A new kind of vanadium bronze with rich lithium (Li_5V_5O_(15))was prepared from Li_2CO_3 and V_2O_5 at 680℃ for 24 hrs. The charge and discharge curves of bronze electrode were determined in organic electrolyte. One...A new kind of vanadium bronze with rich lithium (Li_5V_5O_(15))was prepared from Li_2CO_3 and V_2O_5 at 680℃ for 24 hrs. The charge and discharge curves of bronze electrode were determined in organic electrolyte. One mole of this material could be incorporated up to 4 mole lithium at 0.2mA/cm^2 and 1.0V cut-off voltage, corresponding capacity about 340Ah/kg. Compared with the cell of Li/Li_(1+x)V_3O_5 the cell of Li/new bronze had higher capacity, smoother discberge curve, but lower plateau voltage (about 1.8V). The cycling behaviour of this material was good. The electrode insertion reaction was controlled by the lithium diffusion process in the bronze. This new bronze could be used for low voltage rechargeable lithium battery.展开更多
Several acid compounds have been employed as additives of the V(V) electrolyte for vanadium redox flow battery(VRB) to improve its stability and electrochemical activity. Stability of the V(V) electrolyte with and wit...Several acid compounds have been employed as additives of the V(V) electrolyte for vanadium redox flow battery(VRB) to improve its stability and electrochemical activity. Stability of the V(V) electrolyte with and without additives was investigated with ex-situ heating/cooling treatment at a wide temperature range of-5 ?C to 60 ?C. It was observed that methanesulfonic acid, boric acid, hydrochloric acid, trifluoroacetic acid,polyacrylic acid, oxalic acid, methacrylic acid and phosphotungstic acid could improve the stability of the V(V) electrolyte at a certain range of temperature. Their electrochemical behaviors in the V(V) electrolyte were further studied by cyclic voltammetry(CV), steady state polarization and electrochemical impedance spectroscopy(EIS). The results showed that the electrochemical activity, including the reversibility of electrode reaction, the diffusivity of V(V) species, the polarization resistance and the flexibility of charge transfer for the V(V) electrolyte with these additives were all improved compared with the pristine solution.展开更多
Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethyle...Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.展开更多
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break...The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.展开更多
Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical...Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.展开更多
The all-lithium salts of heteropoly acid Li_xXM_ 12O_ 40(HPA-Li)(X=P, Si; M=Mo, W) were obtained via ion exchange and characterized by means of IR and UV spectroscopies, TG and elemental analyses. The conductivity o...The all-lithium salts of heteropoly acid Li_xXM_ 12O_ 40(HPA-Li)(X=P, Si; M=Mo, W) were obtained via ion exchange and characterized by means of IR and UV spectroscopies, TG and elemental analyses. The conductivity of the electrolytic solution consisting of Li_3PW_ 12O_ 40 and PC/DME mixing solvent(1/2.5, volume ratio) is up to 7.2×10 -2 S/cm, being higher than that of LiClO_4 as the electrolyte. The all-lithium salts were used as electrolytes in secondary lithium-ion batteries. The discharge capacity of the PAS/Li batteries with Li_3PW_ 12O_ 40 electrolyte solutions reaches to 148 (mA·h)/g and the cyclic life is up to 380 times, much better than those of commercialized products with LiClO_4 and LiAsF_6 as electrolytes.展开更多
Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secon...Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.展开更多
Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium ...Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism.展开更多
Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applica...Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.展开更多
The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes ...The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries.展开更多
Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is f...Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.展开更多
With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devot...With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devoted into advanced electrode materials synthesis,while there is insufficient attention paid to regulate their interfaces.In this regard,the solid electrolyte interphase(SEI)at anode part has been studied for 40 years,already achieving remarkable outcomes on improving the stability of anode candidates.Unfortunately,the study on the cathode electrolyte interfaces(CEI)remains in infancy,which constitutes a potential restriction to the capacity contribution,stability and safety of cathodes.In fact,the native CEI generally possesses unfavorable characteristics against structural and compositional stability that requires demanding optimization strategies.Meanwhile,an in-depth understanding of the CEI is of great significance to guide the optimization principles in terms of composition,structure,growth mechanism,and electrochemical properties.In this literature,recent progress and advances of the CEI characterization methods and optimization protocols are summarized,and meanwhile the mutually-reinforced mechanisms between detection and modification are explained.The criteria and the potential development of the CEI characterization are proposed with insights of novel optimization directions.展开更多
The electrochemical process of Ti-Ni alloy electrode was studied by using cyclic voltammetry. The hydrogen-absorbing electrode could be approximately regarded as a reversible hydrogen elecrede. The con- trolling steps...The electrochemical process of Ti-Ni alloy electrode was studied by using cyclic voltammetry. The hydrogen-absorbing electrode could be approximately regarded as a reversible hydrogen elecrede. The con- trolling steps of the discharging process varying with the anodic overpotentials were investigated and the effect ofelecrode constituent modification or Zr adulteation on the electrochemical behavior was also studied.展开更多
Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllabi...Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllability,and is a class of functional materials with great application prospects in energy storage and conversion.Here,this review firstly focuses on the concept,classification,and physicochemical property of lignin.Then,the application research of lignin in the field of electrochemical storage materials and devices are summarized,such as lignin-carbon materials and lignin-carbon composites in supercapacitors and secondary batteries.Finally,this review points out the bottlenecks that need to be solved urgently and the prospects for future research priorities.展开更多
Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displ...Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.展开更多
基金This project is supported by The National Natural Science Foundation of China
文摘A new kind of vanadium bronze with rich lithium (Li_5V_5O_(15))was prepared from Li_2CO_3 and V_2O_5 at 680℃ for 24 hrs. The charge and discharge curves of bronze electrode were determined in organic electrolyte. One mole of this material could be incorporated up to 4 mole lithium at 0.2mA/cm^2 and 1.0V cut-off voltage, corresponding capacity about 340Ah/kg. Compared with the cell of Li/Li_(1+x)V_3O_5 the cell of Li/new bronze had higher capacity, smoother discberge curve, but lower plateau voltage (about 1.8V). The cycling behaviour of this material was good. The electrode insertion reaction was controlled by the lithium diffusion process in the bronze. This new bronze could be used for low voltage rechargeable lithium battery.
基金supported in part by National Natural Science Foundation of China(61533017,61273140,61304079,61374105,61379099,61233001)Fundamental Research Funds for the Central Universities(FRF-TP-15-056A3)the Open Research Project from SKLMCCS(20150104)
基金supported by the Doctoral Program of Higher Education(No.20110181110003)the Collaborative innovation fund by China Academyof Engineering Physics and Sichuan University(No.XTCX2011001)the Sichuan Provincial Department of Science and Technology R&D Program(No.2013FZ0034)
文摘Several acid compounds have been employed as additives of the V(V) electrolyte for vanadium redox flow battery(VRB) to improve its stability and electrochemical activity. Stability of the V(V) electrolyte with and without additives was investigated with ex-situ heating/cooling treatment at a wide temperature range of-5 ?C to 60 ?C. It was observed that methanesulfonic acid, boric acid, hydrochloric acid, trifluoroacetic acid,polyacrylic acid, oxalic acid, methacrylic acid and phosphotungstic acid could improve the stability of the V(V) electrolyte at a certain range of temperature. Their electrochemical behaviors in the V(V) electrolyte were further studied by cyclic voltammetry(CV), steady state polarization and electrochemical impedance spectroscopy(EIS). The results showed that the electrochemical activity, including the reversibility of electrode reaction, the diffusivity of V(V) species, the polarization resistance and the flexibility of charge transfer for the V(V) electrolyte with these additives were all improved compared with the pristine solution.
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
基金the Foundation of Science and Technology Department of Heibei Province (No. 05547003D-4)the Foundation of the Education Department of Hebei Province, China (No. 2005356).
文摘Lithium/polypyrrole (Li/PPy) batteries were fabricated using lithium sheet as cathode, PPy as anode, microporous membrane polypropylene/polyethylene/polypropylene (PP/PE/PP) composite as separator and LiPF6/ethylene carbonate-dimethyl carbonate-methyl ethyl carbonate (EC-DMC-EMC) as electrolyte. Polypyrrole was prepared by chemical polymerization. Certain fundamental electrochemical performances were investigated. Properties of the batteries were characterized and tested by SEM, galvanostatic charge/discharge tests, cyclic voltammetry (CV), and a.c. impedance spectroscopy. The influences of separator, morphology, and conductivity of PPy anode, cold-molded pressure, and electric current on the performances of the batteries were studied. Using PP/PE/PP membranes as separator, the battery showed good storage stability and cycling property. The conductivity of materials rather than morphology affected the behavior of the battery. The higher the conductivity, the better performances the cells had. Proper cold-molded pressure 20 MPa of the anode pellet would make the properties of the cells good and the fitted charge/discharge current was 0.1 mA. The cells showed excellent performance with 97%-100% coulombic efficiency. The highest discharge capacity of 95.2 mAh/g was obtained.
基金supported by the Programs of National 973 (2011CB935900)NSFC (51231003 and 21231005)+1 种基金111 Project (B12015)Tianjin High-Tech (10SYSYJC27600)
文摘The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.
基金supported by National Natural Science Foundation of China(61520106008,U1564207,61503149)High Technology Research and Development Program of Jilin(20130204021GX)+1 种基金Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)Graduate Innovation Fund of Jilin University(2015148)
基金financially supported by Intergovernmental International Science and Technology Innovation Cooperation Project(2019YFE010186)the Hubei Provincial Natural Science Foundation(2019CFB452 and 2019CFB620)the Fundamental Research Funds for the Central Universities。
文摘Mg secondary batteries are promising scalable secondary batteries for next-generation energy storage.However,Mg-storage cathode materials are greatly demanded to construct high-performance Mg batteries.Electrochemical conversion reaction provides plenty of cathode options,and strategy for cathode selection and performance optimization is of special significance.In this work,Ni0.85Se with nanostructures of dispersive hexagonal nanosheets(D-Ni0.85Se)and flower-like assembled nanosheets(F-Ni0.85Se)is synthesized and investigated as Mg-storage cathodes.Compared with F-Ni0.85Se,D-Ni0.85Se delivers a higher specific capacity of 168 mAh g^-1 at 50 mA g^-1 as well as better rate performance,owing to its faster Mg^2+-diffusion and lower resistance.D-Ni0.85Se also exhibits a superior cycling stability over 500cycles.An investigation on mechanism indicates an evolution of Ni0.85Se towards NiSe with cycling,and the Mg-storage reaction occurs between NiSe and metallic Ni^0.The present work demonstrates that advanced conversion-type Mg battery cathode materials could be constructed by soft selenide anions,and the electrochemical properties could be manipulated by rational material morphology optimization.
文摘The all-lithium salts of heteropoly acid Li_xXM_ 12O_ 40(HPA-Li)(X=P, Si; M=Mo, W) were obtained via ion exchange and characterized by means of IR and UV spectroscopies, TG and elemental analyses. The conductivity of the electrolytic solution consisting of Li_3PW_ 12O_ 40 and PC/DME mixing solvent(1/2.5, volume ratio) is up to 7.2×10 -2 S/cm, being higher than that of LiClO_4 as the electrolyte. The all-lithium salts were used as electrolytes in secondary lithium-ion batteries. The discharge capacity of the PAS/Li batteries with Li_3PW_ 12O_ 40 electrolyte solutions reaches to 148 (mA·h)/g and the cyclic life is up to 380 times, much better than those of commercialized products with LiClO_4 and LiAsF_6 as electrolytes.
基金Supported by Education Com mittee Foundation of L iaoning Province(No.970 912 12 11) .
文摘Lithium heteropoly blue(Li 5PW Ⅵ 10 W Ⅴ 2O 40 ) was used as a non aqueous electrolyte in the polyacenic semiconductor (PAS) Li secondary battery instead of LiClO 4. The properties of the PAS Li secondary battery, especially the effect of Li 5PW Ⅵ 10 W Ⅴ 2O 40 on the capacity, the cycle property and the self discharging of the battery have been investigated. The results indicate that not only Li 5PW Ⅵ 10 W Ⅴ 2O 40 can overcome the disadvantages of LiClO 4, which is apt to explode when heated or rammed, but also the PAS Li secondary battery assembled with the novel electrolyte has a larger capacity and smaller self discharging than that assembled with LiClO 4. Therefore, it is believed that lithium heteropoly blue is a better and novel electrolyte for the PAS secondary battery and exhibits significant and practical application.
基金financially supported by NSAF(No.U1530155)Ministry of Science and Technology(MOST)of China,US–China Collaboration on Cutting-edge Technology Development of Electric Vehicle,the Nation Key Basic Research Program of China(No.2015CB251100)Beijing Key Laboratory of Environmental Science and Engineering(No.20131039031)
基金supported by the State Grid Technology Project(No. DG71-17-010)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions (CIT&TCD 201504019)
文摘Lithium secondary batteries(LSBs) with high energy densities need to be further developed for future applications in portable electronic devices, electric vehicles, hybrid electric vehicles and smart grids. Lithium metal is the most promising electrode for next-generation rechargeable batteries. However, the formation of lithium dendrite on the anode surface leads to serious safety concerns and low coulombic efficiency.Recently, researchers have made great efforts and significant progresses to solve these problems. Here we review the growth mechanism and suppression method of lithium dendrite for LSBs’ anode protection. We also establish the relationship between the growth mechanism and suppression method. The research direction for building better LSBs is given by comparing the advantages and disadvantages of these methods based on the growth mechanism.
基金supported by the Ministry of Science and Technology of China(Nos.2016YFA0204100 and 2016YFA0200200)the National Natural Science Foundation of China(Nos.21321002,21573220 and 21303191)the strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA09030100)
基金supported by the Natural Science Foundation of Jiangsu Province,China(BK20170630)the National Natural Science Foundation of China(51802149 and U1801251)+1 种基金the Fundamental Research Funds for the Central Universitiesthe Nanjing University Technology Innovation Fund Project。
文摘Nowadays,in-situ/operando characterization becomes one of the most powerful as well as available means to monitor intricate reactions and investigate energy-storage mechanisms within advanced batteries.The new applications and novel devices constructed in recent years are necessary to be reviewed for inspiring subsequent studies.Hence,we summarize the progress of in-situ/operando techniques employed in rechargeable batteries.The members of this large family are divided into three sections for introduction,including bulk material,electrolyte/electrode interface and gas evolution.In each part,various energy-storage systems are mentioned and the related experimental details as well as data analysis are discussed.The simultaneous strategies of various in-situ methods are highlighted as well.Finally,current challenges and potential solutions are concluded towards the rising influence and enlarged appliance of in-situ/operando techniques in the battery research.
基金the financial support of the National Natural Science Foundation of China(21961044,22169024)the Yunnan Fundamental Research Projects(202105AC160072,202101BC070001-019,202101AT070280,202102AB080017)the Yunnan University’s Research Innovation Fund for graduate students(2021Y394)。
文摘The development of flame retardant or nonflammable electrolytes is the key to improve the safety of lithium batteries,owing to inflammable organic solvents and polymer matrix in common liquid and polymer electrolytes regarded as the main cause of battery fire.Herein,a series of solid-state polyphosphate oligomers(SPPO)as a three-in-one electrolyte that integrated the roles of lithium salt,dissociation matrix,and flame retardant were synthesized.The well-designed SPPO electrolytes showed an optimal ionic conductivity of 5.5×10^(-4)S cm-1at 30℃,an acceptable electrochemical window up to 4.0 V vs.Li/Li+,and lithium ion transference number of 0.547.Stable Li-ion stripping/plating behavior for 500 h of charge-discharge cycles without internal short-circuit in a Li|SPPO|Li cell was confirmed,together with outstanding interface compatibility between the SPPO electrolyte and lithium foil.The optimal Li|SPPO|LiFePO4cell presented good reversible discharge capacity of 149.4 mA h g-1at 0.1 C and Coulombic efficiency of 96.4%after 120 cycles.More importantly,the prepared SPPO cannot be ignited by the lighter fire and show a limited-oxygen-index value as high as 35.5%,indicating splendid nonflammable nature.The SPPO could be a promising candidate as a three-in-one solid-state electrolyte for the improved safety of rechargeable lithium batteries.
基金supported by the MOST of China(No.2010CB631301 and 2012CBA01207)NSFC(No.U1201241,11375020 and 21321001)
文摘Pd-capped Mg78Y22 thin films have been prepared by direct current magnetron co-sputtering system at different substrate temperatures and their electrochemical hydrogen storage properties have been investigated.It is found that rising substrate temperature to 60 ℃ can coarsen the surface of thin film,thus facilitating the diffusion of hydrogen atoms and then enhancing its discharge capacity to 1725 mAh·g-1.Simultaneously,the cyclic stability is effectively improved due to the increased adhesion force between film and substrate as a function of temperature.In addition,the specimen exhibits a very long and flat discharge plateau at about —0.67 V,at which nearly 60%of capacity is maintained.The property is favorable for the application in metal hydride/nickel secondary batteries.The results indicate that rising optimal substrate temperature has a beneficial effect on the electrochemical hydrogen storage of Mg-Y thin films.
基金supported by the National Natural Science Foundation of China(51804290,22075025,21975026)the Beijing Natural Science Foundation(L182023)+1 种基金the Science and Technology Program of Guangdong Province(Grant No.2020B0909030004)the Beijing Institute of Technology Research Fund Program for Young Scholars(2019CX04092)。
文摘With the advancement of secondary batteries,interfacial properties of electrode materials have been recognized as essential factors to their electrochemical performance.However,the majority of investigations are devoted into advanced electrode materials synthesis,while there is insufficient attention paid to regulate their interfaces.In this regard,the solid electrolyte interphase(SEI)at anode part has been studied for 40 years,already achieving remarkable outcomes on improving the stability of anode candidates.Unfortunately,the study on the cathode electrolyte interfaces(CEI)remains in infancy,which constitutes a potential restriction to the capacity contribution,stability and safety of cathodes.In fact,the native CEI generally possesses unfavorable characteristics against structural and compositional stability that requires demanding optimization strategies.Meanwhile,an in-depth understanding of the CEI is of great significance to guide the optimization principles in terms of composition,structure,growth mechanism,and electrochemical properties.In this literature,recent progress and advances of the CEI characterization methods and optimization protocols are summarized,and meanwhile the mutually-reinforced mechanisms between detection and modification are explained.The criteria and the potential development of the CEI characterization are proposed with insights of novel optimization directions.
文摘The electrochemical process of Ti-Ni alloy electrode was studied by using cyclic voltammetry. The hydrogen-absorbing electrode could be approximately regarded as a reversible hydrogen elecrede. The con- trolling steps of the discharging process varying with the anodic overpotentials were investigated and the effect ofelecrode constituent modification or Zr adulteation on the electrochemical behavior was also studied.
基金supported by the National Natural Science Foundation of China(NSFC)(No.21908071,21908205,22108135)Natural Science Foundation of Guangdong,(2020A1515011319)+3 种基金Henan Provincial Key Research and Development Program(No.202102210312)Natural Science Foundation of Shandong Province(ZR2020QB197)CAS Key Laboratory of Renewable Energy(No.E129kf0301)Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education of China(KF201902)。
文摘Lignin is the most abundant aromatic polymer in nature,which is rich in a large number of benzene ring structures and active functional groups.The molecular structure of lignin has unique designability and controllability,and is a class of functional materials with great application prospects in energy storage and conversion.Here,this review firstly focuses on the concept,classification,and physicochemical property of lignin.Then,the application research of lignin in the field of electrochemical storage materials and devices are summarized,such as lignin-carbon materials and lignin-carbon composites in supercapacitors and secondary batteries.Finally,this review points out the bottlenecks that need to be solved urgently and the prospects for future research priorities.
文摘Cs0.35V2O5 was successfully synthesized as cathode material for lithium secondary battery by the rheological phase reaction method from Cs2CO3 and NH4VO3. The Cs0.35V2O5/Cu composite material was prepared by the displacement reaction in CuSO4 solution using zinc powder as a reductant. The structure and electrochemical property of the so-prepared powders were characterized by means of XRD (powder X-ray diffraction) and the galvanostatic discharge-charge techniques. The results show that the electrochemical property of Cs0.35V2O5/Cu composite material is significantly improved compared to the bulk Cs0.35V2O5 material. The Cs0.35V2O5/Cu composite material exhibits the first discharge capacity as high as 164.3 mAh.g -1 in the range of 4.2-1.8V at a current rate of 10 mA.g-1 and remains at a stable discharge capacity of about 110 mAh.g-1 within 40 cycles.