Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laborat...Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing.Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing.Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing.Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.展开更多
BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditi...BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.展开更多
Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using co...Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.展开更多
Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein I...Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.展开更多
Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Sinc...Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevent...BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.展开更多
Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell tr...Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.展开更多
Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of th...Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.展开更多
Background The reliance on a solitary linear reference genome has imposed a significant constraint on our compre-hensive understanding of genetic variation in animals.This constraint is particularly pronounced for non...Background The reliance on a solitary linear reference genome has imposed a significant constraint on our compre-hensive understanding of genetic variation in animals.This constraint is particularly pronounced for non-reference sequences(NRSs),which have not been extensively studied.Results In this study,we constructed a pig pangenome graph using 21 pig assemblies and identified 23,831 NRSs with a total length of 105 Mb.Our findings revealed that NRSs were more prevalent in breeds exhibiting greater genetic divergence from the reference genome.Furthermore,we observed that NRSs were rarely found within coding sequences,while NRS insertions were enriched in immune-related Gene Ontology terms.Notably,our investigation also unveiled a close association between novel genes and the immune capacity of pigs.We observed substantial differences in terms of frequencies of NRSs between Eastern and Western pigs,and the heat-resistant pigs exhibited a substantial number of NRS insertions in an 11.6 Mb interval on chromosome X.Additionally,we discovered a 665 bp insertion in the fourth intron of the TNFRSF19 gene that may be associated with the ability of heat tolerance in South-ern Chinese pigs.Conclusions Our findings demonstrate the potential of a graph genome approach to reveal important functional features of NRSs in pig populations.展开更多
Objective:To address the phylogenetic and phylogeographic relationship between different lineages of Anopheles(An.)subpictus species complex in most parts of the Asian continent by maximum utilization of Internal Tran...Objective:To address the phylogenetic and phylogeographic relationship between different lineages of Anopheles(An.)subpictus species complex in most parts of the Asian continent by maximum utilization of Internal Transcriber Spacer 2(ITS2)and cytochrome C oxidase I(COI)sequences deposited at the GenBank.Methods:Seventy-five ITS2,210 COI and 26 concatenated sequences available in the NCBI database were used.Phylogenetic analysis was performed using Bayesian likelihood trees,whereas median-joining haplotype networks and time-scale divergence trees were generated for phylogeographic analysis.Genetic diversity indices and genetic differentiation were also calculated.Results:Two genetically divergent molecular forms of An.subpictus species complex corresponding to sibling species A and B are established.Species A evolved around 37-82 million years ago in Sri Lanka,India,and the Netherlands,and species B evolved around 22-79 million years ago in Sri Lanka,India,and Myanmar.Vietnam,Thailand,and Cambodia have two molecular forms:one is phylogenetically similar to species B.Other forms differ from species A and B and evolved recently in the above mentioned countries,Indonesia and the Philippines.Genetic subdivision among Sri Lanka,India,and the Netherlands is almost absent.A substantial genetic differentiation was obtained for some populations due to isolation by large geographical distances.Genetic diversity indices reveal the presence of a long-established stable mosquito population,at mutation-drift equilibrium,regardless of population fluctuations.Conclusions:An.subpictus species complex consists of more than two genetically divergent molecular forms.Species A is highly divergent from the rest.Sri Lanka and India contain only species A and B.展开更多
In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p...In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.展开更多
Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is imp...Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.展开更多
The application of microorganisms as probiotics is limited due to lack of safety evaluation.Here,a novel multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified from ...The application of microorganisms as probiotics is limited due to lack of safety evaluation.Here,a novel multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified from marine mangrove microorganisms.Its safety and probiotic properties were assessed in accordance with phenotype and whole-genome sequencing analysis.Results showed that the genes and phenotypic expression of related virulence,antibiotic resistance and retroelement were rarely found.Hyphal morphogenesis genes(SIT4,HOG1,SPA2,ERK1,ICL1,CST20,HSP104,TPS1,and RHO1)and phospholipase secretion gene(VPS4)were annotated.True hyphae and phospholipase were absent.Only one retroelement(Tad1-65_BG)was found.Major biogenic amines(BAs)encoding genes were absent,except for spermidine synthase(JA9_002594),spermine synthase(JA9_004690),and tyrosine decarboxylase(inx).The production of single BAs and total BAs was far below the food-defined thresholds.GXDK6 had no resistance to common antifungal drugs.Virulence enzymes,such as gelatinase,DNase,hemolytic,lecithinase,and thrombin were absent.Acute toxicity test with mice demonstrated that GXDK6 is safe.GXDK6 has a good reproduction ability in the simulation gastrointestinal tract.GXDK6 also has a strong antioxidant ability,β-glucosidase,and inulinase activity.To sum up,GXDK6 is considered as a safe probiotic for human consumption and food fermentation.展开更多
BACKGROUND:Prompt pathogen identification can have a substantial impact on the optimization of antimicrobial treatment.The objective of the study was to assess the diagnostic value of next-generation sequencing(NGS)fo...BACKGROUND:Prompt pathogen identification can have a substantial impact on the optimization of antimicrobial treatment.The objective of the study was to assess the diagnostic value of next-generation sequencing(NGS)for identifying pathogen and its clinical impact on antimicrobial intervention in immunocompromised patients with suspected infections.METHODS:This was a retrospective study.Between January and August 2020,47 adult immunocompromised patients underwent NGS testing under the following clinical conditions:1)prolonged fever and negative conventional cultures;2)new-onset fever despite empiric antimicrobial treatment;and 3)afebrile with suspected infections on imaging.Clinical data,including conventional microbial test results and antimicrobial treatment before and after NGS,were collected.Data were analyzed according to documented changes in antimicrobial treatment(escalated,no change,or deescalated)after the NGS results.RESULTS:The median time from hospitalization to NGS sampling was 19 d.Clinically relevant pathogens were detected via NGS in 61.7% of patients(29/47),more than half of whom suffered from fungemia(n=17),resulting in an antimicrobial escalation in 53.2% of patients(25/47)and antimicrobial de-escalation in 0.2% of patients(1/47).Antimicrobial changes were mostly due to the identification of fastidious organisms such as Legionella,Pneumocystis jirovecii,and Candida.In the remaining three cases,NGS detected clinically relevant pathogens also detected by conventional cultures a few days later.The antimicrobial treatment was subsequently adjusted according to the susceptibility test results.Overall,NGS changed antimicrobial management in 55.3%(26/47)of patients,and conventional culture detected clinically relevant pathogens in 14.9% of the patients(7/47).CONCLUSION:With its rapid identification and high sensitivity,NGS could be a promising tool for identifying relevant pathogens and enabling rapid appropriate treatment in immunocompromised patients with suspected infections.展开更多
Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on ...Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.展开更多
Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and ...Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.展开更多
Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is ...Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is conducive to improving the therapeutic effect of stem cells.However,thus far,there are still many unsolved mysteries in thefield of stem cells due to technical limitations,which hinder the in-depth exploration of stem cells and their wide clinical application.Single-cell sequencing(SCS)has provided very powerful and unbiased insights into cell gene expression profiles at the single-cell level,bringing exciting results to the stem cellfield.At present,SCS has been widely applied in thefield of stem cells,covering various aspects,including lineage tracing the development of stem cells,identifying new stem cell types,exploring cellular heterogeneity,and identifying internal functional subpopulations.In this paper,we focus on the latest research progress and discuss the application of SCS technology in stem cells.展开更多
Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all whil...Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.展开更多
Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in p...Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.展开更多
基金supported by the National Key Research and Development Program(grant number:2022YFC2305304).
文摘Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing.Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing.Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing.Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
基金Supported by Research and Development Funding for Medical and Health Institutions,No.2021YL007.
文摘BACKGROUND Infectious diseases are still one of the greatest threats to human health,and the etiology of 20%of cases of clinical fever is unknown;therefore,rapid identification of pathogens is highly important.Traditional culture methods are only able to detect a limited number of pathogens and are time-consuming;serologic detection has window periods,false-positive and false-negative problems;and nucleic acid molecular detection methods can detect several known pathogens only once.Three-generation nanopore sequencing technology provides new options for identifying pathogens.CASE SUMMARY Case 1:The patient was admitted to the hospital with abdominal pain for three days and cessation of defecation for five days,accompanied by cough and sputum.Nanopore sequencing of the drainage fluid revealed the presence of orallike bacteria,leading to a clinical diagnosis of bronchopleural fistula.Cefoperazone sodium sulbactam treatment was effective.Case 2:The patient was admitted to the hospital with fever and headache,and CT revealed lung inflammation.Antibiotic treatment for Streptococcus pneumoniae,identified through nanopore sequencing of cerebrospinal fluid,was effective.Case 3:The patient was admitted to our hospital with intermittent fever and an enlarged neck mass that had persisted for more than six months.Despite antibacterial treatment,her symptoms worsened.The nanopore sequencing results indicate that voriconazole treatment is effective for Aspergillus brookii.The patient was diagnosed with mixed cell type classical Hodgkin's lymphoma with infection.CONCLUSION Three-generation nanopore sequencing technology allows for rapid and accurate detection of pathogens in human infectious diseases.
文摘Coding sequences (CDS) are commonly used for transient gene expression, in yeast two-hybrid screening, to verify protein interactions and in prokaryotic gene expression studies. CDS are most commonly obtained using complementary DNA (cDNA) derived from messenger RNA (mRNA) extracted from plant tissues and generated by reverse transcription. However, some CDS are difficult to acquire through this process as they are expressed at extremely low levels or have specific spatial and/or temporal expression patterns in vivo. These challenges require the development of alternative CDS cloning technologies. In this study, we found that the genomic intron-containing gene coding sequences (gDNA) from Arabidopsis thaliana, Oryza sativa, Brassica napus, and Glycine max can be correctly transcribed and spliced into mRNA in Nicotiana benthamiana. In contrast, gDNAs from Triticum aestivum and Sorghum bicolor did not function correctly. In transient expression experiments, the target DNA sequence is driven by a constitutive promoter. Theoretically, a sufficient amount of mRNA can be extracted from the N. benthamiana leaves, making it conducive to the cloning of CDS target genes. Our data demonstrate that N. benthamiana can be used as an effective host for the cloning CDS of plant genes.
基金supported by the National Natural Science Foundation of China(31640001 and T2350005 to C.X.,U21A20148 to X.Z.and C.X.)Ministry of Science and Technology of China(2021ZD0140300 to C.X.)+2 种基金Natural Science Foundation of Hainan Province(No.822RC703 for J.L.)Foundation of Hainan Educational Committee(No.Hnky2022-27 for J.L.)Presidential Foundation of Hefei Institutes of Physical Science,Chinese Academy of Sciences(Y96XC11131,E26CCG27,and E26CCD15 to C.X.,E36CWGBR24B and E36CZG14132 to T.C.)。
文摘Iron-sulfur clusters(ISC)are essential cofactors for proteins involved in various biological processes,such as electron transport,biosynthetic reactions,DNA repair,and gene expression regulation.ISC assembly protein IscA1(or MagR)is found within the mitochondria of most eukaryotes.Magnetoreceptor(MagR)is a highly conserved A-type iron and iron-sulfur cluster-binding protein,characterized by two distinct types of iron-sulfur clusters,[2Fe-2S]and[3Fe-4S],each conferring unique magnetic properties.MagR forms a rod-like polymer structure in complex with photoreceptive cryptochrome(Cry)and serves as a putative magnetoreceptor for retrieving geomagnetic information in animal navigation.Although the N-terminal sequences of MagR vary among species,their specific function remains unknown.In the present study,we found that the N-terminal sequences of pigeon MagR,previously thought to serve as a mitochondrial targeting signal(MTS),were not cleaved following mitochondrial entry but instead modulated the efficiency with which iron-sulfur clusters and irons are bound.Moreover,the N-terminal region of MagR was required for the formation of a stable MagR/Cry complex.Thus,the N-terminal sequences in pigeon MagR fulfil more important functional roles than just mitochondrial targeting.These results further extend our understanding of the function of MagR and provide new insights into the origin of magnetoreception from an evolutionary perspective.
文摘Single-cell RNA sequencing(scRNA-seq)is one of the most advanced sequencing technologies for studying transcriptome landscape at the single-cell revolution.It provides numerous advantages over traditional RNA-seq.Since it was first used to profile single-cell transcriptome in plants in 2019,it has been extensively employed to perform different research in plants.Recently,scRNA-seq was also quickly adopted by the cotton research community to solve lots of scientific questions which have been never solved.In this comment,we highlighted the significant progress in employing scRNA-seq to cotton genetic and genomic study and its future potential applications.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
文摘BACKGROUND This study aimed to identify characteristic gut genera in obese and normal-weight children(8-12 years old)using 16S rDNA sequencing.The research aimed to provide insights for mechanistic studies and prevention strategies for childhood obesity.Thirty normal-weight and thirty age-and sex-matched obese children were included.Questionnaires and body measurements were collected,and fecal samples underwent 16S rDNA sequencing.Significant differences in body mass index(BMI)and body-fat percentage were observed between the groups.Analysis of gut microbiota diversity revealed lowerα-diversity in obese children.Differences in gut microbiota composition were found between the two groups.Prevotella and Firmicutes were more abundant in the obese group,while Bacteroides and Sanguibacteroides were more prevalent in the control group.AIM To identify the characteristic gut genera in obese and normal-weight children(8-12-year-old)using 16S rDNA sequencing,and provide a basis for subsequent mechanistic studies and prevention strategies for childhood obesity.METHODS Thirty each normal-weight,1:1 matched for age and sex,and obese children,with an obese status from 2020 to 2022,were included in the control and obese groups,respectively.Basic information was collected through questionnaires and body measurements were obtained from both obese and normal-weight children.Fecal samples were collected from both groups and subjected to 16S rDNA sequencing using an Illumina MiSeq sequencing platform for gut microbiota diversity analysis.RESULTS Significant differences in BMI and body-fat percentage were observed between the two groups.The Ace and Chao1 indices were significantly lower in the obese group than those in the control group,whereas differences were not significant in the Shannon and Simpson indices.Kruskal-Wallis tests indicated significant differences in unweighted and weighted UniFrac distances between the gut microbiota of normal-weight and obese children(P<0.01),suggesting substantial disparities in both the species and quantity of gut microbiota between the two groups.Prevotella,Firmicutes,Bacteroides,and Sanguibacteroides were more abundant in the obese and control groups,respectively.Heatmap results demonstrated significant differences in the gut microbiota composition between obese and normal-weight children.CONCLUSION Obese children exhibited lowerα-diversity in their gut microbiota than did the normal-weight children.Significant differences were observed in the composition of gut microbiota between obese and normal-weight children.
基金financially supported by the“STI2030-Major Project”of China(2023ZD04072)the National Key Research and Development Program of China(2021YFA1300400)+1 种基金the National Natural Science Foundation of China(32372099 and 32188102)the Young Science and Technology Talents(He Jian)in Hunan Province(2022RC1015)。
文摘Seed plumules comprise multiple developing tissues and are key sites for above-ground plant organ morphogenesis.Here,the spatial expression of genes in developing rice seed plumules was characterized by single-cell transcriptome sequencing in Zhongjiazao 17,a popular Chinese indica rice cultivar.Of 15 cell clusters,13 were assigned to cell types using marker genes and cluster-specific genes.Marker genes of multiple cell types were expressed in several clusters,suggesting a complex developmental system.Some genes for signaling by phytohormones such as abscisic acid were highly expressed in specific clusters.Various cis-elements in the promoters of genes specifically expressed in cell clusters were calculated,and some key hormone-related motifs were frequent in certain clusters.Spatial expression patterns of genes involved in rapid seed germination,seedling growth,and development were identified.These findings enhanced our understanding of cellular diversity and specialization within plumules of rice,a monocotyledonous model crop.
基金funded by the National Key R&D Program of China [2022YFC2305200]Natural Science Foundation of Xinjiang Uygur Autonomous Region [2021A01D145 and 2022D01A115]Applied Technology Research and Development Programing Project of Kashgar Prefecture [KS2021031 and KS2021034]。
文摘Objective China is among the 30 countries with a high burden of tuberculosis(TB)worldwide,and TB remains a public health concern.Kashgar Prefecture in the southern Xinjiang Autonomous Region is considered as one of the highest TB burden regions in China.However,molecular epidemiological studies of Kashgar are lacking.Methods A population-based retrospective study was conducted using whole-genome sequencing(WGS)to determine the characteristics of drug resistance and the transmission patterns.Results A total of 1,668 isolates collected in 2020 were classified into lineages 2(46.0%),3(27.5%),and 4(26.5%).The drug resistance rates revealed by WGS showed that the top three drugs in terms of the resistance rate were isoniazid(7.4%,124/1,668),streptomycin(6.0%,100/1,668),and rifampicin(3.3%,55/1,668).The rate of rifampicin resistance was 1.8%(23/1,290)in the new cases and 9.4%(32/340)in the previously treated cases.Known resistance mutations were detected more frequently in lineage 2 strains than in lineage 3 or 4 strains,respectively:18.6%vs.8.7 or 9%,P<0.001.The estimated proportion of recent transmissions was 25.9%(432/1,668).Multivariate logistic analyses indicated that sex,age,occupation,lineage,and drug resistance were the risk factors for recent transmission.Despite the low rate of drug resistance,drug-resistant strains had a higher risk of recent transmission than the susceptible strains(adjusted odds ratio,1.414;95%CI,1.023–1.954;P=0.036).Among all patients with drug-resistant tuberculosis(DR-TB),78.4%(171/218)were attributed to the transmission of DR-TB strains.Conclusion Our results suggest that drug-resistant strains are more transmissible than susceptible strains and that transmission is the major driving force of the current DR-TB epidemic in Kashgar.
基金This work was supported by the National Key Research and Development Program of China(grant no.2022YFF1000500)National Natural Science Foundation of China(grant no.31941007)Zhejiang province agriculture(livestock)varieties breeding Key Technology R&D Program(grant no.2016C02054-2).
文摘Background The reliance on a solitary linear reference genome has imposed a significant constraint on our compre-hensive understanding of genetic variation in animals.This constraint is particularly pronounced for non-reference sequences(NRSs),which have not been extensively studied.Results In this study,we constructed a pig pangenome graph using 21 pig assemblies and identified 23,831 NRSs with a total length of 105 Mb.Our findings revealed that NRSs were more prevalent in breeds exhibiting greater genetic divergence from the reference genome.Furthermore,we observed that NRSs were rarely found within coding sequences,while NRS insertions were enriched in immune-related Gene Ontology terms.Notably,our investigation also unveiled a close association between novel genes and the immune capacity of pigs.We observed substantial differences in terms of frequencies of NRSs between Eastern and Western pigs,and the heat-resistant pigs exhibited a substantial number of NRS insertions in an 11.6 Mb interval on chromosome X.Additionally,we discovered a 665 bp insertion in the fourth intron of the TNFRSF19 gene that may be associated with the ability of heat tolerance in South-ern Chinese pigs.Conclusions Our findings demonstrate the potential of a graph genome approach to reveal important functional features of NRSs in pig populations.
文摘Objective:To address the phylogenetic and phylogeographic relationship between different lineages of Anopheles(An.)subpictus species complex in most parts of the Asian continent by maximum utilization of Internal Transcriber Spacer 2(ITS2)and cytochrome C oxidase I(COI)sequences deposited at the GenBank.Methods:Seventy-five ITS2,210 COI and 26 concatenated sequences available in the NCBI database were used.Phylogenetic analysis was performed using Bayesian likelihood trees,whereas median-joining haplotype networks and time-scale divergence trees were generated for phylogeographic analysis.Genetic diversity indices and genetic differentiation were also calculated.Results:Two genetically divergent molecular forms of An.subpictus species complex corresponding to sibling species A and B are established.Species A evolved around 37-82 million years ago in Sri Lanka,India,and the Netherlands,and species B evolved around 22-79 million years ago in Sri Lanka,India,and Myanmar.Vietnam,Thailand,and Cambodia have two molecular forms:one is phylogenetically similar to species B.Other forms differ from species A and B and evolved recently in the above mentioned countries,Indonesia and the Philippines.Genetic subdivision among Sri Lanka,India,and the Netherlands is almost absent.A substantial genetic differentiation was obtained for some populations due to isolation by large geographical distances.Genetic diversity indices reveal the presence of a long-established stable mosquito population,at mutation-drift equilibrium,regardless of population fluctuations.Conclusions:An.subpictus species complex consists of more than two genetically divergent molecular forms.Species A is highly divergent from the rest.Sri Lanka and India contain only species A and B.
文摘In the present paper,we mostly focus on P_(p)^(2)-statistical convergence.We will look into the uniform integrability via the power series method and its characterizations for double sequences.Also,the notions of P_(p)^(2)-statistically Cauchy sequence,P_(p)^(2)-statistical boundedness and core for double sequences will be described in addition to these findings.
基金supported by the mutton sheep industry technology system construction project of Shaanxi Province(NYKJ-2021-YL(XN)43).
文摘Background In the modern sheep production systems,the reproductive performance of ewes determines the economic profitability of farming.Revealing the genetic mechanisms underlying differences in the litter size is important for the selection and breeding of highly prolific ewes.Hu sheep,a high-quality Chinese sheep breed,is known for its high fecundity and is often used as a model to study prolificacy traits.In the current study,animals were divided into two groups according to their delivery rates in three consecutive lambing seasons(namely,the high and low reproductive groups with≥3 lambs and one lamb per season,n=3,respectively).The ewes were slaughtered within 12 h of estrus,and unilateral ovarian tissues were collected and analyzed by 10×Genomics single-cell RNA sequencing.Results A total of 5 types of somatic cells were identified and corresponding expression profiles were mapped in the ovaries of each group.Noticeably,the differences in the ovary somatic cell expression profiles between the high and low reproductive groups were mainly clustered in the granulosa cells.Furthermore,four granulosa cell subtypes were identified.GeneSwitches analysis revealed that the abundance of JPH1 expression and the reduction of LOC101112291 expression could lead to different evolutionary directions of the granulosa cells.Additionally,the expression levels of FTH1 and FTL in mural granulosa cells of the highly reproductive group were significantly higher.These genes inhibit necroptosis and ferroptosis of mural granulosa cells,which helps prevent follicular atresia.Conclusions This study provides insights into the molecular mechanisms underlying the high fecundity of Hu sheep.The differences in gene expression profiles,particularly in the granulosa cells,suggest that these cells play a critical role in female prolificacy.The findings also highlight the importance of genes such as JPH1,LOC101112291,FTH1,and FTL in regulating granulosa cell function and follicular development.
基金This research was supported by the Funding Project of Chinese Central Government Guiding to the Guangxi Local Science and Technology Development(GUIKEZY21195021)the Natural Science Fund for Distinguished Young Scholars of Guangxi Zhuang Autonomous Region of China(2019GXNSFFA245011)+3 种基金the Funding Project of Chinese Central Government Guiding to the Nanning Local Science and Technology Development(20231012)the Funding Projects of Guangxi Key Research and Development Plan(GUIKE AB23075173)the Funding Project of Technological Development from Angel Yeast(Chongzuo)Co.,Ltd.(JS1006020230722019)the Innovation Project of Guangxi Graduate Education(YCBZ2021012).
文摘The application of microorganisms as probiotics is limited due to lack of safety evaluation.Here,a novel multi-stress-tolerant yeast Meyerozyma guilliermondii GXDK6 with aroma-producing properties was identified from marine mangrove microorganisms.Its safety and probiotic properties were assessed in accordance with phenotype and whole-genome sequencing analysis.Results showed that the genes and phenotypic expression of related virulence,antibiotic resistance and retroelement were rarely found.Hyphal morphogenesis genes(SIT4,HOG1,SPA2,ERK1,ICL1,CST20,HSP104,TPS1,and RHO1)and phospholipase secretion gene(VPS4)were annotated.True hyphae and phospholipase were absent.Only one retroelement(Tad1-65_BG)was found.Major biogenic amines(BAs)encoding genes were absent,except for spermidine synthase(JA9_002594),spermine synthase(JA9_004690),and tyrosine decarboxylase(inx).The production of single BAs and total BAs was far below the food-defined thresholds.GXDK6 had no resistance to common antifungal drugs.Virulence enzymes,such as gelatinase,DNase,hemolytic,lecithinase,and thrombin were absent.Acute toxicity test with mice demonstrated that GXDK6 is safe.GXDK6 has a good reproduction ability in the simulation gastrointestinal tract.GXDK6 also has a strong antioxidant ability,β-glucosidase,and inulinase activity.To sum up,GXDK6 is considered as a safe probiotic for human consumption and food fermentation.
基金supported by National Natural Science Foundation of China(72274067)。
文摘BACKGROUND:Prompt pathogen identification can have a substantial impact on the optimization of antimicrobial treatment.The objective of the study was to assess the diagnostic value of next-generation sequencing(NGS)for identifying pathogen and its clinical impact on antimicrobial intervention in immunocompromised patients with suspected infections.METHODS:This was a retrospective study.Between January and August 2020,47 adult immunocompromised patients underwent NGS testing under the following clinical conditions:1)prolonged fever and negative conventional cultures;2)new-onset fever despite empiric antimicrobial treatment;and 3)afebrile with suspected infections on imaging.Clinical data,including conventional microbial test results and antimicrobial treatment before and after NGS,were collected.Data were analyzed according to documented changes in antimicrobial treatment(escalated,no change,or deescalated)after the NGS results.RESULTS:The median time from hospitalization to NGS sampling was 19 d.Clinically relevant pathogens were detected via NGS in 61.7% of patients(29/47),more than half of whom suffered from fungemia(n=17),resulting in an antimicrobial escalation in 53.2% of patients(25/47)and antimicrobial de-escalation in 0.2% of patients(1/47).Antimicrobial changes were mostly due to the identification of fastidious organisms such as Legionella,Pneumocystis jirovecii,and Candida.In the remaining three cases,NGS detected clinically relevant pathogens also detected by conventional cultures a few days later.The antimicrobial treatment was subsequently adjusted according to the susceptibility test results.Overall,NGS changed antimicrobial management in 55.3%(26/47)of patients,and conventional culture detected clinically relevant pathogens in 14.9% of the patients(7/47).CONCLUSION:With its rapid identification and high sensitivity,NGS could be a promising tool for identifying relevant pathogens and enabling rapid appropriate treatment in immunocompromised patients with suspected infections.
文摘Objective:Autosomal recessive bestrophinopathy(ARB),a retinal degenerative disease,is characterized by central visual loss,yellowish multifocal diffuse subretinal deposits,and a dramatic decrease in the light peak on electrooculogram.The potential pathogenic mechanism involves mutations in the BEST1 gene,which encodes Ca2+-activated Cl−channels in the retinal pigment epithelium(RPE),resulting in degeneration of RPE and photoreceptor.In this study,the complete clinical characteristics of two Chinese ARB families were summarized.Methods:Pacific Biosciences(PacBio)single-molecule real-time(SMRT)sequencing was performed on the probands to screen for disease-causing gene mutations,and Sanger sequencing was applied to validate variants in the patients and their family members.Results:Two novel mutations,c.202T>C(chr11:61722628,p.Y68H)and c.867+97G>A,in the BEST1 gene were identified in the two Chinese ARB families.The novel missense mutation BEST1 c.202T>C(p.Y68H)resulted in the substitution of tyrosine with histidine in the N-terminal region of transmembrane domain 2 of bestrophin-1.Another novel variant,BEST1 c.867+97G>A(chr11:61725867),located in intron 7,might be considered a regulatory variant that changes allele-specific binding affinity based on motifs of important transcriptional regulators.Conclusion:Our findings represent the first use of third-generation sequencing(TGS)to identify novel BEST1 mutations in patients with ARB,indicating that TGS can be a more accurate and efficient tool for identifying mutations in specific genes.The novel variants identified further broaden the mutation spectrum of BEST1 in the Chinese population.
基金supported by National Key Research and Development Program of China(2022YFD1302201,2023YFF1000904)the National Natural Science Foundation of China(32072806,32372970)+2 种基金Key Technologies Demonstration of Animal Husbandry in Shaanxi Province(20221086,20230978)Inner Mongolia Autonomous Region Competition Leaders(2022JBGS0025)Xinjian Ugur Autonouous Region Scientific Research and Innovation Platform Construction Project“State Key Laboratory of Genetic Improvement and Germplasm”。
文摘Spermatogenic cell heterogeneity is determined by the complex process of spermatogenesis differentiation.However,effectively revealing the regulatory mechanisms underlying mammalian spermatogenic cell development and differentiation via traditional methods is difficult.Advances in technology have led to the emergence of many single-cell transcriptome sequencing protocols,which have partially addressed these challenges.In this review,we detail the principles of 10x Genomics technology and summarize the methods for downstream analysis of single-cell transcriptome sequencing data.Furthermore,we explore the role of single-cell transcriptome sequencing in revealing the heterogeneity of testicular ecological niche cells,delineating the establishment and disruption of testicular immune homeostasis during human spermatogenesis,investigating abnormal spermatogenesis in humans,and,ultimately,elucidating the molecular evolution of mammalian spermatogenesis.
文摘Stem cells have shown great application potential in wound repair,tissue regeneration,and disease treatment.Therefore,a full understanding of stem cells and their related regulatory mechanisms in disease treatment is conducive to improving the therapeutic effect of stem cells.However,thus far,there are still many unsolved mysteries in thefield of stem cells due to technical limitations,which hinder the in-depth exploration of stem cells and their wide clinical application.Single-cell sequencing(SCS)has provided very powerful and unbiased insights into cell gene expression profiles at the single-cell level,bringing exciting results to the stem cellfield.At present,SCS has been widely applied in thefield of stem cells,covering various aspects,including lineage tracing the development of stem cells,identifying new stem cell types,exploring cellular heterogeneity,and identifying internal functional subpopulations.In this paper,we focus on the latest research progress and discuss the application of SCS technology in stem cells.
基金supported by the Yayasan Universiti Teknologi PETRONAS Grants,YUTP-PRG(015PBC-027)YUTP-FRG(015LC0-311),Hilmi Hasan,www.utp.edu.my.
文摘Medical imaging plays a key role within modern hospital management systems for diagnostic purposes.Compression methodologies are extensively employed to mitigate storage demands and enhance transmission speed,all while upholding image quality.Moreover,an increasing number of hospitals are embracing cloud computing for patient data storage,necessitating meticulous scrutiny of server security and privacy protocols.Nevertheless,considering the widespread availability of multimedia tools,the preservation of digital data integrity surpasses the significance of compression alone.In response to this concern,we propose a secure storage and transmission solution for compressed medical image sequences,such as ultrasound images,utilizing a motion vector watermarking scheme.The watermark is generated employing an error-correcting code known as Bose-Chaudhuri-Hocquenghem(BCH)and is subsequently embedded into the compressed sequence via block-based motion vectors.In the process of watermark embedding,motion vectors are selected based on their magnitude and phase angle.When embedding watermarks,no specific spatial area,such as a region of interest(ROI),is used in the images.The embedding of watermark bits is dependent on motion vectors.Although reversible watermarking allows the restoration of the original image sequences,we use the irreversible watermarking method.The reason for this is that the use of reversible watermarks may impede the claims of ownership and legal rights.The restoration of original data or images may call into question ownership or other legal claims.The peak signal-to-noise ratio(PSNR)and structural similarity index(SSIM)serve as metrics for evaluating the watermarked image quality.Across all images,the PSNR value exceeds 46 dB,and the SSIM value exceeds 0.92.Experimental results substantiate the efficacy of the proposed technique in preserving data integrity.
基金funded by the Sichuan Science and Technology Program (grant number 2022NSFSC1176)the open Fund for National Key Laboratory of Geological Disaster Prevention and Environmental Protection (grant number SKLGP2022K027)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2022Z001)。
文摘Repetitive mining beneath bedding slopes is identified as a critical factor in geomorphic disturbances, especially landslides and surface subsidence. Prior research has largely concentrated on surface deformation in plains due to multi-seam coal mining and the instability of natural bedding slopes, yet the cumulative impact of different mining sequences on bedding slopes has been less explored. This study combines drone surveys and geological data to construct a comprehensive three-dimensional model of bedding slopes. Utilizing FLAC3D and PFC2D models, derived from laboratory experiments, it simulates stress, deformation, and failure dynamics of slopes under various mining sequences. Incorporating fractal dimension analysis, the research evaluates the stability of slopes in relation to different mining sequences. The findings reveal that mining in an upslope direction minimizes disruption to overlying strata. Initiating extraction from lower segments increases tensile-shear stress in coal pillar overburdens, resulting in greater creep deformation towards the downslope than when starting from upper segments, potentially leading to localized landslides and widespread creep deformation in mined-out areas. The downslope upward mining sequence exhibits the least fractal dimensions, indicating minimal disturbance to both strata and surface. While all five mining scenarios maintain good slope stability under normal conditions, recalibrated stability assessments based on fractal dimensions suggest that downslope upward mining offers the highest stability under rainfall, contrasting with the lower stability and potential instability risks of upslope downward mining. These insights are pivotal for mining operations and geological hazard mitigation in multi-seam coal exploitation on bedding slopes.