In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project...In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project as an example,and analyses the overall selection design of such highway bridges,including the basic overview of the project,the basic selection principle of mega highway bridge project structure and its design strategy,etc.,to provide scientific reference for its selection design.展开更多
Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a po...Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.展开更多
The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural...The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.展开更多
Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to d...Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.展开更多
This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualis...This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.展开更多
Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial deliv...Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.展开更多
Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-...Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.展开更多
The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary al...The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed.展开更多
Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF pos...Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.展开更多
A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the...A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.展开更多
The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of M...The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.展开更多
Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused b...Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.展开更多
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst...Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.展开更多
Genomic selection(GS)has been widely used in livestock,which greatly accelerated the genetic progress of complex traits.The population size was one of the significant factors affecting the prediction accuracy,while it...Genomic selection(GS)has been widely used in livestock,which greatly accelerated the genetic progress of complex traits.The population size was one of the significant factors affecting the prediction accuracy,while it was limited by the purebred population.Compared to directly combining two uncorrelated purebred populations to extend the reference population size,it might be more meaningful to incorporate the correlated crossbreds into reference population for genomic prediction.In this study,we simulated purebred offspring(PAS and PBS)and crossbred offspring(CAB)base on real genotype data of two base purebred populations(PA and PB),to evaluate the performance of genomic selection on purebred while incorporating crossbred information.The results showed that selecting key crossbred individuals via maximizing the expected genetic relationship(REL)was better than the other methods(individuals closet or farthest to the purebred population,CP/FP)in term of the prediction accuracy.Furthermore,the prediction accuracy of reference populations combining PA and CAB was significantly better only based on PA,which was similar to combine PA and PAS.Moreover,the rank correlation between the multiple of the increased relationship(MIR)and reliability improvement was 0.60-0.70.But for individuals with low correlation(Cor(Pi,PA or B),the reliability improvement was significantly lower than other individuals.Our findings suggested that incorporating crossbred into purebred population could improve the performance of genetic prediction compared with using the purebred population only.The genetic relationship between purebred and crossbred population is a key factor determining the increased reliability while incorporating crossbred population in the genomic prediction on pure bred individuals.展开更多
Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is...Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is essential for the survival of sea cucumbers.Six MnSODs were identified from the transcriptomes of deep and shallow-sea sea cucumbers.To explore their environmental adaptation mechanism,we conducted environmental selection pressure analysis through the branching site model of PAML software.We obtained night positive selection sites,and two of them were significant(97F→H,134K→V):97F→H located in a highly conservative characteristic sequence,and its polarity c hange might have a great impact on the function of MnSOD;134K→V had a change in piezophilic a bility,which might help MnSOD adapt to the environment of high hydrostatic pressure in the deepsea.To further study the effect of these two positive selection sites on MnSOD,we predicted the point mutations of F97H and K134V on shallow-sea sea cucumber by using MAESTROweb and PyMOL.Results show that 97F→H,134K→V might improve MnSOD’s efficiency of scavenging superoxide a nion and its ability to resist high hydrostatic pressure by moderately reducing its stability.The above results indicated that MnSODs of deep-sea sea cucumber adapted to deep-sea environments through their amino acid changes in polarity,piezophilic behavior,and local stability.This study revealed the correlation between MnSOD and extreme environment,and will help improve our understanding of the organism’s adaptation mechanisms in deep sea.展开更多
To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders...To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles.展开更多
In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accurac...Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accuracy.This module enables a central server to select a subset of participants to performmodel training based on data and device information.By doing so,selected participants are rewarded and actively perform model training,while participants that are detrimental to training efficiency and model accuracy are excluded.However,in practice,participants may suspect that the central server may have miscalculated and thus not made the selection honestly.This lack of trustworthiness problem,which can demotivate participants,has received little attention.Another problem that has received little attention is the leakage of participants’private information during the selection process.We will therefore propose a federated learning framework with auditable participant selection.It supports smart contracts in selecting a set of suitable participants based on their training loss without compromising the privacy.Considering the possibility of malicious campaigning and impersonation of participants,the framework employs commitment schemes and zero-knowledge proofs to counteract these malicious behaviors.Finally,we analyze the security of the framework and conduct a series of experiments to demonstrate that the framework can effectively improve the efficiency of federated learning.展开更多
Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivi...Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.展开更多
文摘In the continuous development of the modern highway and bridge engineering industry,the reasonable selection of mega highway bridges and their design is crucial.Based on this,this paper takes the actual bridge project as an example,and analyses the overall selection design of such highway bridges,including the basic overview of the project,the basic selection principle of mega highway bridge project structure and its design strategy,etc.,to provide scientific reference for its selection design.
基金supported by the National Key Research and Development Program of China(2022YFB3805100)National Natural Science Foundation of China(22222812 and 22178330)+1 种基金Anhui Provincial Key Research and Development Plan(202104b11020030)Major Science and Technology Innovation Projects in Shandong Province(2022CXGC020415).
文摘Selective electrodialysis(SED)has surfaced as a highly promising membrane separation technique in the realm of acid recovery owing to its ability to effectively separate monovalent ions through the utilization of a potential difference.However,the current SED process is limited by conventional commercial monovalent cation permselective membranes(MCPMs).This study systematically investigates the use of an independently developed MCPM in the SED process for acid recovery.Various factors such as current density,volume ratio,initial ion concentration,and waste acid systems are considered.The independently developed MCPM offers several advantages over the commercial monovalent selective cation-exchange membrane(CIMS),including higher recovered acid concentration,better ion flux ratio,improved acid recovery efficiency,increased recovered acid purity,and higher current efficiency.The SED process with the MCPM achieves a recovered acid of 95.9%and a concentration of 2.3 mol·L^(–1) in the HCl/FeCl_(2) system,when a current density of 20 mA·cm^(-2) and a volume ratio of 1:2 are applied.Similarly,in the H_(2)SO_(4)/FeSO_(4) system,a purity of over 99%and a concentration of 2.1 mol·L^(–1) can be achieved in the recovered acid.This study thoroughly examines the impact of operation conditions on acid recovery performance in the SED process.The independently developed MCPM demonstrates outstanding acid recovery performance,highlighting its potential for future commercial utilization.
基金supported by Program for National Natural Science Foundation of China(Nos.22178135,21978104 and 22278419)the National Key Research and Development Program of China(No.2021YFC2101601)。
文摘The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.
基金supported by the Basic Research Program through the National Research Foundation of Korea(NRF)(Nos.2022R1C1C1006593,2022R1A4A3031263,and RS-2023-00271166)the National Science Foundation(Nos.2054098 and 2213693)+1 种基金the National Natural Science Foundation of China(No.52105593)Zhejiang Provincial Natural Science Foundation of China(No.LDQ24E050001).EH acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation.
文摘Recently,the increasing interest in wearable technology for personal healthcare and smart virtual/augmented reality applications has led to the development of facile fabrication methods.Lasers have long been used to develop original solutions to such challenging technological problems due to their remote,sterile,rapid,and site-selective processing of materials.In this review,recent developments in relevant laser processes are summarized under two separate categories.First,transformative approaches,such as for laser-induced graphene,are introduced.In addition to design optimization and the alteration of a native substrate,the latest advances under a transformative approach now enable more complex material compositions and multilayer device configurations through the simultaneous transformation of heterogeneous precursors,or the sequential addition of functional layers coupled with other electronic elements.In addition,the more conventional laser techniques,such as ablation,sintering,and synthesis,can still be used to enhance the functionality of an entire system through the expansion of applicable materials and the adoption of new mechanisms.Later,various wearable device components developed through the corresponding laser processes are discussed,with an emphasis on chemical/physical sensors and energy devices.In addition,special attention is given to applications that use multiple laser sources or processes,which lay the foundation for the all-laser fabrication of wearable devices.
基金supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region(152131/18E).
文摘This study offers significant insights into the multi-physics phenomena of the SLM process and the subsequent porosity characteristics of ZK60 Magnesium(Mg)alloys.High-speed in-situ monitoring was employed to visualise process signals in real-time,elucidating the dynamics of melt pools and vapour plumes under varying laser power conditions specifically between 40 W and 60 W.Detailed morphological analysis was performed using Scanning-Electron Microscopy(SEM),demonstrating a critical correlation between laser power and pore formation.Lower laser power led to increased pore coverage,whereas a denser structure was observed at higher laser power.This laser power influence on porosity was further confirmed via Optical Microscopy(OM)conducted on both top and cross-sectional surfaces of the samples.An increase in laser power resulted in a decrease in pore coverage and pore size,potentially leading to a denser printed part of Mg alloy.X-ray Computed Tomography(XCT)augmented these findings by providing a 3D volumetric representation of the sample internal structure,revealing an inverse relationship between laser power and overall pore volume.Lower laser power appeared to favour the formation of interconnected pores,while a reduction in interconnected pores and an increase in isolated pores were observed at higher power.The interplay between melt pool size,vapour plume effects,and laser power was found to significantly influence the resulting porosity,indicating a need for effective management of these factors to optimise the SLM process of Mg alloys.
文摘Transarterial radioembolization or selective internal radiation therapy(SIRT)has emerged as a minimally invasive approach for the treatment of tumors.This percutaneous technique involves the local,intra-arterial delivery of radioactive microspheres directly into the tumor.Historically employed as a palliative measure for liver malignancies,SIRT has gained traction over the past decade as a potential curative option,mirroring the increasing role of radiation segmentectomy.The latest update of the BCLC hepatocellular carcinoma guidelines recognizes SIRT as an effective treatment modality comparable to other local ablative methods,particularly well-suited for patients where surgical resection or ablation is not feasible.Radiation segmentectomy is a more selective approach,aiming to deliver high-dose radiation to one to three specific hepatic segments,while minimizing damage to surrounding healthy tissue.Future research efforts in radiation segmentectomy should prioritize optimizing radiation dosimetry and refining the technique for super-selective administration of radiospheres within the designated hepatic segments.
基金supported by State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.GJNY-18-73.17).
文摘Electroreduction of nitrate has been gaining wide attention in recent years owing to it's beneficial for converting nitrate into benign N_(2) from the perspective of electrocatalytic denitrification or into value-added ammonia from the perspective of electrocatalytic NH_(3) synthesis.By reason of the undesired formation of ammonia is dominant during electroreduction of nitrate-containing wastewater,chloride has been widely used to improve N_(2) selectivity.Nevertheless,selective electroreduction of nitrate to N2 gas in chloride-containing system poses several drawbacks.In this review,we focus on the key strategies for efficiently enhancing N_(2) selectivity of electroreduction of nitrate in chloride-free system,including optimal selection of elements,combining an active metal catalyst with another metal,manipulating the crystalline morphology and facet orientation,constructing core–shell structure catalysts,etc.Before summarizing the strategies,four possible reaction pathways of electro-reduction of nitrate to N_(2) are discussed.Overall,this review attempts to provide practical strategies for enhancing N2 selectivity without the aid of electrochlorination and highlight directions for future research for designing appropriate electrocatalyst for final electrocatalytic denitrifi-cation.
基金the National Key Research and De-velopment Program of China(Grant No.2021YFB3502600)Shenzhen Science and Technology Program(Grant No.JCYJ20220530161813029).
文摘The effect of undercooling DT and the interface energy anisotropy parameter e4 on the shape of the equiaxed dendritic tip has been investigated by using a quantitative phase-field model for solidification of binary alloys.It was found that the tip radius r increases and the tip shape amplitude coefficient A4 decreases with the increase of the fitting range for all cases.The dendrite tip shape selection parameter sdecreases and then stabilizes with the increase of the fitting range,and sincreases with the increase of e4.The relationship between sand e4 follows a power-law function sµea 4,and a is independent of DT but dependent on the fitting range.Numerical results demonstrate that the predicted sis consistent with the curve of microscopic solvability theory(MST)for e4<0.02,and sobtained from our phase-field simulations is sensitive to the undercooling when e4 is fixed.
基金supported by the National Nature Science Foundation of China (32222058, 32001274)the Youth Talent Support Program for Science & Technology Innovation of National Forestry and Grassland (2019132603) for financial support。
文摘Converting carbohydrates into 5-hydroxymethylfurfural(5-HMF) is an attractive and promising route for value-added utilization of agricultural and forestry biomass resource. As an important platform compound, 5-HMF possesses high active furan structure with hydroxymethyl and aldehyde group for production of various bio-chemicals and materials, meanwhile, which suffer from low stability and poor yield during the industrial biorefinery process. Hence, selective production of 5-HMF with high-yield and low-cost has attracted extensive attention from scientific and industrial researchers. This review sorted and described the latest advanced research on solvent and catalyst system, as well as energy field effect for production of 5-HMF with different feedstock in detail, emphatically discussing the solvent effect and its synergistic effect with other aspects. Besides, the future prospects and challenges for production of 5-HMF from carbohydrates were also presented, which provide a profound insight into industrial 5-HMF process with economic and environmental feature.
基金support from the Project of Zhongyuan Critical Metals Laboratory(No.GJJSGFYQ202334)Natural Science Foundation of Henan Province(No.242300420002)+1 种基金National key research and development program(No.2020YFC1908804)National Natural Science Foundation of China(No.51804275).Moreover,we also thank Modern Analysis and Gene Sequencing Centre in Zhengzhou University.
文摘A novel small molecule depressant(M-DEP)was used to separate chalcopyrite and molybdenite via flotation.The results showed that M-DEP had an excellent selective depression on molybdenite,while had little effect on the flotation of chalcopyrite.The adsorption capacity of M-DEP on the surface of molybdenite was greater than that on chalcopyrite surface.The adsorption of M-DEP reduced the floatability of molybdenite and had less effect on the floatability of chalcopyrite,which was due to its different adsorption modes on the surface of the two minerals.Furthermore,the interaction between chalcopyrite and M-DEP was mainly chemical interaction,and almost all of the adsorbed M-DEP molecules were removed and replaced by sodium butyl xanthate(SBX).By contrast,hydrophobic interaction was the main way in which M-DEP was adsorbed on the molybdenite surface with little chemical interaction,which was less interfered by SBX addition.Therefore,M-DEP had a super selective depression on molybdenite.The study provided a novel depressant and approach for the deep separation of chalcopyrite and molybdenite via flotation.
基金supported by the Fundamental Research Funds for the Central Universities(222201817001)Shanghai Sailing Program(21YF140800).
文摘The self-made MnFeO_(x) catalysts doped with cerium and samarium were prepared by impregnation method for low-temperature selective catalytic reduction(SCR)by NH3.In this work,the surface properties of the series of MnFe-based catalysts were studied.The results indicate Sm-modified catalyst have superior low-temperature SCR activity;NO_(x) conversion maintained at nearby to 100%at 90℃ to 240℃.In addition,The N_(2) selectivity of Sm doping remains above 80%in the range of 60℃ to 150℃.In SO_(2) poisoning test,the NO_(x) conversion can be remained>90%after 10 h of reaction.The XPS,NH_(3)-TPD and H_(2)-TPR results show the catalyst with Sm doping enhances the acid sites and oxidation catalytic sites of mixed oxides serves for improving oxygen vacancies and transfer electrons.In situ diffuse reflaxions infrared Fourier transformations spectroscopy(DRIFTS)results show that NO_(x) is more easily adsorbed on the surface after Sm doping,which provided favorable conditions for the NH_(3)-SCR reaction to proceed.The reaction at the catalyst surface will follow the L-H reaction mechanism by transient reaction test.
基金financially supported by the Science and Technology Development Program of Jilin Province(YDZJ202101ZYTS185)the National Natural Science Foundation of China(21975250)。
文摘Antimony-based anodes have attracted wide attention in potassium-ion batteries due to their high theoretical specific capacities(∼660 mA h g^(-1))and suitable voltage platforms.However,severe capacity fading caused by huge volume change and limited ion transportation hinders their practical applications.Recently,strategies for controlling the morphologies of Sb-based materials to improve the electrochemical performances have been proposed.Among these,the two-dimensional Sb(2D-Sb)materials present excellent properties due to shorted ion immigration paths and enhanced ion diffusion.Nevertheless,the synthetic methods are usually tedious,and even the mechanism of these strategies remains elusive,especially how to obtain large-scale 2D-Sb materials.Herein,a novel strategy to synthesize 2D-Sb material using a straightforward solvothermal method without the requirement of a complex nanostructure design is provided.This method leverages the selective adsorption of aldehyde groups in furfural to induce crystal growth,while concurrently reducing and coating a nitrogen-doped carbon layer.Compared to the reported methods,it is simpler,more efficient,and conducive to the production of composite nanosheets with uniform thickness(3–4 nm).The 2D-Sb@NC nanosheet anode delivers an extremely high capacity of 504.5 mA h g^(-1) at current densities of 100 mA g^(-1) and remains stable for more than 200 cycles.Through characterizations and molecular dynamic simulations,how potassium storage kinetics between 2D Sb-based materials and bulk Sb-based materials are explored,and detailed explanations are provided.These findings offer novel insights into the development of durable 2D alloy-based anodes for next-generation potassium-ion batteries.
基金the National Natural Science Foundation of China(22368014)the Guizhou Provincial S&T Project(ZK[2022]011,GCC[2023]011)+2 种基金the Natural Science Foundation of Guangxi Zhuang Autonomous Region(2023JJA120098)the Guangxi Key Laboratory of Green Chemical Materials and Safety Technology,the Beibu Gulf University(2022SYSZZ02,2022ZZKT04)the Guizhou Provincial Higher Education Institution Program(Qianjiaoji[2023]082)。
文摘Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin.
基金supported by the earmarked fund for China Agriculture Research System(CARS-35)the National Natural Science Foundation of China(32022078)supported by the National Supercomputer Centre in Guangzhou。
文摘Genomic selection(GS)has been widely used in livestock,which greatly accelerated the genetic progress of complex traits.The population size was one of the significant factors affecting the prediction accuracy,while it was limited by the purebred population.Compared to directly combining two uncorrelated purebred populations to extend the reference population size,it might be more meaningful to incorporate the correlated crossbreds into reference population for genomic prediction.In this study,we simulated purebred offspring(PAS and PBS)and crossbred offspring(CAB)base on real genotype data of two base purebred populations(PA and PB),to evaluate the performance of genomic selection on purebred while incorporating crossbred information.The results showed that selecting key crossbred individuals via maximizing the expected genetic relationship(REL)was better than the other methods(individuals closet or farthest to the purebred population,CP/FP)in term of the prediction accuracy.Furthermore,the prediction accuracy of reference populations combining PA and CAB was significantly better only based on PA,which was similar to combine PA and PAS.Moreover,the rank correlation between the multiple of the increased relationship(MIR)and reliability improvement was 0.60-0.70.But for individuals with low correlation(Cor(Pi,PA or B),the reliability improvement was significantly lower than other individuals.Our findings suggested that incorporating crossbred into purebred population could improve the performance of genetic prediction compared with using the purebred population only.The genetic relationship between purebred and crossbred population is a key factor determining the increased reliability while incorporating crossbred population in the genomic prediction on pure bred individuals.
基金Supported by the Guangdong Province Basic and Applied Basic Research Fund Project(No.2020A1515110826)the National Natural Science Foundation of China(No.42006115)the Major Scientific and Technological Projects of Hainan Province(No.ZDKJ2021036)。
文摘Manganese superoxide dismutase(MnSOD)is an antioxidant that exists in mitochondria and can effectively remove superoxide anions in mitochondria.In a dark,high-pressure,and low-temperature deep-sea environment,MnSOD is essential for the survival of sea cucumbers.Six MnSODs were identified from the transcriptomes of deep and shallow-sea sea cucumbers.To explore their environmental adaptation mechanism,we conducted environmental selection pressure analysis through the branching site model of PAML software.We obtained night positive selection sites,and two of them were significant(97F→H,134K→V):97F→H located in a highly conservative characteristic sequence,and its polarity c hange might have a great impact on the function of MnSOD;134K→V had a change in piezophilic a bility,which might help MnSOD adapt to the environment of high hydrostatic pressure in the deepsea.To further study the effect of these two positive selection sites on MnSOD,we predicted the point mutations of F97H and K134V on shallow-sea sea cucumber by using MAESTROweb and PyMOL.Results show that 97F→H,134K→V might improve MnSOD’s efficiency of scavenging superoxide a nion and its ability to resist high hydrostatic pressure by moderately reducing its stability.The above results indicated that MnSODs of deep-sea sea cucumber adapted to deep-sea environments through their amino acid changes in polarity,piezophilic behavior,and local stability.This study revealed the correlation between MnSOD and extreme environment,and will help improve our understanding of the organism’s adaptation mechanisms in deep sea.
基金supported by the National Natural Science Foundation of China(Nos.51801079 and 52001140)the Portugal National Funds through Fundação para a Ciência e a Tecnologia Project(No.2021.04115).
文摘To increase the processability and plasticity of the selective laser melting(SLM)fabricated Al-Mn-Mg-Er-Zr alloys,a novel TiB_(2)-modified Al-Mn-Mg-Er-Zr alloy with a mixture of Al-Mn-Mg-Er-Zr and nano-TiB_(2) powders was fabricated by SLM.The pro-cessability,microstructure,and mechanical properties of the alloy were systematically investigated by density measurement,microstruc-ture characterization,and mechanical properties testing.The alloys fabricated at 250 W displayed higher relative densities due to a uni-formly smooth top surface and appropriate laser energy input.The maximum relative density value of the alloy reached(99.7±0.1)%,demonstrating good processability.The alloy exhibited a duplex grain microstructure consisting of columnar regions primarily and equiaxed regions with TiB_(2),Al6Mn,and Al3Er phases distributed along the grain boundaries.After directly aging treatment at a high tem-perature of 400℃,the strength of the SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy increased due to the precipitation of the secondary Al6Mn phases.The maximum yield strength and ultimate tensile strength of the aging alloy were measured to be(374±1)and(512±13)MPa,respectively.The SLM-fabricated TiB_(2)/Al-Mn-Mg-Er-Zr alloy demonstrates exceptional strength and thermal stability due to the synergistic effects of the inhibition of grain growth,the incorporation of TiB_(2) nanoparticles,and the precipitation of secondary Al6Mn nanoparticles.
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
基金supported by the Key-Area Research and Development Program of Guangdong Province under Grant No.2020B0101090004the National Natural Science Foundation of China under Grant No.62072215,the Guangzhou Basic Research Plan City-School Joint Funding Project under Grant No.2024A03J0405+1 种基金the Guangzhou Basic and Applied Basic Research Foundation under Grant No.2024A04J3458the State Archives Administration Science and Technology Program Plan of China under Grant 2023-X-028.
文摘Federated learning is an important distributed model training technique in Internet of Things(IoT),in which participant selection is a key component that plays a role in improving training efficiency and model accuracy.This module enables a central server to select a subset of participants to performmodel training based on data and device information.By doing so,selected participants are rewarded and actively perform model training,while participants that are detrimental to training efficiency and model accuracy are excluded.However,in practice,participants may suspect that the central server may have miscalculated and thus not made the selection honestly.This lack of trustworthiness problem,which can demotivate participants,has received little attention.Another problem that has received little attention is the leakage of participants’private information during the selection process.We will therefore propose a federated learning framework with auditable participant selection.It supports smart contracts in selecting a set of suitable participants based on their training loss without compromising the privacy.Considering the possibility of malicious campaigning and impersonation of participants,the framework employs commitment schemes and zero-knowledge proofs to counteract these malicious behaviors.Finally,we analyze the security of the framework and conduct a series of experiments to demonstrate that the framework can effectively improve the efficiency of federated learning.
基金the National Natural Science Foundation of China (No. 22136005)the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB36000000).
文摘Photoelectrochemical (PEC) small-molecule oxidation can selectively transform substrates into high-value-added fine chemicals and increase the rate of cathode hydrogen evolution. Nevertheless, achieving high-selectivity PEC oxidation of small molecules to produce specific products is a very challenging task. In general, selectivity can be improved by changing the surface catalyticsites of the photoanode and modulating the interfacial environments of the reactions. Herein, recent advances in approaches to improving selective PEC oxidation of small molecules are introduced. We first briefly discuss the basic concept and fundamentals of small-molecule PEC oxidation. The reported approaches to improving the performance of selective PEC oxidation of small molecules are highlighted from two aspects: (1) changing the surface properties of photoanodes by selecting suitable materials or modifying the photoanodes and (2) mediating the oxidation reactions using redox mediators. The PEC oxidation mechanism of these studies is emphasized. We also discuss the challenges in this research direction and offer a perspective on the further development of selective PEC-based small-molecule transformation.