Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur...Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.展开更多
To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a not...The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.展开更多
Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the sh...Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity.Unlike conventional reservoirs,shale oil reservoirs exhibit characteristics such as low porosity,low permeability,and rich content of organic matter and clay minerals.Notably,the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant.The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous,and the mechanisms underpinning osmotic pressure effects are not fully understood.This study introduces a theoretical approach,by which a salt ion migration control equation is derived and a mathematical model for spontaneous imbibition in shale is introduced,which is able to account for both capillary and osmotic pressures.Results indicate that during the spontaneous imbibition of low-salinity fluids,osmotic effects facilitate the migration of external fluids into shale pores,thereby complementing capillary forces in displacing shale oil.When considering both capillary and osmotic pressures,the calculated imbibition depth increases by 12%compared to the case where only capillary forces are present.The salinity difference between the reservoir and the fracturing fluids significantly influences the imbibition depth.Calculations for the shutin phase reveal that the pressure between the matrix and fractures reaches a dynamic equilibrium after 28 days of shut-in.During the production phase,the maximum seepage distance in the target block is approximately 6.02 m.展开更多
Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately ...Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity.展开更多
Sediment incipient motion is the first step in sediment resuspension.Previous studies ignored the effect of seepage flow on the mobility of sediment particles and simplified the seabed surface as a rigid boundary.A fl...Sediment incipient motion is the first step in sediment resuspension.Previous studies ignored the effect of seepage flow on the mobility of sediment particles and simplified the seabed surface as a rigid boundary.A flume experiment was designed to innovatively divide the seabed into two parts to control the dynamic response of the seabed and control the seepage conditions.In the experiment,the seabed sediments and the amplitude of internal solitary waves(ISWs)were changed to compare and analyze the impact of seepage flow on the sediment resuspension by shoaling ISWs.Moreover,parametric research and verification were carried out.Results indicate that seepage flow can greatly influence fine sand,promote sediment resuspension,and increase the amount of suspension by two times on average.However,seepage flow had a little effect on the suspension of clayey silt and sandy silt.Besides,seepage force was added to the traditional gravity,drag force,and uplift force,and the parameterization of threshold starting shear stress of coarse-grained sediments was developed.The results of this parameterization were verified,and seepage force was critical to parameterization.The threshold starting shear stress was reduced by 54.6%after increasing the seepage force.The physical mechanism of this process corresponded to the vertical reciprocating transient seepage in and out the seabed interface caused by the wave-induced transient excess pore water pressure.This quantitative study on seepage flow for shear stress of coarse-grained sediments induced by ISWs is critical to geohazard assessment.展开更多
Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applicatio...Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.展开更多
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam...Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively.展开更多
In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage...In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage followed by an unconfined seepage in the same field, which presents a combined seepage problem. Two equations were developed to analyze the combined seepage underneath a sheet piling wall. Using such equations, both the maximum height of the free surface just behind the sheet piling cofferdam (H<sub>o</sub>) and the quantity of seepage discharge to be pumped out from the construction site (q) can be determined. The main parameters affecting the combined seepage characteristics underneath a sheet piling wall are: The depth of permeable foundation layer (T), the horizontal distance behind the sheet pile (X), the depth of excavation in the construction site (D), the embedded depth of sheet pile (S), the retained water head (H<sub>1</sub>), the accumulated seepage water depth (H<sub>2</sub>), and the side slope factor of excavation line (M). Study showed that, the above parameters have a great effect on the combined seepage, but with different extents.展开更多
Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The ...Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The evolution of seepage erosion is investigated with X-ray computed tomography(CT)in this study.The change in macropore structure characteristics during the seepage erosion test is quantified and the influence of seepage erosion on soil deformation is analyzed.Moreover,a pore network model(PNM)is established for the specimens and the evolution of the connected pore size characteristics is assessed.The results show that the macropore structure is significantly affected by seepage erosion,especially in terms of the porosity and pore geometry characteristics.The changes in macropore structure characteristics are most obvious in the lower part of the specimen.The influence of seepage erosion on the pore size distribution(PSD)and soil deformation is heterogeneous and closely dependent on the spatial location of the soil.Moreover,seepage erosion enhances macropore connectivity and has a directional impact on macropore orientation.These findings can provide a reference for the theoretical modeling and numerical simulation of the seepage erosion and improve the understanding of the seepage erosion evolution in engineering practice.展开更多
Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leachin...Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.展开更多
Subterranean estuaries,i.e.,the mixing zone between terrestrial groundwater and recirculated seawater,host a wide range of microbiota.Here,field campaigns were conducted at the mouth of the subterranean estuary at the...Subterranean estuaries,i.e.,the mixing zone between terrestrial groundwater and recirculated seawater,host a wide range of microbiota.Here,field campaigns were conducted at the mouth of the subterranean estuary at the Sanggou Bay(Shandong Province,China)over four consecutive seasons at a seepage face(0−20 cm depth).The diversity of benthic microbiome was characterized via 16S rRNA gene sequencing and metagenomics,combined with physic-chemical parameters,e.g.,organic carbon,total nitrogen and sulfate contents in sediments.During spring,the dominant species were assigned to the phylum Proteobacteria.Important opportunistic species was assigned to Acidobacteria,Actinobacteria and Bacteroidetes.The key components were identified to be species of the genera Pseudoalteromonas,Colwellia and Sphingobium,indicating the involvement of sediment microbiota in the degradation of sedimentary organic carbon,particularly that of pelagic origin,e.g.,phytoplankton detritus and bivalve pseudo-feces.During spring,the microbial community was statistically similar along the depth profiles and among the three sampled stations.Similar spatial distributions were obtained in the remaining seasons.By contrast,the dominant species assemblages varied significantly among seasons,with key genera being Thioprofundum and Nitrosopumilus during summer and autumn and Thioprofundum and Ilumatobacter during winter.Network analysis revealed a seasonal shift in benthic nitrogen and sulfur metabolism associated with these variations in microbial community composition.Overall,our findings suggested that macro elements derived from pelagic inputs,particularly detrital phytoplankton,shaped the microbial community compositions at the seepage face,resulting in significant seasonal variations,while the influence of terrestrial materials transported by groundwater on the sediment microbiota at the seepage face found to be minor.展开更多
The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,stro...The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,strong heterogeneity,and high water saturation.Moreover,their percolation mechanisms are more complex.The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressuredepletion conditions(from the Xihu Depression in the East China Sea Basin).It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity.The reservoir stress sensitivity is related to permeability and rock composition.Stress sensitivity is generally low when permeability is high or in the early stage of gas reservoir development.It is also shown that in sand conglomerates,especially the more sparsely filled parts,the interstitial materials among the conglomerates can be rapidly dislodged from the skeleton particles under stress.This material can therefore disperse,migrate,and block the pore throat producing serious,stress-sensitive damage.展开更多
The experimental study of the seepage processes’sources formation in structures of the Arctic Region was carried out using modified methods of frequency-resonance(FR)processing and decoding of satellite images and ph...The experimental study of the seepage processes’sources formation in structures of the Arctic Region was carried out using modified methods of frequency-resonance(FR)processing and decoding of satellite images and photographs with the vertical scanning of the cross-sections.The newly obtained results show that the intensity and dynamics of the methane seeps and pockmarks fields’formation depend on active deep degassing processes in the continental margin structures.The use of direct FR-sounding technologies allows for determining the probable origin and depth of geological sources of gas migration at marginal migration centers in Greenland,and Norwegian and Barents Seas.New results confirm the crust-mantle gas fluids’influence on the nature and degassing processes features in the scan points of polar marginal structures.These data are important arguments in favor of the“volcanic model”of various structural elements formation in this and other regions.The FR technologies data also showed a possibility of seeps use as shallow and deep hydrocarbon field indicators in gas emission areas.These independent data can be used in compiling models of the deep lithosphere structure and possible mechanisms of abiogenetic hydrocarbon formation in Arctic margin structures.The authors suppose that hydrocarbons through deep channels migrate(from 57 km deep)to the upper crustal horizons where their fields can form.During this migration,gas seeps and pockmarks are formed on the sea bottom and part of the gas can migrate into the atmosphere.Data show that basaltic volcanoes in Greenland scan points can be the real channels through which hydrogen migrates to the upper crustal horizons and further into the atmosphere.Active gas migration in Arctic seepage areas can be an important factor in the global climate change processes.展开更多
Purpose–This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata,the temperature field characteristics of the strata,and the strata process,closure time and thicknes...Purpose–This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata,the temperature field characteristics of the strata,and the strata process,closure time and thickness evolution mechanism of the frozen wall.Design/methodology/approach–In this paper several laboratory model tests were conducted,considering different groundwater seepage rate.Findings–The results show that there is a significant coupling effect between the cold diffusion of artificial freezing pipes and groundwater seepage;when there is no seepage,temperature fields upstream and downstream of the gravel strata are symmetrically distributed,and the thickness of the frozen soil column/frozen wall is consistent during artificial freezing;groundwater seepage causes significant asymmetry in the temperature fields upstream and downstream of the gravel strata,and the greater the seepage rate,the more obvious the asymmetry;the frozen wall closure time increases linearly with the increase in the groundwater seepage rate,and specifically,the time length under seepage rate of 5.00 m d1 is 3.2 times longer than that under no seepage;due to the erosion from groundwater seepage,the thickness of the upstream frozen wall decreases linearly with the seepage velocity,while that of the downstream frozen wall increases linearly,resulting in a saddle-shaped frozen wall.Originality/value–The research results are beneficial to the optimum design and risk control of artificial freezing process in gravel strata.展开更多
Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mech...Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.展开更多
Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush...Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.展开更多
Hongxing reservoir was constructed on the floodplain of Hulan River in Heilongjiang. The geological problem of the reservoir is the seepage of the dam base and its related seepage stability. The leakage of the reservo...Hongxing reservoir was constructed on the floodplain of Hulan River in Heilongjiang. The geological problem of the reservoir is the seepage of the dam base and its related seepage stability. The leakage of the reservoir is caused by the water head differences between the upstream and downstream of the dam. Severe seepage could decrease the engineering benefits of the reservoir. Moreover,infiltration function of water will influence the safety of the dam. Through the analysis on the granule constitute and the formation of the dam base,the types of the seepage failure apt to happen were defined and the anti-infiltration and the permissible depression ratio were determined. Using the numerical simulation software GMS,the two-dimension numerical modeling has been carried out to analyze the seepage field of the reservoir. Through the two conditions modeling with concrete impervious wall and no concrete impervious wall,the largest flow rate,single-wide seepage discharge and the max infiltration gradient of the dam base were calculated. According to the permeable depression ratio of the dam base,the seepage stability of Hongxing reservoir dam base was analyzed.展开更多
In a semi-infinite aquifer bounded by a channel, a transient flow model is constructed for phreatic water subjected to vertical and horizontal seepage. Based on the first linearized Boussinesq equation, the analytical...In a semi-infinite aquifer bounded by a channel, a transient flow model is constructed for phreatic water subjected to vertical and horizontal seepage. Based on the first linearized Boussinesq equation, the analytical solution of the model is obtained by Laplace transform. Having proven the transformation between the analytical solution and some relevant classic formulas, suitable condition for each of these formulas is demonstrated. On the base of the solution, the variation of transient flow process caused by the variables, such as vertical infiltration intensity, fluctuation range of river stage, aquifer parameters such as transmissivity and specific yield, and the distance from calculating point to channel boundary, are analyzed quantitatively one by one. Lagging effect will happen to the time, when phreatic water gets its maximum fluctuation velocity, response to the varying of the variables stated above. The condition for some variables to form equivalent lagging effect is demonstrated. Corresponding to the mathematical charac teristics of the analytical solution, the physical implication and the fluctuation rule of groundwater level are discussed.展开更多
Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering appl...Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20234 and 42277170)Hubei Province Key Research and Development Project(Grant No.2023BCB121).
文摘Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone.
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
基金National Natural Science Foundation of China(51934005,U23B2089)Shaanxi Provincial Natural Science Basic Research Program Project(2024JC-YBQN-0554).
文摘The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix.Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure,its effect on hydraulic fracture(HF)propagation remains ambiguous.Therefore,in this study,we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage,using the discrete element method.First,we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results.Next,we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation.Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate,and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths.Furthermore,seepage force influences the direction of HF propagation,causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.
基金China National Petroleum Corporation’s Fourteenth Five-Year Plan’s Prospective Fundamental Project on‘Research on Key Technologies and Equipment for Reservoir Reconstruction’(2021DJ45).
文摘Following large-scale volume fracturing in shale oil reservoirs,well shut-in measures are generally employed.Laboratory tests and field trials have underscored the efficacy of fracturing fluid imbibition during the shut-in phase in augmenting shale oil productivity.Unlike conventional reservoirs,shale oil reservoirs exhibit characteristics such as low porosity,low permeability,and rich content of organic matter and clay minerals.Notably,the osmotic pressure effects occurring between high-salinity formation water and low-salinity fracturing fluids are significant.The current understanding of the mobilization patterns of crude oil in micro-pores during the imbibition process remains nebulous,and the mechanisms underpinning osmotic pressure effects are not fully understood.This study introduces a theoretical approach,by which a salt ion migration control equation is derived and a mathematical model for spontaneous imbibition in shale is introduced,which is able to account for both capillary and osmotic pressures.Results indicate that during the spontaneous imbibition of low-salinity fluids,osmotic effects facilitate the migration of external fluids into shale pores,thereby complementing capillary forces in displacing shale oil.When considering both capillary and osmotic pressures,the calculated imbibition depth increases by 12%compared to the case where only capillary forces are present.The salinity difference between the reservoir and the fracturing fluids significantly influences the imbibition depth.Calculations for the shutin phase reveal that the pressure between the matrix and fractures reaches a dynamic equilibrium after 28 days of shut-in.During the production phase,the maximum seepage distance in the target block is approximately 6.02 m.
基金supported by the National Natural Science Foundation of China(Grant Nos.42276224,and 42206230)the Jilin Scientific and Technological Development Program(Grant No.20190303083SF)+2 种基金the International Cooperation Key Laboratory of Underground Energy Development and Geological Restoration(Grant No.YDZJ202102CXJD014)the Interdisciplinary Integration and Innovation Project of JLU(Grant No.JLUXKJC2021ZZ18)the Graduate Innovation Fund of Jilin University(Grant No.2023CX100)。
文摘Natural gas hydrate(NGH)is an important future resource for the 21st century and a strategic resource with potential for commercial development in the third energy transition.It is of great significance to accurately predict the productivity of hydrate-bearing sediments(HBS).The multi-phase seepage parameters of HBS include permeability,porosity,which is closely related to permeability,and hydrate saturation,which has a direct impact on hydrate content.Existing research has shown that these multi-phase seepage parameters have a great impact on HBS productivity.Permeability directly affects the transmission of pressure-drop and discharge of methane gas,porosity and initial hydrate saturation affect the amount of hydrate decomposition and transmission process of pressure-drop,and also indirectly affect temperature variation of the reservoir.Considering the spatial heterogeneity of multi-phase seepage parameters,a depressurization production model with layered heterogeneity is established based on the clayey silt hydrate reservoir at W11 station in the Shenhu Sea area of the South China Sea.Tough+Hydrate software was used to calculate the production model;the process of gas production and seepage parameter evolution under different multi-phase seepage conditions were obtained.A sensitivity analysis of the parameters affecting the reservoir productivity was conducted so that:(a)a HBS model with layered heterogeneity can better describe the transmission process of pressure and thermal compensation mechanism of hydrate reservoir;(b)considering the multi-phase seepage parameter heterogeneity,the influence degrees of the parameters on HBS productivity were permeability,porosity and initial hydrate saturation,in order from large to small,and the influence of permeability was significantly greater than that of other parameters;(c)the production potential of the clayey silt reservoir should not only be determined by hydrate content or seepage capacity,but also by the comprehensive effect of the two;and(d)time scales need to be considered when studying the effects of changes in multi-phase seepage parameters on HBS productivity.
基金Supported by the Natural Science Foundation of Jiangsu Province(No.BK20210527)the Open Research Fund of Key Laboratory of Coastal Science and Integrated Management,Ministry of Natural Resources(No.2021COSIMQ002)+1 种基金the National Natural Science Foundation of China(Nos.42107158,41831280)the Fundamental Research Funds for the Central Universities(No.2021QN1096)。
文摘Sediment incipient motion is the first step in sediment resuspension.Previous studies ignored the effect of seepage flow on the mobility of sediment particles and simplified the seabed surface as a rigid boundary.A flume experiment was designed to innovatively divide the seabed into two parts to control the dynamic response of the seabed and control the seepage conditions.In the experiment,the seabed sediments and the amplitude of internal solitary waves(ISWs)were changed to compare and analyze the impact of seepage flow on the sediment resuspension by shoaling ISWs.Moreover,parametric research and verification were carried out.Results indicate that seepage flow can greatly influence fine sand,promote sediment resuspension,and increase the amount of suspension by two times on average.However,seepage flow had a little effect on the suspension of clayey silt and sandy silt.Besides,seepage force was added to the traditional gravity,drag force,and uplift force,and the parameterization of threshold starting shear stress of coarse-grained sediments was developed.The results of this parameterization were verified,and seepage force was critical to parameterization.The threshold starting shear stress was reduced by 54.6%after increasing the seepage force.The physical mechanism of this process corresponded to the vertical reciprocating transient seepage in and out the seabed interface caused by the wave-induced transient excess pore water pressure.This quantitative study on seepage flow for shear stress of coarse-grained sediments induced by ISWs is critical to geohazard assessment.
基金The financial supports from the National Natural Science Foundation of China(Grant Nos.51988101,51925906 and 52122905)are gratefully acknowledged.
文摘Groundwater flow through fractured rocks has been recognized as an important issue in many geotechnical engineering practices.Several key aspects of fundamental mechanisms,numerical modeling and engineering applications of flow in fractured rocks are discussed.First,the microscopic mechanisms of fluid flow in fractured rocks,especially under the complex conditions of non-Darcian flow,multiphase flow,rock dissolution,and particle transport,have been revealed through a com-bined effort of visualized experiments and theoretical analysis.Then,laboratory and field methods of characterizing hydraulic properties(e.g.intrinsic permeability,inertial permeability,and unsaturated flow parameters)of fractured rocks in different flow regimes have been proposed.Subsequently,high-performance numerical simulation approaches for large-scale modeling of groundwater flow in frac-tured rocks and aquifers have been developed.Numerical procedures for optimization design of seepage control systems in various settings have also been proposed.Mechanisms of coupled hydro-mechanical processes and control of flow-induced deformation have been discussed.Finally,three case studies are presented to illustrate the applications of the improved theoretical understanding,characterization methods,modeling approaches,and seepage and deformation control strategies to geotechnical engi-neering projects.
基金supported by the National Natural Science Foundation of China(52004117,52174117 and 51674132)the Postdoctoral Science Foundation of China(2021T140290 and 2020M680975)the Discipline Innovation Team of Liaoning Technical University(LNTU20TD-03 and LNTU20TD-30).
文摘Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively.
文摘In the present study, an analytical solution is presented to solve the problem of combined seepage, under a sheet piling cofferdam, applied to dewatering systems. Existence of the sheet pile creates a confined seepage followed by an unconfined seepage in the same field, which presents a combined seepage problem. Two equations were developed to analyze the combined seepage underneath a sheet piling wall. Using such equations, both the maximum height of the free surface just behind the sheet piling cofferdam (H<sub>o</sub>) and the quantity of seepage discharge to be pumped out from the construction site (q) can be determined. The main parameters affecting the combined seepage characteristics underneath a sheet piling wall are: The depth of permeable foundation layer (T), the horizontal distance behind the sheet pile (X), the depth of excavation in the construction site (D), the embedded depth of sheet pile (S), the retained water head (H<sub>1</sub>), the accumulated seepage water depth (H<sub>2</sub>), and the side slope factor of excavation line (M). Study showed that, the above parameters have a great effect on the combined seepage, but with different extents.
基金the National Natural Science Foundation of China(No.41972297)the Natural Science Foundation of Hebei Province(No.D2021202002).
文摘Internal erosion is one of the important factors causing geological disasters.The microstructure of soil can change with seepage erosion,resulting in changes in the hydraulic and mechanical properties of the soil.The evolution of seepage erosion is investigated with X-ray computed tomography(CT)in this study.The change in macropore structure characteristics during the seepage erosion test is quantified and the influence of seepage erosion on soil deformation is analyzed.Moreover,a pore network model(PNM)is established for the specimens and the evolution of the connected pore size characteristics is assessed.The results show that the macropore structure is significantly affected by seepage erosion,especially in terms of the porosity and pore geometry characteristics.The changes in macropore structure characteristics are most obvious in the lower part of the specimen.The influence of seepage erosion on the pore size distribution(PSD)and soil deformation is heterogeneous and closely dependent on the spatial location of the soil.Moreover,seepage erosion enhances macropore connectivity and has a directional impact on macropore orientation.These findings can provide a reference for the theoretical modeling and numerical simulation of the seepage erosion and improve the understanding of the seepage erosion evolution in engineering practice.
基金the National Natural Science Foundation of China(Nos.52174258,92162109,52222405 and 52004184).
文摘Both CT and Avizo software were used to explore the effect of particle gradation on the evolution characteristics of pore structure and seepage paths in weathered crust elution-deposited rare earth ores during leaching.The results showed that the pore areas in four kinds of ore samples before leaching were mainly concentrated in 10^(4)–10^(7)μm^(2),whose pore quantities accounted for 96.89%,94.94%,90.48%,and 89.45%,respectively,while the corresponding pore volume only accounted for 30.74%,14.55%,7.58%,and 2.84%of the total pore volume.With the decrease of fractal dimension,the average pore throat length increased,but pore throat quantities,the average pore throat radius and coordination number decreased.Compared with that before leaching,the change degree of pore structure during leaching increased with the fractal dimension decreasing.For example,the reduction rate of the average coordination number of ore samples was 14.36%,21.30%,28.00%,and 32.90%,respectively.Seepage simulation results indicated that seepage paths were uniformly distributed before leaching while the streamline density and seepage velocity increased with the fractal dimension decreasing.Besides,the phenomenon of the streamline interruption gradually reduced during leaching while preferential seepage got more obvious with the decrease of the fractal dimension.
基金The National Natural Science Foundation of China under contract No.41706081.
文摘Subterranean estuaries,i.e.,the mixing zone between terrestrial groundwater and recirculated seawater,host a wide range of microbiota.Here,field campaigns were conducted at the mouth of the subterranean estuary at the Sanggou Bay(Shandong Province,China)over four consecutive seasons at a seepage face(0−20 cm depth).The diversity of benthic microbiome was characterized via 16S rRNA gene sequencing and metagenomics,combined with physic-chemical parameters,e.g.,organic carbon,total nitrogen and sulfate contents in sediments.During spring,the dominant species were assigned to the phylum Proteobacteria.Important opportunistic species was assigned to Acidobacteria,Actinobacteria and Bacteroidetes.The key components were identified to be species of the genera Pseudoalteromonas,Colwellia and Sphingobium,indicating the involvement of sediment microbiota in the degradation of sedimentary organic carbon,particularly that of pelagic origin,e.g.,phytoplankton detritus and bivalve pseudo-feces.During spring,the microbial community was statistically similar along the depth profiles and among the three sampled stations.Similar spatial distributions were obtained in the remaining seasons.By contrast,the dominant species assemblages varied significantly among seasons,with key genera being Thioprofundum and Nitrosopumilus during summer and autumn and Thioprofundum and Ilumatobacter during winter.Network analysis revealed a seasonal shift in benthic nitrogen and sulfur metabolism associated with these variations in microbial community composition.Overall,our findings suggested that macro elements derived from pelagic inputs,particularly detrital phytoplankton,shaped the microbial community compositions at the seepage face,resulting in significant seasonal variations,while the influence of terrestrial materials transported by groundwater on the sediment microbiota at the seepage face found to be minor.
基金carried out at the National Natural Science Foundation of China(Nos.41672129,U19B200129)http://www.nsfc.gov.cn/and the National Science and technology Major Projects of China(No.2016ZX05027-004).
文摘The seepage mechanism plays a crucial role in low-permeability gas reservoirs.Compared with conventional gas reservoirs,low-permeability sandstone gas reservoirs are characterized by low porosity,low permeability,strong heterogeneity,and high water saturation.Moreover,their percolation mechanisms are more complex.The present work describes a series of experiments conducted considering low-permeability sandstone cores under pressuredepletion conditions(from the Xihu Depression in the East China Sea Basin).It is shown that the threshold pressure gradient of a low-permeability gas reservoir in thick layers is positively correlated with water saturation and negatively correlated with permeability and porosity.The reservoir stress sensitivity is related to permeability and rock composition.Stress sensitivity is generally low when permeability is high or in the early stage of gas reservoir development.It is also shown that in sand conglomerates,especially the more sparsely filled parts,the interstitial materials among the conglomerates can be rapidly dislodged from the skeleton particles under stress.This material can therefore disperse,migrate,and block the pore throat producing serious,stress-sensitive damage.
文摘The experimental study of the seepage processes’sources formation in structures of the Arctic Region was carried out using modified methods of frequency-resonance(FR)processing and decoding of satellite images and photographs with the vertical scanning of the cross-sections.The newly obtained results show that the intensity and dynamics of the methane seeps and pockmarks fields’formation depend on active deep degassing processes in the continental margin structures.The use of direct FR-sounding technologies allows for determining the probable origin and depth of geological sources of gas migration at marginal migration centers in Greenland,and Norwegian and Barents Seas.New results confirm the crust-mantle gas fluids’influence on the nature and degassing processes features in the scan points of polar marginal structures.These data are important arguments in favor of the“volcanic model”of various structural elements formation in this and other regions.The FR technologies data also showed a possibility of seeps use as shallow and deep hydrocarbon field indicators in gas emission areas.These independent data can be used in compiling models of the deep lithosphere structure and possible mechanisms of abiogenetic hydrocarbon formation in Arctic margin structures.The authors suppose that hydrocarbons through deep channels migrate(from 57 km deep)to the upper crustal horizons where their fields can form.During this migration,gas seeps and pockmarks are formed on the sea bottom and part of the gas can migrate into the atmosphere.Data show that basaltic volcanoes in Greenland scan points can be the real channels through which hydrogen migrates to the upper crustal horizons and further into the atmosphere.Active gas migration in Arctic seepage areas can be an important factor in the global climate change processes.
基金supported by the National Natural Science Foundation of China(Grant No.51978426)the NSFC Young Scientists Fund(Grant No.41801277)+1 种基金the Science and Technology Research Program of Hebei Education Department(Grant No.QN2018072)the Program for High-level Talent Fund of Hebei Province(Grant No.A201903010).
文摘Purpose–This paper aims to study the impacts of groundwater seepage on artificial freezing process of gravel strata,the temperature field characteristics of the strata,and the strata process,closure time and thickness evolution mechanism of the frozen wall.Design/methodology/approach–In this paper several laboratory model tests were conducted,considering different groundwater seepage rate.Findings–The results show that there is a significant coupling effect between the cold diffusion of artificial freezing pipes and groundwater seepage;when there is no seepage,temperature fields upstream and downstream of the gravel strata are symmetrically distributed,and the thickness of the frozen soil column/frozen wall is consistent during artificial freezing;groundwater seepage causes significant asymmetry in the temperature fields upstream and downstream of the gravel strata,and the greater the seepage rate,the more obvious the asymmetry;the frozen wall closure time increases linearly with the increase in the groundwater seepage rate,and specifically,the time length under seepage rate of 5.00 m d1 is 3.2 times longer than that under no seepage;due to the erosion from groundwater seepage,the thickness of the upstream frozen wall decreases linearly with the seepage velocity,while that of the downstream frozen wall increases linearly,resulting in a saddle-shaped frozen wall.Originality/value–The research results are beneficial to the optimum design and risk control of artificial freezing process in gravel strata.
基金Supported by the National Natural Science Foundation of China(51079107,50839004)the Program for New Century Excellent Talents in University(NCET-09-0610)
文摘Seepage flow through soils,rocks and geotechnical structures has a great influence on their stabilities and performances,and seepage control is a critical technological issue in engineering practices.The physical mechanisms associated with various engineering measures for seepage control are investigated from a new perspective within the framework of continuum mechanics;and an equation-based classification of seepage control mechanisms is proposed according to their roles in the mathematical models for seepage flow,including control mechanisms by coupled processes,initial states,boundary conditions and hydraulic properties.The effects of each mechanism on seepage control are illustrated with examples in hydroelectric engineering and radioactive waste disposal,and hence the reasonability of classification is demonstrated.Advice on performance assessment and optimization design of the seepage control systems in geotechnical engineering is provided,and the suggested procedure would serve as a useful guidance for cost-effective control of seepage flow in various engineering practices.
基金supported by the National Science Foundation for Excellent Young researchers of China(52122404)the National Natural Science Foundation of China(41977238)the Fundamental Research Funds for the Central Universities(2021GJZPY14 and 2021YCPY0101).
文摘Water inrush is one of the most dangerous disasters in coal mining.Due to the large-scale mining and complicated hydrogeological conditions,thousands of deaths and huge economic losses have been caused by water inrush disasters in China.There are two main factors determining the occurrence of water inrush:water source and water-conducting pathway.Research on the formation mechanism of the water-conducting pathway is the main direction to prevent and control the water inrush,and the seepage mechanism of rock mass during the formation of the water-conducting pathway is the key for the research on the water inrush mechanism.This paper provides a state-of-the-art review of seepage mechanisms during water inrush from three aspects,i.e.,mechanisms of stress-seepage coupling,fow regime transformation and rock erosion.Through numerical methods and experimental analysis,the evolution law of stress and seepage felds in the process of water inrush is fully studied;the fuid movement characteristics under diferent fow regimes are clearly summarized;the law of particle initiation and migration in the process of water inrush is explored,and the efect of rock erosion on hydraulic and mechanical properties of the rock media is also studied.Finally,some limitations of current research are analyzed,and the suggestions for future research on water inrush are proposed in this review.
文摘Hongxing reservoir was constructed on the floodplain of Hulan River in Heilongjiang. The geological problem of the reservoir is the seepage of the dam base and its related seepage stability. The leakage of the reservoir is caused by the water head differences between the upstream and downstream of the dam. Severe seepage could decrease the engineering benefits of the reservoir. Moreover,infiltration function of water will influence the safety of the dam. Through the analysis on the granule constitute and the formation of the dam base,the types of the seepage failure apt to happen were defined and the anti-infiltration and the permissible depression ratio were determined. Using the numerical simulation software GMS,the two-dimension numerical modeling has been carried out to analyze the seepage field of the reservoir. Through the two conditions modeling with concrete impervious wall and no concrete impervious wall,the largest flow rate,single-wide seepage discharge and the max infiltration gradient of the dam base were calculated. According to the permeable depression ratio of the dam base,the seepage stability of Hongxing reservoir dam base was analyzed.
基金Project supported by the National Natural Science Foundation of China(Nos.40174050,4047065)
文摘In a semi-infinite aquifer bounded by a channel, a transient flow model is constructed for phreatic water subjected to vertical and horizontal seepage. Based on the first linearized Boussinesq equation, the analytical solution of the model is obtained by Laplace transform. Having proven the transformation between the analytical solution and some relevant classic formulas, suitable condition for each of these formulas is demonstrated. On the base of the solution, the variation of transient flow process caused by the variables, such as vertical infiltration intensity, fluctuation range of river stage, aquifer parameters such as transmissivity and specific yield, and the distance from calculating point to channel boundary, are analyzed quantitatively one by one. Lagging effect will happen to the time, when phreatic water gets its maximum fluctuation velocity, response to the varying of the variables stated above. The condition for some variables to form equivalent lagging effect is demonstrated. Corresponding to the mathematical charac teristics of the analytical solution, the physical implication and the fluctuation rule of groundwater level are discussed.
基金supported by the National Natural Science Foundation of China (Grant No. 50379046)the Doctoral Fund of the Ministry of Education of China (Grant No. A50221)
文摘Owing to the complexity of geo-engineering seepage problems influenced by different random factors, three-dimensional simulation and analysis of the stochastic seepage field plays an important role in engineering applications. A three-dimensional anisotropic heterogeneous steady random seepage model was developed on the basis of the finite element method. A statistical analysis of the distribution characteristics of soil parameters sampled from the main embankment of the Yangtze River in the Southern Jingzhou zone of China was conducted. The Kolomogorov-Smirnov test verified the statistical hypothesis that the permeability coefficient tensor has a Gaussian distribution. With the help of numerical analysis of the stochastic seepage field using the developed model, various statistical and random characteristics of the stochastic seepage field of the main embankment of the Yangtze River in the Southern Jingzhou zone of China were investigated. The model was also examined with statistical testing. Through the introduction of random variation of the upstream and downstream water levels into the model, the effects of the boundary randomness due to variation of the downstream and upstream water levels on the variation of simulated results presented with a vector series of the random seepage field were analyzed. Furthermore, the combined influence of the variation of the soil permeability coefficient and such seepage resistance measures as the cut-off wall and relief ditch on the hydraulic head distribution was analyzed and compared with the results obtained by determinate analysis. Meanwhile, sensitivities of the hydraulic gradient and downstream exit height to the variation of boundary water level were studied. The validity of the simulated results was verified by stochastic testing and measured data. The developed model provides more detail and a full stochastic algorithm to characterize and analyze three-dimensional stochastic seepage field problems.