We describe the results of 532 nm pulse laser-induced breakdown spectroscopy (LIBS) of two samples of magnetite nanoparticles (SPIONs) nanoferrofluid synthesized at room (S1) and elevated temperatures (S2) and at thre...We describe the results of 532 nm pulse laser-induced breakdown spectroscopy (LIBS) of two samples of magnetite nanoparticles (SPIONs) nanoferrofluid synthesized at room (S1) and elevated temperatures (S2) and at three different laser energy levels and pulse frequency. The size of magnetite nanoparticles, size distribution, magnetic crystalline phase and magnetization were analyzed and measured using transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD) and vibrating sample magnetometry (VSM). The SPIONs showed a distribution between 4 - 22 nm with a peak about 12 nm and saturation magnetization of about 65 emu/g. The Saha-Boltzmann analysis of spectra for medium energy level (1050 mJ) yields plasma temperatures of (3881 ± 200) K and (26,047 ± 200) K for Fe I and OV as the lowest and highest temperatures respectively. A range of corresponding electron density (Ne-) of (0.47 - 6.80) × 1020, (0.58 - 8.30) × 1020 and (0.69 - 9.96) × 1020 cm-3?were determined at 860, 1050 and 1260 mJ respectively using the estimated CCD pictures. The results confirmed a higher elements ratio for S1 than S2 and the signal intensity indicated a non-linear behaviour as a function of pulse frequency with the maximum ratio value at 3 Hz. At higher frequency of 6 Hz no such turning point was observed. The highest and lowest temperatures corresponded to Fe I and OV respectively. The LIBS technique can be utilized to study, characterize and determine the elements ratio required in most applications involving the synthesizing process.展开更多
文摘We describe the results of 532 nm pulse laser-induced breakdown spectroscopy (LIBS) of two samples of magnetite nanoparticles (SPIONs) nanoferrofluid synthesized at room (S1) and elevated temperatures (S2) and at three different laser energy levels and pulse frequency. The size of magnetite nanoparticles, size distribution, magnetic crystalline phase and magnetization were analyzed and measured using transmission electron microscopy (TEM), X-ray diffraction spectroscopy (XRD) and vibrating sample magnetometry (VSM). The SPIONs showed a distribution between 4 - 22 nm with a peak about 12 nm and saturation magnetization of about 65 emu/g. The Saha-Boltzmann analysis of spectra for medium energy level (1050 mJ) yields plasma temperatures of (3881 ± 200) K and (26,047 ± 200) K for Fe I and OV as the lowest and highest temperatures respectively. A range of corresponding electron density (Ne-) of (0.47 - 6.80) × 1020, (0.58 - 8.30) × 1020 and (0.69 - 9.96) × 1020 cm-3?were determined at 860, 1050 and 1260 mJ respectively using the estimated CCD pictures. The results confirmed a higher elements ratio for S1 than S2 and the signal intensity indicated a non-linear behaviour as a function of pulse frequency with the maximum ratio value at 3 Hz. At higher frequency of 6 Hz no such turning point was observed. The highest and lowest temperatures corresponded to Fe I and OV respectively. The LIBS technique can be utilized to study, characterize and determine the elements ratio required in most applications involving the synthesizing process.
基金浙江省新苗人才计划资助(“XinMiao Project of Science and Technology Department of Zhejiang Province”)浙江省自然科学基金资助项目(Zhejiang Province Natural Science Foundation)(Y107055)