Sea cucumber, Apostichopus japonicus is very sensitive to light changes. It is important to study the influence of light on the molecular response of A. japonicus. In this study, RNA-seq provided a general overview of...Sea cucumber, Apostichopus japonicus is very sensitive to light changes. It is important to study the influence of light on the molecular response of A. japonicus. In this study, RNA-seq provided a general overview of the gene expression profiles of the body walls of A. japonicus exposed to strong light("light"), normal light("control") and fully dark("dark") environment. In the comparisons of "control" vs. "dark", "control" vs. "light" and "dark" vs."light", 1 161, 113 and 1 705 differentially expressed genes(DEGs) were identified following the criteria of|log2 ratio|≥1 and FDR≤0.001, respectively. Gene ontology analysis showed that "cellular process" and "binding"enriched the most DEGs in the category of "biological process" and "molecular function", while "cell" and "cell part" enriched the most DEGs in the category of "cellular component". And the DEGs were mapped to 214, 41 and229 pathways in the Kyoto Encyclopedia of Genes and Genomes database, and 51, 2 and 57 pathways were significantly enriched, respectively. Light-specific DEGs identified in this study will be important targets for further investigation to establish the biochemical mechanisms involved in the adaption of this sea cucumber to changes in the level of environmental light.展开更多
High volume aerosol samplers at Great Wall Station in Antarctica were used to collect 73 aerosol samples between January 2012 and November 2013. The main ions in these aerosol samples, Cl^-, NO3-, SO4^2-, Na+, K+, ...High volume aerosol samplers at Great Wall Station in Antarctica were used to collect 73 aerosol samples between January 2012 and November 2013. The main ions in these aerosol samples, Cl^-, NO3-, SO4^2-, Na+, K+, Ca2+, Mg2+, NH4+, as well as methane sulfonic acid, were analyzed using ion chromatography. Trace metals in these samples, including Pb, Cu, Cd, V, Zn, Fe, and Al, were determined by inductively-coupled plasma mass spectrometry. Results showed that sea salt was the main component in aerosols at Great Wall Station. Most ions exhibited significant seasonal variations, with higher concentrations in summer and autumn than in winter and spring. Variations in ions and trace metals were related to several processes(or sources), including sea salt emission, secondary aerosol formation, and anthropogenic pollution from both local and distant sources. The sources of ions and trace metals were identified using enrichment factor, correlation, and factor analyses. Clearly, Na+, K+, Ca2+, and Mg2+were from marine sources, while Cu, Pb, Zn, and Cd were from anthropogenic pollution, and Al and V were mainly from crustal sources.展开更多
When a 2-D progressive wave train normally or obliquely approaches a vertical wall and then is normally or obliquely reflected from it, the combination of the approaching and reflected waves may result in a standing w...When a 2-D progressive wave train normally or obliquely approaches a vertical wall and then is normally or obliquely reflected from it, the combination of the approaching and reflected waves may result in a standing wave or a short-crested wave in front of the wall. This paper presents the experimental observations of sand bed configurations under the action of these water waves in front of the wall. The geometry of sand ripples under these water waves in front of the vertical wall is presented as a function of flow parameters, such as the water particle semi-excursion and the mobility number.展开更多
Based on the observed and NCEP reanalysis data from 1985 to 2006, the climate background and synoptic situation of fog at Great Wall Station were analyzed.It is shown that the seasonal variation of fog is controlled b...Based on the observed and NCEP reanalysis data from 1985 to 2006, the climate background and synoptic situation of fog at Great Wall Station were analyzed.It is shown that the seasonal variation of fog is controlled by the change of general circulation and local pressure field.Three favorable typical synoptic situations for fog development arc found,the Front-of-A-Depression type,the Saddle-Shaped-Field type and the Passing-Weak-Cyclone type.The first one is the most important situation.Advection cooling fog is dominant at Great Wall Station,but there are other kinds of fog as well.As a result,some helpful principles for local fog forecasting are given.展开更多
The variation of visibility at Great Wall Station (GWS) was analyzed using manual observational data for the period of 1986 to 2012. Results show that the frequencies of occurrence of high (≥ 10 km) and low visib...The variation of visibility at Great Wall Station (GWS) was analyzed using manual observational data for the period of 1986 to 2012. Results show that the frequencies of occurrence of high (≥ 10 km) and low visibility (0-1 km) are 61.0% and 8.0%, respectively. Visibility at GWS shows an evident seasonal variation: The highest visibility between November and March, and the lowest visibility from June to October. Sea fog and precipitation are the main factors for low visibility during summer, whereas frequent adverse weather, such as falling snow, blowing snow, or blizzards, are responsible for low visibility in winter. The frequency of occurrence of low visibility has decreased significantly from 1986 to 2012. Conversely, the frequency of occurrence of high visibility has shown a significant increasing trend, especially during winter. The decreasing tendencies of fog, blowing snow, and snowfall have contributed to the increasing trend of high visibility during winter. Visibility at GWS exhibits significant synoptic-scale (2.1 to 8.3 d), annual, and inter-annual periods (2 a, 4.1 a, and 6.9 a to 8.2 a), among which the most significant period is 4.1 a. The visibility observed during 2012 indicates that instrumental observation can be applied in the continuous monitoring of visibility at GWS.展开更多
基金The National Natural Science Foundation of China under contract No.41676136the Strategic Priority Research Program of the Chinese Academy of Sciences under contract No.XDA11020703the Science and Technology Major Project of Shandong Province(Industry Transformation and Upgrading) under contract No.2015ZDZX05002
文摘Sea cucumber, Apostichopus japonicus is very sensitive to light changes. It is important to study the influence of light on the molecular response of A. japonicus. In this study, RNA-seq provided a general overview of the gene expression profiles of the body walls of A. japonicus exposed to strong light("light"), normal light("control") and fully dark("dark") environment. In the comparisons of "control" vs. "dark", "control" vs. "light" and "dark" vs."light", 1 161, 113 and 1 705 differentially expressed genes(DEGs) were identified following the criteria of|log2 ratio|≥1 and FDR≤0.001, respectively. Gene ontology analysis showed that "cellular process" and "binding"enriched the most DEGs in the category of "biological process" and "molecular function", while "cell" and "cell part" enriched the most DEGs in the category of "cellular component". And the DEGs were mapped to 214, 41 and229 pathways in the Kyoto Encyclopedia of Genes and Genomes database, and 51, 2 and 57 pathways were significantly enriched, respectively. Light-specific DEGs identified in this study will be important targets for further investigation to establish the biochemical mechanisms involved in the adaption of this sea cucumber to changes in the level of environmental light.
基金supported by the National Natural Science Foundation of China (Grant nos. 41230529 and 41476172)the Chinese Polar Environment Comprehensive Investigation & Assessment Programs (Grant no. CHINARE2012-15 for 01-04-02, 02-01, and 03-0402)Chinese International Cooperation Projects, Chinese Arctic and Antarctic Adminstration (Grant nos. 2015DFG22010, IC201201, IC201308 and IC201513)
文摘High volume aerosol samplers at Great Wall Station in Antarctica were used to collect 73 aerosol samples between January 2012 and November 2013. The main ions in these aerosol samples, Cl^-, NO3-, SO4^2-, Na+, K+, Ca2+, Mg2+, NH4+, as well as methane sulfonic acid, were analyzed using ion chromatography. Trace metals in these samples, including Pb, Cu, Cd, V, Zn, Fe, and Al, were determined by inductively-coupled plasma mass spectrometry. Results showed that sea salt was the main component in aerosols at Great Wall Station. Most ions exhibited significant seasonal variations, with higher concentrations in summer and autumn than in winter and spring. Variations in ions and trace metals were related to several processes(or sources), including sea salt emission, secondary aerosol formation, and anthropogenic pollution from both local and distant sources. The sources of ions and trace metals were identified using enrichment factor, correlation, and factor analyses. Clearly, Na+, K+, Ca2+, and Mg2+were from marine sources, while Cu, Pb, Zn, and Cd were from anthropogenic pollution, and Al and V were mainly from crustal sources.
文摘When a 2-D progressive wave train normally or obliquely approaches a vertical wall and then is normally or obliquely reflected from it, the combination of the approaching and reflected waves may result in a standing wave or a short-crested wave in front of the wall. This paper presents the experimental observations of sand bed configurations under the action of these water waves in front of the wall. The geometry of sand ripples under these water waves in front of the vertical wall is presented as a function of flow parameters, such as the water particle semi-excursion and the mobility number.
基金supported by the National Natural Science Foundation of China(Grants No.41006115,41076128)the National Key Technology Research and Development Program of China(Grant No.2006BAB18B03)
文摘Based on the observed and NCEP reanalysis data from 1985 to 2006, the climate background and synoptic situation of fog at Great Wall Station were analyzed.It is shown that the seasonal variation of fog is controlled by the change of general circulation and local pressure field.Three favorable typical synoptic situations for fog development arc found,the Front-of-A-Depression type,the Saddle-Shaped-Field type and the Passing-Weak-Cyclone type.The first one is the most important situation.Advection cooling fog is dominant at Great Wall Station,but there are other kinds of fog as well.As a result,some helpful principles for local fog forecasting are given.
基金supported by the National Natural Science Foundation of China(Grant nos.41006115,41076128,41106164)the Chinese Polar Environmental Comprehensive Investigation and Assessment Programs(Grant nos.CHINARE2013-02-04,CHINARE2013-01-01)
文摘The variation of visibility at Great Wall Station (GWS) was analyzed using manual observational data for the period of 1986 to 2012. Results show that the frequencies of occurrence of high (≥ 10 km) and low visibility (0-1 km) are 61.0% and 8.0%, respectively. Visibility at GWS shows an evident seasonal variation: The highest visibility between November and March, and the lowest visibility from June to October. Sea fog and precipitation are the main factors for low visibility during summer, whereas frequent adverse weather, such as falling snow, blowing snow, or blizzards, are responsible for low visibility in winter. The frequency of occurrence of low visibility has decreased significantly from 1986 to 2012. Conversely, the frequency of occurrence of high visibility has shown a significant increasing trend, especially during winter. The decreasing tendencies of fog, blowing snow, and snowfall have contributed to the increasing trend of high visibility during winter. Visibility at GWS exhibits significant synoptic-scale (2.1 to 8.3 d), annual, and inter-annual periods (2 a, 4.1 a, and 6.9 a to 8.2 a), among which the most significant period is 4.1 a. The visibility observed during 2012 indicates that instrumental observation can be applied in the continuous monitoring of visibility at GWS.