difeng 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2012年第1期51-58,共8页
Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study... Category 5 typhoon Megi was the most intense typhoon in 2010 of the world. It lingered in the South China Sea (SCS) for 5 d and caused a significant phytoplankton bloom detected by the satellite image. In this study, the authors investigated the ocean biological and physical responses to typhoon Megi by using chlorophyll-a (chl-a) concentration, sea surface temperature (SST), sea surface height anomaly (SSHA), sea surface wind measurements derived from different satellites and in situ data. The chl-a concentration (〉3 mg/m3) increased thirty times in the SCS after the typhoon passage in comparison with the mean level of October averaged from 2002 to 2009. With the relationship of wind stress curl and upwelling, the authors found that the speed of upwelling was over ten times during typhoon than pre-typhoon period. Moreover, the mixed layer deepened about 20 m. These reveal that the enhancement of chl-a concentration was triggered by strong vertical mixing and upwelling. Along the track of typhoon, the maximum sea surface cooling (6-8~C) took place in the SCS where the moving speed of typhoon was only 1.4-2.8 m/s and the mixed layer depth was about 20 m in pre-typhoon period. However, the SST drop at the east of the Philippines is only 1-2~C where the translation speed of typhoon was 5.5-6.9 m/s and the mixed layer depth was about 40 m in pre-typhoon period. So the extent of the SST drop was probably due to the moving speed of typhoon and the depth of the mixed layer. In addition, the region with the largest decline of the sea surface height anomaly can indicate the location where the maximum cooling occurs. 展开更多
关键词 sea surface temperature chlorophyll-a concentration sea surface height anomaly UPWELLING typhoon Megi ocean remote sensing
下载PDF
Altimetric Algorithm and Errors of Ocean Altimetry Using GNSS Reflection Signals 被引量:1
20
作者 郭金运 王书阳 +2 位作者 刘新 王建波 常晓涛 《China Ocean Engineering》 SCIE EI CSCD 2015年第6期933-944,共12页
As a new remote sensing technology, the global navigation satellite system(GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altim... As a new remote sensing technology, the global navigation satellite system(GNSS) reflection signals can be used to collect the information of ocean surface wind, surface roughness and sea surface height. Ocean altimetry based on GNSS reflection technique is of low cost and it is easy to obtain large amounts of data thanks to the global navigation satellite constellation. We can estimate the sea surface height as well as the position of the specular reflection point. This paper focuses on the study of the algorithm to determine the specular reflection point and altimetry equations to estimate the sea surface height over the reflection region. We derive the error equation of sea surface height based on the error propagation theory. Effects of the Doppler shift and the size of the glistening zone on the altimetry are discussed and analyzed at the same time. Finally, we calculate the sea surface height based on the simulated GNSS data within the whole day and verify the sea surface height errors according to the satellite elevation angles. The results show that the sea surface height can reach the precision of 6 cm for elevation angles of 55° to 90°, and the theoretical error and the calculated error are in good agreement. 展开更多
关键词 GNSS refection technique sea surface height specular reflection point error propagation ocean altimetry
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部