通过直流断路器切除故障是柔性直流电网中最具前景的故障隔离方法。目前,主断支路串联大量全控型电力电子器件的传统混合式直流断路器存在成本高、技术难度大等问题。文中提出一种基于晶闸管的电容换相式混合直流断路器(Thyristor Based...通过直流断路器切除故障是柔性直流电网中最具前景的故障隔离方法。目前,主断支路串联大量全控型电力电子器件的传统混合式直流断路器存在成本高、技术难度大等问题。文中提出一种基于晶闸管的电容换相式混合直流断路器(Thyristor Based Capacitor Commutation Hybrid DC Circuit Breaker, TCC-HDCCB)拓扑。该断路器通过晶闸管和电容配合完成双向故障换流、断流和自适应重合闸功能且利用直流系统本身对换相电容进行预充电,大大降低了造价和控制难度。文中首先介绍了TCC-HDCCB的拓扑结构、工作原理;然后给出了关键器件参数选取方法;最后在PSCAD/EMTDC4.5软件平台中搭建TCC-HDCCB仿真模型,在单端和四端柔性直流电网中进行仿真验证,并从性能以及经济性与有关方案进行对比分析,验证方案的可行性。展开更多
In this paper, a simple method for placing an optimal number of recloser is presented. The algorithm is solved using genetic algorithm as the optimization method. The majority of outage events experienced by customers...In this paper, a simple method for placing an optimal number of recloser is presented. The algorithm is solved using genetic algorithm as the optimization method. The majority of outage events experienced by customers are due to electrical distribution failures. Increasing network reliability is a necessity in order to reduce interruption events. Distribution network automation can trim down outage events and increase system reliability. Network automation has to be done using optimization approaches. Genetic Algorithm (GA) is a relatively new technique used in power systems optimization problems. Distribution network automation is one of the aspects tackled using GA. However ,the methodologies used to improve the reliability of radial distribution feeders are reviewed. The reliability improvement are demonstrated for typical distribution feeder layouts. determined. The method enjoys the simplicity of conFigure uration, accuracy of the results and reduction of the time consuming. The obtained results also show the applicability of the展开更多
The research reported in this paper focuses on non-technical power loss reduction for power distribution systems. Such reduction of costs of energy not served (ENS.COST), is intelligently evaluated and optimized using...The research reported in this paper focuses on non-technical power loss reduction for power distribution systems. Such reduction of costs of energy not served (ENS.COST), is intelligently evaluated and optimized using a firefly algorithm, from where savings of 43.3% on energy not served are achieved.展开更多
文摘通过直流断路器切除故障是柔性直流电网中最具前景的故障隔离方法。目前,主断支路串联大量全控型电力电子器件的传统混合式直流断路器存在成本高、技术难度大等问题。文中提出一种基于晶闸管的电容换相式混合直流断路器(Thyristor Based Capacitor Commutation Hybrid DC Circuit Breaker, TCC-HDCCB)拓扑。该断路器通过晶闸管和电容配合完成双向故障换流、断流和自适应重合闸功能且利用直流系统本身对换相电容进行预充电,大大降低了造价和控制难度。文中首先介绍了TCC-HDCCB的拓扑结构、工作原理;然后给出了关键器件参数选取方法;最后在PSCAD/EMTDC4.5软件平台中搭建TCC-HDCCB仿真模型,在单端和四端柔性直流电网中进行仿真验证,并从性能以及经济性与有关方案进行对比分析,验证方案的可行性。
文摘In this paper, a simple method for placing an optimal number of recloser is presented. The algorithm is solved using genetic algorithm as the optimization method. The majority of outage events experienced by customers are due to electrical distribution failures. Increasing network reliability is a necessity in order to reduce interruption events. Distribution network automation can trim down outage events and increase system reliability. Network automation has to be done using optimization approaches. Genetic Algorithm (GA) is a relatively new technique used in power systems optimization problems. Distribution network automation is one of the aspects tackled using GA. However ,the methodologies used to improve the reliability of radial distribution feeders are reviewed. The reliability improvement are demonstrated for typical distribution feeder layouts. determined. The method enjoys the simplicity of conFigure uration, accuracy of the results and reduction of the time consuming. The obtained results also show the applicability of the
文摘The research reported in this paper focuses on non-technical power loss reduction for power distribution systems. Such reduction of costs of energy not served (ENS.COST), is intelligently evaluated and optimized using a firefly algorithm, from where savings of 43.3% on energy not served are achieved.