The aim of this study is to discuss the chronostratigraphy, catastrophic event stratigraphy, biostratigraphy and sequence stratigraphy of Neoproterozoic. In the eastern part of the North China, the Neoproterozoic cons...The aim of this study is to discuss the chronostratigraphy, catastrophic event stratigraphy, biostratigraphy and sequence stratigraphy of Neoproterozoic. In the eastern part of the North China, the Neoproterozoic consists of Qingbaikou System (1 000-800 Ma) and Sinian System (800-600 Ma). The Qingbaikou System is widely distributed over the whole area and the Sinian System only in the eastern and southern parts of the plate. In this paper, we discuss the age limit of the formations, and try to establish the Neoproterozoic chronostratigraphic frame, the ages of which are partly based on recently obtained carbonate whole rock Pb Pb isotope. Based on the event records of ancient earthquake, which are well developed in Sinian carbonates, “a vibrational liquefaction seismic sequence” in carbonate rocks is established. We propose a time correlation for the Sinian formation in eastern North China, on the bases of event records of earthquake in combination with biostratigraphy, and thus revise the traditional correlation scheme that has been used for nearly 30 years. Some biostratigraphic results were obtained in fossil microplants, megafossils and metazoans in North China. A large amount of big double layered and complex ornamented acritarchs are found in Qingbaikou and Sinian systems. On the basis of the correlation by earthquake events, the Huainan fauna is regarded as Late Sinian, probably between 700 Ma and 600 Ma. Altogether 16 depositional sequences are distinguished in the Neoproterozoic, with an average time interval of about 15-16 Ma.展开更多
The Cambrian of the North China platform consists chiefly of shallow water deposits and shows the sedimentary characters of an epicontinental sea basin. Controlled mainly by global sea level changes and sedimentary in...The Cambrian of the North China platform consists chiefly of shallow water deposits and shows the sedimentary characters of an epicontinental sea basin. Controlled mainly by global sea level changes and sedimentary influx, the depositional sequences all exhibit as composite sequences. From bottom upward, 14 sequences (3rd order) are recognized, which may be grouped into 5 sequence sets and further into 2 mesosequences (2nd order). It is suggested herein that the Cambrian/Ordovician boundary may better be set at the MFS (maximum flooding surface) of the sequence OSq1, above which the conodont Cordylodus lindstroemi occurs. This position is about 40 m above the traditional Cambrian/Ordovician boundary and is within the Yeli Formation.展开更多
The Permian and marine Triassic of eastern Yangtze platform, situated in eastern China, involve 19 orthosequences lasting about 2.7 Ma on average, which can be combined into five orthosequence sets ranging from 8 Ma t...The Permian and marine Triassic of eastern Yangtze platform, situated in eastern China, involve 19 orthosequences lasting about 2.7 Ma on average, which can be combined into five orthosequence sets ranging from 8 Ma to 12 Ma. Affected by the regional Dongwu and Indosinian movements, the sequence stratigraphic pattern and sea level changes in the Permian and Triassic of this region are distinctive and obviously different from most other regions in the world, but typical in the broad eastern Tethys and its neighboring areas. In this region not only did the continuous marine Permian and Triassic boundary sequences cause the orthosequence crossing the boundary belonging to type Ⅱ sequence but also the mesosequence including these stratigraphic intervals had its basal boundary in the upper Longlinian (Artinskian) (ca. 278 Ma), that is, the traditional Carboniferous and Permian boundary, and its top boundary moved from the Permian and Triassic boundary upward into the Anisian of Middle Triassic.展开更多
The Paleozoic sequence stratigraphic system of North Tarim basin is established for the first time in this paper. The sequence stratigraphic system is composed of different orders of sequences, which includes 96 seque...The Paleozoic sequence stratigraphic system of North Tarim basin is established for the first time in this paper. The sequence stratigraphic system is composed of different orders of sequences, which includes 96 sequences, 31 supersequences, 9 supersequence sets and 4 megasequences. The characteristics of some important sequence boundaries are discussed and their time ranges are suggested, thus enhancing the precision of stratigraphic correlation in North Tarim basin.展开更多
Through a sequence stratigraphic research on the Permo-Carboniferous in North China, it is suggested that the boundary of the Carboniferous and the Permian may be better moved down to the bottom of the main workable c...Through a sequence stratigraphic research on the Permo-Carboniferous in North China, it is suggested that the boundary of the Carboniferous and the Permian may be better moved down to the bottom of the main workable coalbed which is overlain by the limestones containing Pseudoschwagerina zone. This study mainly deals with the Upper Carboniferous, the Lower Permian and the lower part of the Middle Permian coal bearing strata, which are 150-180 m thick totally and can be divided into 2 mesosequences, including 6 sequence sets and 19 sequences. The lithostratigraphic units are diachronous in North China. The upper two limestones of the Taiyuan Formation in the central part of the study area may be correlated with the bottom two limestones of the lower Taiyuan Formation in the southern part. The Shanxi Formation in the central and northern parts may be correlated with most of the Taiyuan Formation in the southern part. The Xiashihezi Formation in the northern part may be correlated with the upper part of Shanxi Formation in the central and southern parts. The Shangshihezi Formation in the northern part may be correlated with the Xiashihezi Formation in the southern part. The paleogeographical maps are compiled in a chrono stratigraphic framework. From the Late Carboniferous to the Early Permian, 3 cycles of sea level change and transgression regression occurred, and the major transgression took place in the Asselian. In the Late Carboniferous, the direction of transgression was from the east to the west, and in the Early Permian it was from the southeast and the southwest to the north. Three workable coalbed groups were formed in Asselian, early Sakmarian and late Sakmarian respectively. The TST coals developed under the bottom of the Asselian limestones are the best coals for coalbed meathane extracting. The Sakmarian coal beds were formed in HST. The coal beds of Lower Permian distribute southward along with the relative sea level falls and sediment progradation.展开更多
A Oilfield is the most representative mid to deep oil field in the Bohai Sea, with the main oil bearing intervals being the upper and middle Shahejie-3 sections of the Paleogene Shahejie Formation. By combining well s...A Oilfield is the most representative mid to deep oil field in the Bohai Sea, with the main oil bearing intervals being the upper and middle Shahejie-3 sections of the Paleogene Shahejie Formation. By combining well seismic analysis, the middle section of Shahejie-3 is divided into high-level system tract and forced lake retreat system tract, corresponding to the II oil formation and I oil formation, respectively. Using sequence stratigraphy methods, based on seismic profiles and drilling lithological cycles, the high stand system tract is divided into 5 stages of delta progradation. The first and second stages are high angle S-type progradation with large sedimentary thickness, the third stage is oblique progradation, and the fourth and fifth stages are S-oblique composite progradation;By combining seismic data, we characterized the large-scale (8 small-scale) progradation bodies of 5 periods, clarified the distribution characteristics of reservoir planes, and laid the foundation for the later exploration of oilfield potential.展开更多
The Late Devonian-early Carboniferous deposits of the Anarak section in northeastern Isfahan,Central Iran,evaluated based on conodont biostratigraphy,sedimentary environment and sequence stratigraphy.According to the ...The Late Devonian-early Carboniferous deposits of the Anarak section in northeastern Isfahan,Central Iran,evaluated based on conodont biostratigraphy,sedimentary environment and sequence stratigraphy.According to the field observations,five lithological units were identified.Investigating the conodont fauna of the Late Devonian-Carboniferous(Mississippian-Pennsylvanian)deposits of Bahram,Shishtu,and Qaleh(Sardar 1)formations in Anarak section led to the identification of 67 species of 18 conodont genera,and accordingly 22 conodont biozones were differentiated.The correlation of sea-level change curves,regarding to the conodont biofacies with the global sea-level curve,demonstrates the relative correlation in the mentioned times due to the shallow condition of the central Iran basin compared to the European and American basins.The microfacies analysis led to the identification of 12 microfacies related to the open sea,bioclastic barrier,lagoon and tidal flat sub-sedimentary environments in a homoclinal carbonate ramp environment.Based on sequence stratigraphy studies,three 3rd order sequences were identified.The first sequence,which is of the Late Devonian(upper part of the Bahram Formation,32.5 m),the second sequence(12.5 m)is the Late Devonian(uppermost part of the Bahram Formation),and the third sequence(68 m)is the early Carboniferous(the Shishtu I Formation).展开更多
The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedi...The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedimentology,seismic sections,and well logs.The Sab'atayn Formation(Tithonian age)is represented by a series of clastic and evaporites that were deposited under fluvio-deltaic to prodeltaic settings.It is divided into four members including Yah(at the base),upwards to Seen,Alif,and Safir at the top.Two third-order depositional sequences were determined for the Tithonian succession which were separated by three sequence boundaries.These sequences were classified into their systems tracts signifying several sedimentation patterns of progradational,aggradational,and retrogradational parasequence sets.The first depositional sequence corresponds to the early-middle Tithonian Yah and Seen units that can be classified into lowstand,transgressive,and highstand systems tracts.The second sequence comprises the late Tithonian Alif unit that can be subdivided into transgressive and highstand systems tracts.The sandy deposits of the Alif Member(highstand deposits)represent the most productive hydrocarbon reservoir in the basin.The Upper Jurassic sediments in the study area were resulted from a combination of eustatic and tectonic effects.展开更多
The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challe...The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.展开更多
There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early C...There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early Cretaceous,Paleogene and Neogene.The coal formed in these periods were developed in different coal-accumulating areas(CAA)including the North China,South China,Northwest China,Northeast China,the Qinghai–Tibet area,and China offshore area.In this paper,we investigated depositional environments,sequence stratigraphy,lithofacies paleogeography and coal accumulation pattern of five major coal-accumulating periods including the Late Carboniferous to Middle Permian of the North China CAA,the Late Permian of the South China CAA,the Late Triassic of the South China CAA,the Early-Middle Jurassic of the North and Northwest China CAA,and the Early Cretaceous in the Northeast China CAA.According to distribution of the coal-bearing strata and the regional tectonic outlines,we have identified distribution range of the coal-forming basins,sedimentary facies types and coal-accumulating models.The sequence stratigraphic frameworks of the major coal-accumulating periods were established based on recognition of a variety of sequence boundaries.The distribution of thick coals and migration patterns of the coal-accumulating centers in the sequence stratigraphic framework were analyzed.The lithofacies paleogeography maps based on third-order sequences were reconstructed and the distribution of coal accumulation centers and coal-rich belts were predicted.展开更多
Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhej...Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhejiang Province, southern China, the candidate stratotype sec-tion of the global Permo-Triassic boundary, based on a detailed study of the biological,ecological and high-resolution allochthonous cyclic events, microfacies and depositional systems.Furthermore, the stacking pattern of the depositional systems across various Changxingian andGriesbachian sedimentary facies of the Lower Yangtze and the sequence stratigraphic frameworkare outlined with the Meishan section as the principal section. In this paper the habitat types offossil biota are applied to semiquantitative palaeobathymetry and the study of relative sea levelchanges.展开更多
The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontin...The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontinental sebkha, aeolian sandstones, sandy conglomerates of the intermittent river, conglomerates of the pluvial fan, etc. These types of sedimentary facies constitute a typical desert system. Therefore, the Cretaceous strata in the Kuqa Basin provide a favorable condition for studies of sequence stratigraphic divisions of the desert system. With the rise and fall of the base level of the sedimentary basin, cyclicity is clearly revealed in stratigraphic records, which helps the identification of the third-order sequences. Based on the cyclicity in stratigraphic records, 5 third-order sequences can be found in the strata of the Early Cretaceous in the Kuqa Basin. These sequences comprise a second-order tectonic sequence. The primary feature of these third-order sequences is of an upward-fining sedimentary succession formed by a succession of 'coarse sediments of the alluvial system-fine sediments of the lake system'. The result of this study shows that aeolian sandstones are the best reservoirs of natural gas in the Cretaceous strata in the Kuqa Basin, and that the Kela-2 gas field is the first large gas field dominated by aeolian sandstone reservoirs in China.展开更多
In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the othe...In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the other three Tournaisian in age. These four depositional sequences appear to correlate fairly well with the four sequence recognized in Europe, North America and other areas. This may suggest that these sequences are synchronous depos- its resulted from the eustatic changes. The present study on sequence stratigraphy, biostratigraphy and event stratigraphy indicates that in neritic facies areas of South China, the Devonian-Carboniferous boundary, matching the boundary between Siphonodella praesulcata zone and S. sulcata zone in pelagic facies areas, is not only higher than the top of the Cystophrentis zone, but also higher than the top of the Devonian-Carboniferous boundary event bed. In neritic facies areas, the Devonian-Carbonifrerous boundary is marked by the most distinct transgressive surface within the Cystophrentiseudouralina interval zone, i. e. at the base of the TST of the SQ1. This boundary coincides with the top surface of the event bed resulted from the eustatic fall, and approximately corresponds to the basal part of Rseudouralina assemblage zone.展开更多
The Qom Formation comprises Oligo-Miocene deposits from a marine succession distributed in the Central Basin of Iran. It is composed of five members designated as A-F. Little previous work exists on the sequence strat...The Qom Formation comprises Oligo-Miocene deposits from a marine succession distributed in the Central Basin of Iran. It is composed of five members designated as A-F. Little previous work exists on the sequence stratigraphy. Based on an integrated study of sequence stratigraphy with outcrop data, wells and regional seismic profiles, the Qom Formation is interpreted as a carbonate succession deposited in a mid.Tertiary back-arc basin. There are two second-order sequences (designated as SS1 and SS2) and five third-order sequences (designated as S1-S5). Five distinct systems tracts including transgressive, highstand, forced regressive, slope margin and Iowstand have been recognized. The relationship between the sequences and lithologic sub-units has been collated and defined (S1 to S5 individually corresponding to A-C1, C2--C4, D-E, the lower and upper portions of F); a relative sea level change curve and the sequence stratigraphic framework have been established and described in detail. The coincidence of relative sea level change between that of the determined back-arc basin and the world indicates that the sedimentary cycles of the Qom Formation are mainly controlled by eustatic cycles. The variable combination of the systems tracts and special tectonic-depositional setting causally underpin multiple sequence stratigraphic framework styles seen in the carbonates of the back-arc basin revealing: (1) a continental margin basin that developed some form of barrier, characterized by the development of multiple cycles of carbonate-evaporites; (2) a flat carbonate ramp, which occurred on the southern shelf formed by the lack of clastic supply from nearby magmatic islands plus mixed siliciclastics and carbonates that occurred on the northern shelf due to a sufficient clastics supply from the land; and (3) a forced regressive stratigraphic stacking pattern that occured on the southern shelf and in basin lows due to the uplifting of the southern shelf. Thick and widespread aggradational framework limestone usually occurs in the initial sequences (S1 and S3) of the supersequence, which led to preferential oil reservoir deposition but a lack of source and cap rocks, whereas the retrogradational and progradational framework limestone usually occurs in the later sequences (S2 and S4-S5) of the supersequence, which results in two perfect sets of source, reservoir and cap rock assemblies, so that the limestone in sub-member C2-C4 and the F-Member can be predicted as important objects for oil exploration.展开更多
Sequence stratigraphical analysis was applied to the Upper Carboniferous-Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eigh...Sequence stratigraphical analysis was applied to the Upper Carboniferous-Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.展开更多
Depositional sequences may be distinguished into six ranks of units as giga-, mega-, meso-, ortho-, sub- and micro-sequence, and are interpreted to be formed during the eustatic cycles with time-intervals of 500-6000 ...Depositional sequences may be distinguished into six ranks of units as giga-, mega-, meso-, ortho-, sub- and micro-sequence, and are interpreted to be formed during the eustatic cycles with time-intervals of 500-6000 Ma, 60-120 Ma, 30-40 Ma, 2-5 Ma, 0.1-0.4 Ma and 0.02-0.04 Ma respectively. All of them are thought to be essentially related to cosmological cycles, except the megasequence which may be caused by the long-term geothermal cycles on cratons. We deem that the depositional sequences, though often influenced variably by local tectonics and other factors, are primarily global and periodic in nature. We also hold that as one of the planets within the Galaxy, the earth must have been affected in various ways by other asteroids, and that the depositional sequences are merely the responses of the hydrosphere to the cosmological cycles in sedimentation.展开更多
The Upper Proterozoic glacigenous rocks in the southeastern margin of the Yangtze platform were accumulated in a glacially influenced marine environment with extension set- ting. Two type I depositional sequences have...The Upper Proterozoic glacigenous rocks in the southeastern margin of the Yangtze platform were accumulated in a glacially influenced marine environment with extension set- ting. Two type I depositional sequences have been identified in the glacioclastic sediments the their boundaries enhanced by both tectonism and the incision of glaciation. The lower sequence (SQ1), comprising Changan and Fulu formations (Guangxi Province), Jiangkou and Xiangmen formations(Hunan Province) and their equivalents, is bounded by erosional unconformities both at the base and on the top. The upper sequence (SQ2), composed mainly of Nantuo Formation and its equivalents, is confined by an erosional unconformity at the base and covered by an exposure surface of karstification on the top. The depositional systems tracts are difficult to be distinguished directly and mainly characterized by the variation in glacioclastic supplies. Two types of episodic parasequeuces can be identified in the glacigenous rocks and are related to the evolution of depositional systems tracts. Both the sequences and parasequences are caused by autocyclic mechanism. The present research shows that the Upper Proterozoic glacigenous deposits are of significance for the analysis of the tectonic evolution of the Late Precambrian basin in South China.展开更多
Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract(HST) and transgressive systems tract(TST)...Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract(HST) and transgressive systems tract(TST), and deltaic sandstones of the lowstand systems tract(LST) and falling stage systems tract(FSST).Detailed petrographic observations suggest that the diagenetic features and related evolution of these deposits cannot be simply characterized and demonstrated in the depth domain.However, the occurrence of diagenetic minerals systematically depends on the studied interval within the HST, TST, LST, and FSST; therefore, diagenesis in this region can be better constrained when studied in the context of the depositional environments and sequence stratigraphic framework.The eogenetic processes in such settings include:(1) microcrystalline siderite precipitated as concretions in almost all environments and systems tracts, which inhibited further mechanical compaction;(2) grain dissolution and kaolinitization occurred in shoreface HST sandstones and deltaic LST and FSST sandstones;(3) glaucony was locally observed, which did not clearly reflect the controls of facies or sequence stratigraphy; and(4) cementation by pyrite aggregates occurred in the shoreface HST sandstones and deltaic LST sandstones.The mesogenetic diagenesis includes:(1) partial conversion of kaolinite into dickite in deltaic LST sandstones, and minor chlorite cementation in deltaic FSST sandstones;(2) transformation of kaolinite into illite and quartz cementation in deltaic LST and FSST sandstones;(3) frequent precipitation of ankerite and ferroan calcite in shoreface TST sandstones and early HST sandstones, forming baffles and barriers for fluid flow, with common calcite in shoreface HST sandstones as a late diagenetic cement; and(4) formation of dawsonite in the deltaic LST and FSST sandstones, which is interpreted to be a product of the invasion of a CO2-rich fluid, and acts as a good indicator of CO2-bearing reservoirs.This study has thus constructed a reliable conceptual model to describe the spatial and temporal distribution of diagenetic alterations.The results may provide an entirely new conceptual framework and methodology for successful gas exploration in the continental margins of offshore China, thus allowing us to predict and unravel the distribution and quality evolution of clastic reservoirs at a more detailed and reliable scale.展开更多
The Shan 2 Member, Shan 1 Member and He 8 Member of the Mid-Late Permian Shanxi and lower Xiashihezi formations, in the southeastern Ordos Basin, together comprise -150 m of deltaic deposits. This sequence records an ...The Shan 2 Member, Shan 1 Member and He 8 Member of the Mid-Late Permian Shanxi and lower Xiashihezi formations, in the southeastern Ordos Basin, together comprise -150 m of deltaic deposits. This sequence records an overall evolution from deep marine environment to shallow lake associated with braided river, braided river delta and meandering river delta. Core description, well log interpretation, and stable isotope analysis, including carbon, oxygen and strontium, were conducted to understand the sedimentary evolution of Shan 2 to He 8 Member. The Shanxi Formation, which consists of the Shan 2 and Shan 1 members, is characterized by a tidal-influenced meandering river delta environment and a higher j13C value and S7Sr/S6Sr ratio and a lower jlSo value. The He 8 Member, the basal part of the Xiashihezi Formation, is featured by a braided river to braided river delta system and a lower j13C value, S7Sr/S6Sr ratio, and a higher jlSo value. Four third-order depositional sequences separated by five sequence boundaries are determined. Coarsening upward sequences of the Shan 2 Member-He 8 Member indicate a general regression trend, which can be correlated to global sea-level fall occurring during the Roadian-Wuchiapingian, as also evidenced by previous published zircon U-Pb results. The coal-bearing sequence (Shanxi Formation) to non-coal-bearing sequence (He 8 Member), as well as a decrease of 87Sr/86Sr, suggest a trend from humid to arid climates. A combined effect of sea-level drop and a small uplift at the end of Shanxi Formation are proposed.展开更多
A rich assemblage of planktonic foraminifera has been studied from an outcrop of the Gurpi Formation, the hydrocarbon source rock in the southwest Iran, Deh Dasht area(Kuh-e Siah anticline). Based on the distributio...A rich assemblage of planktonic foraminifera has been studied from an outcrop of the Gurpi Formation, the hydrocarbon source rock in the southwest Iran, Deh Dasht area(Kuh-e Siah anticline). Based on the distribution of the planktonic foraminifera, eight biozones have been recognized that included:Dicarinella concavata Interval Zone(Earliest Santonian), Dicarinella asymetrica Total Range Zone(Santonian to Earliest Campanian), Globotruncanita elevata Partial Range Zone(Early Campanian), Globotruncana ventricosa Interval Zone(Middle to Late Campanian), Radotruncana calcarata Total Range Zone(Late Campanian), Globotruncanella havanensis Partial Range Zone(Late Campanian), Globotruncana aegyptiaca Interval Zone(Late to latest Campanian), Gansserina gansseri Interval Zone(Latest Campanian to Early Maastrichtian). These biozones indicates that the Gurpi Formation deposited during the Early Santonian- Early Maastrichtian. These biozones are compared to the most standard biozones defined in Tethysian domain. Based on distribution of morphotype groups of planktonic foraminifera, planktonic to benthic ratio(P/B) and content of carbonate, nine third-order sequences are recognized.展开更多
文摘The aim of this study is to discuss the chronostratigraphy, catastrophic event stratigraphy, biostratigraphy and sequence stratigraphy of Neoproterozoic. In the eastern part of the North China, the Neoproterozoic consists of Qingbaikou System (1 000-800 Ma) and Sinian System (800-600 Ma). The Qingbaikou System is widely distributed over the whole area and the Sinian System only in the eastern and southern parts of the plate. In this paper, we discuss the age limit of the formations, and try to establish the Neoproterozoic chronostratigraphic frame, the ages of which are partly based on recently obtained carbonate whole rock Pb Pb isotope. Based on the event records of ancient earthquake, which are well developed in Sinian carbonates, “a vibrational liquefaction seismic sequence” in carbonate rocks is established. We propose a time correlation for the Sinian formation in eastern North China, on the bases of event records of earthquake in combination with biostratigraphy, and thus revise the traditional correlation scheme that has been used for nearly 30 years. Some biostratigraphic results were obtained in fossil microplants, megafossils and metazoans in North China. A large amount of big double layered and complex ornamented acritarchs are found in Qingbaikou and Sinian systems. On the basis of the correlation by earthquake events, the Huainan fauna is regarded as Late Sinian, probably between 700 Ma and 600 Ma. Altogether 16 depositional sequences are distinguished in the Neoproterozoic, with an average time interval of about 15-16 Ma.
文摘The Cambrian of the North China platform consists chiefly of shallow water deposits and shows the sedimentary characters of an epicontinental sea basin. Controlled mainly by global sea level changes and sedimentary influx, the depositional sequences all exhibit as composite sequences. From bottom upward, 14 sequences (3rd order) are recognized, which may be grouped into 5 sequence sets and further into 2 mesosequences (2nd order). It is suggested herein that the Cambrian/Ordovician boundary may better be set at the MFS (maximum flooding surface) of the sequence OSq1, above which the conodont Cordylodus lindstroemi occurs. This position is about 40 m above the traditional Cambrian/Ordovician boundary and is within the Yeli Formation.
文摘The Permian and marine Triassic of eastern Yangtze platform, situated in eastern China, involve 19 orthosequences lasting about 2.7 Ma on average, which can be combined into five orthosequence sets ranging from 8 Ma to 12 Ma. Affected by the regional Dongwu and Indosinian movements, the sequence stratigraphic pattern and sea level changes in the Permian and Triassic of this region are distinctive and obviously different from most other regions in the world, but typical in the broad eastern Tethys and its neighboring areas. In this region not only did the continuous marine Permian and Triassic boundary sequences cause the orthosequence crossing the boundary belonging to type Ⅱ sequence but also the mesosequence including these stratigraphic intervals had its basal boundary in the upper Longlinian (Artinskian) (ca. 278 Ma), that is, the traditional Carboniferous and Permian boundary, and its top boundary moved from the Permian and Triassic boundary upward into the Anisian of Middle Triassic.
文摘The Paleozoic sequence stratigraphic system of North Tarim basin is established for the first time in this paper. The sequence stratigraphic system is composed of different orders of sequences, which includes 96 sequences, 31 supersequences, 9 supersequence sets and 4 megasequences. The characteristics of some important sequence boundaries are discussed and their time ranges are suggested, thus enhancing the precision of stratigraphic correlation in North Tarim basin.
文摘Through a sequence stratigraphic research on the Permo-Carboniferous in North China, it is suggested that the boundary of the Carboniferous and the Permian may be better moved down to the bottom of the main workable coalbed which is overlain by the limestones containing Pseudoschwagerina zone. This study mainly deals with the Upper Carboniferous, the Lower Permian and the lower part of the Middle Permian coal bearing strata, which are 150-180 m thick totally and can be divided into 2 mesosequences, including 6 sequence sets and 19 sequences. The lithostratigraphic units are diachronous in North China. The upper two limestones of the Taiyuan Formation in the central part of the study area may be correlated with the bottom two limestones of the lower Taiyuan Formation in the southern part. The Shanxi Formation in the central and northern parts may be correlated with most of the Taiyuan Formation in the southern part. The Xiashihezi Formation in the northern part may be correlated with the upper part of Shanxi Formation in the central and southern parts. The Shangshihezi Formation in the northern part may be correlated with the Xiashihezi Formation in the southern part. The paleogeographical maps are compiled in a chrono stratigraphic framework. From the Late Carboniferous to the Early Permian, 3 cycles of sea level change and transgression regression occurred, and the major transgression took place in the Asselian. In the Late Carboniferous, the direction of transgression was from the east to the west, and in the Early Permian it was from the southeast and the southwest to the north. Three workable coalbed groups were formed in Asselian, early Sakmarian and late Sakmarian respectively. The TST coals developed under the bottom of the Asselian limestones are the best coals for coalbed meathane extracting. The Sakmarian coal beds were formed in HST. The coal beds of Lower Permian distribute southward along with the relative sea level falls and sediment progradation.
文摘A Oilfield is the most representative mid to deep oil field in the Bohai Sea, with the main oil bearing intervals being the upper and middle Shahejie-3 sections of the Paleogene Shahejie Formation. By combining well seismic analysis, the middle section of Shahejie-3 is divided into high-level system tract and forced lake retreat system tract, corresponding to the II oil formation and I oil formation, respectively. Using sequence stratigraphy methods, based on seismic profiles and drilling lithological cycles, the high stand system tract is divided into 5 stages of delta progradation. The first and second stages are high angle S-type progradation with large sedimentary thickness, the third stage is oblique progradation, and the fourth and fifth stages are S-oblique composite progradation;By combining seismic data, we characterized the large-scale (8 small-scale) progradation bodies of 5 periods, clarified the distribution characteristics of reservoir planes, and laid the foundation for the later exploration of oilfield potential.
文摘The Late Devonian-early Carboniferous deposits of the Anarak section in northeastern Isfahan,Central Iran,evaluated based on conodont biostratigraphy,sedimentary environment and sequence stratigraphy.According to the field observations,five lithological units were identified.Investigating the conodont fauna of the Late Devonian-Carboniferous(Mississippian-Pennsylvanian)deposits of Bahram,Shishtu,and Qaleh(Sardar 1)formations in Anarak section led to the identification of 67 species of 18 conodont genera,and accordingly 22 conodont biozones were differentiated.The correlation of sea-level change curves,regarding to the conodont biofacies with the global sea-level curve,demonstrates the relative correlation in the mentioned times due to the shallow condition of the central Iran basin compared to the European and American basins.The microfacies analysis led to the identification of 12 microfacies related to the open sea,bioclastic barrier,lagoon and tidal flat sub-sedimentary environments in a homoclinal carbonate ramp environment.Based on sequence stratigraphy studies,three 3rd order sequences were identified.The first sequence,which is of the Late Devonian(upper part of the Bahram Formation,32.5 m),the second sequence(12.5 m)is the Late Devonian(uppermost part of the Bahram Formation),and the third sequence(68 m)is the early Carboniferous(the Shishtu I Formation).
文摘The present study is devoted to understanding the evolution of the Upper Jurassic Sab'atayn Formation in the Marib-Shabwa Basin,Yemen,through a sequence stratigraphic analysis based on integrating datasets of sedimentology,seismic sections,and well logs.The Sab'atayn Formation(Tithonian age)is represented by a series of clastic and evaporites that were deposited under fluvio-deltaic to prodeltaic settings.It is divided into four members including Yah(at the base),upwards to Seen,Alif,and Safir at the top.Two third-order depositional sequences were determined for the Tithonian succession which were separated by three sequence boundaries.These sequences were classified into their systems tracts signifying several sedimentation patterns of progradational,aggradational,and retrogradational parasequence sets.The first depositional sequence corresponds to the early-middle Tithonian Yah and Seen units that can be classified into lowstand,transgressive,and highstand systems tracts.The second sequence comprises the late Tithonian Alif unit that can be subdivided into transgressive and highstand systems tracts.The sandy deposits of the Alif Member(highstand deposits)represent the most productive hydrocarbon reservoir in the basin.The Upper Jurassic sediments in the study area were resulted from a combination of eustatic and tectonic effects.
基金sponsored by the Shell Petroleum Development Company of Nigeria Limited(SPDC).
文摘The utilization of sequence stratigraphic concepts in identifying sands and their spatial continuity in distinct gross depositional settings is key,especially in frontier settings where data paucity is a common challenge.In the Baka field,onshore Niger Delta,detailed reservoir correlation guided by sequence stratigraphic framework analysis showed the distribution of sand and shale units constituting reservoirseal pairs(RSP)correlatable across the field.Within the 3rd-order packages,it is observed that the lowstand systems tract(LST)and highstand systems tract(HST)contain more RSPs and thicker 4th-and 5th-order sands than the transgressive systems tract(TST).In terms of bathymetry,it is noted that irrespective of systems tracts,the RSP Index(RI)decreases from the proximal shallow/inner shelf settings to the more distal outer shelf areas.Amongst all three systems tracts,intervals interpreted as lowstand prograding complexes contain the best developed sands and highest RSP.Sand development within the LSTs has been controlled by a pronounced growth fault regime accompanied by high subsidence and sedimentation rates.This is linked to the basinward migration of the sands during prolonged sea-level fall,creating significant accommodation space for sand deposition.On the other hand,the TSTs known to mark periods of progressive sea-level rise and landward migration of sandy facies,show thinner sands enclosed in much thicker,laterally extensive,and better-preserved deeper marine shales.Interpreted seismic sections indicate intense growth faulting and channelization that influenced the syn-and postdepositional development of the sand packages across the field.The initial timing of deformation of subregional faults in this area coincides with periods of abrupt falls in sea level.This approach could be useful for predicting sand-prone areas in frontier fields as well as possible reservoir-seal parameters required for some aspects of petroleum system analysis and quick-look volume estimation.
基金This research was supported by the Project for the Survey of Land and Resources in China(1212010633901)National Natural Science Foundation of China(Grant No.41572090)。
文摘There are 9 major coal-accumulating periods during geological history in China,including the Early Carboniferous,Late Carboniferous-Early Permian,Middle Permian,Late Permian,Late Triassic,Early-Middle Jurassic,Early Cretaceous,Paleogene and Neogene.The coal formed in these periods were developed in different coal-accumulating areas(CAA)including the North China,South China,Northwest China,Northeast China,the Qinghai–Tibet area,and China offshore area.In this paper,we investigated depositional environments,sequence stratigraphy,lithofacies paleogeography and coal accumulation pattern of five major coal-accumulating periods including the Late Carboniferous to Middle Permian of the North China CAA,the Late Permian of the South China CAA,the Late Triassic of the South China CAA,the Early-Middle Jurassic of the North and Northwest China CAA,and the Early Cretaceous in the Northeast China CAA.According to distribution of the coal-bearing strata and the regional tectonic outlines,we have identified distribution range of the coal-forming basins,sedimentary facies types and coal-accumulating models.The sequence stratigraphic frameworks of the major coal-accumulating periods were established based on recognition of a variety of sequence boundaries.The distribution of thick coals and migration patterns of the coal-accumulating centers in the sequence stratigraphic framework were analyzed.The lithofacies paleogeography maps based on third-order sequences were reconstructed and the distribution of coal accumulation centers and coal-rich belts were predicted.
文摘Three third-order sequences and about one hundred high-frequency cycles or Milankovitchcycles within the Late Permian Changxingian to Early Triassic Griesbachian are identified in theMeishan Section of Changxing, Zhejiang Province, southern China, the candidate stratotype sec-tion of the global Permo-Triassic boundary, based on a detailed study of the biological,ecological and high-resolution allochthonous cyclic events, microfacies and depositional systems.Furthermore, the stacking pattern of the depositional systems across various Changxingian andGriesbachian sedimentary facies of the Lower Yangtze and the sequence stratigraphic frameworkare outlined with the Meishan section as the principal section. In this paper the habitat types offossil biota are applied to semiquantitative palaeobathymetry and the study of relative sea levelchanges.
基金This study was supported by the Ministry of Sciences and Technology of China(2001CB209100),
文摘The Lower Cretaceous strata in the Kuqa Basin in Xinjiang are marked by a set of arid red beds. Several types of sedimentary fades can be identified in this set of arid red beds: mudstones of the plaza and intracontinental sebkha, aeolian sandstones, sandy conglomerates of the intermittent river, conglomerates of the pluvial fan, etc. These types of sedimentary facies constitute a typical desert system. Therefore, the Cretaceous strata in the Kuqa Basin provide a favorable condition for studies of sequence stratigraphic divisions of the desert system. With the rise and fall of the base level of the sedimentary basin, cyclicity is clearly revealed in stratigraphic records, which helps the identification of the third-order sequences. Based on the cyclicity in stratigraphic records, 5 third-order sequences can be found in the strata of the Early Cretaceous in the Kuqa Basin. These sequences comprise a second-order tectonic sequence. The primary feature of these third-order sequences is of an upward-fining sedimentary succession formed by a succession of 'coarse sediments of the alluvial system-fine sediments of the lake system'. The result of this study shows that aeolian sandstones are the best reservoirs of natural gas in the Cretaceous strata in the Kuqa Basin, and that the Kela-2 gas field is the first large gas field dominated by aeolian sandstone reservoirs in China.
文摘In South China four depositional sequences are recognized in the upper part of Upper Devonian and Tournaisian. They are named SQ0 SQ1, SQ2 and SQ3 in ascending order. SQ0 is Strunian (uppermost Devonian), and the other three Tournaisian in age. These four depositional sequences appear to correlate fairly well with the four sequence recognized in Europe, North America and other areas. This may suggest that these sequences are synchronous depos- its resulted from the eustatic changes. The present study on sequence stratigraphy, biostratigraphy and event stratigraphy indicates that in neritic facies areas of South China, the Devonian-Carboniferous boundary, matching the boundary between Siphonodella praesulcata zone and S. sulcata zone in pelagic facies areas, is not only higher than the top of the Cystophrentis zone, but also higher than the top of the Devonian-Carboniferous boundary event bed. In neritic facies areas, the Devonian-Carbonifrerous boundary is marked by the most distinct transgressive surface within the Cystophrentiseudouralina interval zone, i. e. at the base of the TST of the SQ1. This boundary coincides with the top surface of the event bed resulted from the eustatic fall, and approximately corresponds to the basal part of Rseudouralina assemblage zone.
文摘The Qom Formation comprises Oligo-Miocene deposits from a marine succession distributed in the Central Basin of Iran. It is composed of five members designated as A-F. Little previous work exists on the sequence stratigraphy. Based on an integrated study of sequence stratigraphy with outcrop data, wells and regional seismic profiles, the Qom Formation is interpreted as a carbonate succession deposited in a mid.Tertiary back-arc basin. There are two second-order sequences (designated as SS1 and SS2) and five third-order sequences (designated as S1-S5). Five distinct systems tracts including transgressive, highstand, forced regressive, slope margin and Iowstand have been recognized. The relationship between the sequences and lithologic sub-units has been collated and defined (S1 to S5 individually corresponding to A-C1, C2--C4, D-E, the lower and upper portions of F); a relative sea level change curve and the sequence stratigraphic framework have been established and described in detail. The coincidence of relative sea level change between that of the determined back-arc basin and the world indicates that the sedimentary cycles of the Qom Formation are mainly controlled by eustatic cycles. The variable combination of the systems tracts and special tectonic-depositional setting causally underpin multiple sequence stratigraphic framework styles seen in the carbonates of the back-arc basin revealing: (1) a continental margin basin that developed some form of barrier, characterized by the development of multiple cycles of carbonate-evaporites; (2) a flat carbonate ramp, which occurred on the southern shelf formed by the lack of clastic supply from nearby magmatic islands plus mixed siliciclastics and carbonates that occurred on the northern shelf due to a sufficient clastics supply from the land; and (3) a forced regressive stratigraphic stacking pattern that occured on the southern shelf and in basin lows due to the uplifting of the southern shelf. Thick and widespread aggradational framework limestone usually occurs in the initial sequences (S1 and S3) of the supersequence, which led to preferential oil reservoir deposition but a lack of source and cap rocks, whereas the retrogradational and progradational framework limestone usually occurs in the later sequences (S2 and S4-S5) of the supersequence, which results in two perfect sets of source, reservoir and cap rock assemblies, so that the limestone in sub-member C2-C4 and the F-Member can be predicted as important objects for oil exploration.
基金supported by the National Major Fundamental Research and Development Project of China(Grant No.2003CB214600)the State Key Program of National Natural Science of China(Grant No. 90814005)
文摘Sequence stratigraphical analysis was applied to the Upper Carboniferous-Lower Permian sedimentary succession of the northeastern Ordos Basin, north China based on data acquired from ten entire logging curves and eight outcrops. The facies framework of the lithostratigraphical unit, the Taiyuan Formation comprises seven facies in two facies associations, varying from fluvio-delta to shelf-barrier islands. The facies are presented within a chronostratigraphical framework, linked by systems tract, which in turn are limited by flooding surfaces and sequence boundaries. Six third-order depositional sequences are recognised, bounded by six type 2 unconformities. An upwards-shallowing epicontinental sea sedimentary model is created, which consists of a sandstone, coal seam and carbonate succession.
基金This paper is an outcome of the research programof sequence stratigraphy (SSLC) supported by the Stateac~sinn of ScienCe and
文摘Depositional sequences may be distinguished into six ranks of units as giga-, mega-, meso-, ortho-, sub- and micro-sequence, and are interpreted to be formed during the eustatic cycles with time-intervals of 500-6000 Ma, 60-120 Ma, 30-40 Ma, 2-5 Ma, 0.1-0.4 Ma and 0.02-0.04 Ma respectively. All of them are thought to be essentially related to cosmological cycles, except the megasequence which may be caused by the long-term geothermal cycles on cratons. We deem that the depositional sequences, though often influenced variably by local tectonics and other factors, are primarily global and periodic in nature. We also hold that as one of the planets within the Galaxy, the earth must have been affected in various ways by other asteroids, and that the depositional sequences are merely the responses of the hydrosphere to the cosmological cycles in sedimentation.
文摘The Upper Proterozoic glacigenous rocks in the southeastern margin of the Yangtze platform were accumulated in a glacially influenced marine environment with extension set- ting. Two type I depositional sequences have been identified in the glacioclastic sediments the their boundaries enhanced by both tectonism and the incision of glaciation. The lower sequence (SQ1), comprising Changan and Fulu formations (Guangxi Province), Jiangkou and Xiangmen formations(Hunan Province) and their equivalents, is bounded by erosional unconformities both at the base and on the top. The upper sequence (SQ2), composed mainly of Nantuo Formation and its equivalents, is confined by an erosional unconformity at the base and covered by an exposure surface of karstification on the top. The depositional systems tracts are difficult to be distinguished directly and mainly characterized by the variation in glacioclastic supplies. Two types of episodic parasequeuces can be identified in the glacigenous rocks and are related to the evolution of depositional systems tracts. Both the sequences and parasequences are caused by autocyclic mechanism. The present research shows that the Upper Proterozoic glacigenous deposits are of significance for the analysis of the tectonic evolution of the Late Precambrian basin in South China.
基金Financial support was provided by the National Science and Technology Major Project of China (No.2011ZX05023-002-003)
文摘Gas-bearing deposits in the Lower Mingyuefeng Formation of Paleogene, Lishui Sag, East China Sea Shelf Basin consist of shoreface sandstones of the highstand systems tract(HST) and transgressive systems tract(TST), and deltaic sandstones of the lowstand systems tract(LST) and falling stage systems tract(FSST).Detailed petrographic observations suggest that the diagenetic features and related evolution of these deposits cannot be simply characterized and demonstrated in the depth domain.However, the occurrence of diagenetic minerals systematically depends on the studied interval within the HST, TST, LST, and FSST; therefore, diagenesis in this region can be better constrained when studied in the context of the depositional environments and sequence stratigraphic framework.The eogenetic processes in such settings include:(1) microcrystalline siderite precipitated as concretions in almost all environments and systems tracts, which inhibited further mechanical compaction;(2) grain dissolution and kaolinitization occurred in shoreface HST sandstones and deltaic LST and FSST sandstones;(3) glaucony was locally observed, which did not clearly reflect the controls of facies or sequence stratigraphy; and(4) cementation by pyrite aggregates occurred in the shoreface HST sandstones and deltaic LST sandstones.The mesogenetic diagenesis includes:(1) partial conversion of kaolinite into dickite in deltaic LST sandstones, and minor chlorite cementation in deltaic FSST sandstones;(2) transformation of kaolinite into illite and quartz cementation in deltaic LST and FSST sandstones;(3) frequent precipitation of ankerite and ferroan calcite in shoreface TST sandstones and early HST sandstones, forming baffles and barriers for fluid flow, with common calcite in shoreface HST sandstones as a late diagenetic cement; and(4) formation of dawsonite in the deltaic LST and FSST sandstones, which is interpreted to be a product of the invasion of a CO2-rich fluid, and acts as a good indicator of CO2-bearing reservoirs.This study has thus constructed a reliable conceptual model to describe the spatial and temporal distribution of diagenetic alterations.The results may provide an entirely new conceptual framework and methodology for successful gas exploration in the continental margins of offshore China, thus allowing us to predict and unravel the distribution and quality evolution of clastic reservoirs at a more detailed and reliable scale.
基金supported by the National Natural Science Foundation of China(Grant No.41706063)the Basic Scientific Fund for National Public Research Institute of China(Grant No.2017Q08)the China Postdoctoral Science Foundation(Grant No.2016M602087)
文摘The Shan 2 Member, Shan 1 Member and He 8 Member of the Mid-Late Permian Shanxi and lower Xiashihezi formations, in the southeastern Ordos Basin, together comprise -150 m of deltaic deposits. This sequence records an overall evolution from deep marine environment to shallow lake associated with braided river, braided river delta and meandering river delta. Core description, well log interpretation, and stable isotope analysis, including carbon, oxygen and strontium, were conducted to understand the sedimentary evolution of Shan 2 to He 8 Member. The Shanxi Formation, which consists of the Shan 2 and Shan 1 members, is characterized by a tidal-influenced meandering river delta environment and a higher j13C value and S7Sr/S6Sr ratio and a lower jlSo value. The He 8 Member, the basal part of the Xiashihezi Formation, is featured by a braided river to braided river delta system and a lower j13C value, S7Sr/S6Sr ratio, and a higher jlSo value. Four third-order depositional sequences separated by five sequence boundaries are determined. Coarsening upward sequences of the Shan 2 Member-He 8 Member indicate a general regression trend, which can be correlated to global sea-level fall occurring during the Roadian-Wuchiapingian, as also evidenced by previous published zircon U-Pb results. The coal-bearing sequence (Shanxi Formation) to non-coal-bearing sequence (He 8 Member), as well as a decrease of 87Sr/86Sr, suggest a trend from humid to arid climates. A combined effect of sea-level drop and a small uplift at the end of Shanxi Formation are proposed.
基金the University of Isfahan for providing financial support
文摘A rich assemblage of planktonic foraminifera has been studied from an outcrop of the Gurpi Formation, the hydrocarbon source rock in the southwest Iran, Deh Dasht area(Kuh-e Siah anticline). Based on the distribution of the planktonic foraminifera, eight biozones have been recognized that included:Dicarinella concavata Interval Zone(Earliest Santonian), Dicarinella asymetrica Total Range Zone(Santonian to Earliest Campanian), Globotruncanita elevata Partial Range Zone(Early Campanian), Globotruncana ventricosa Interval Zone(Middle to Late Campanian), Radotruncana calcarata Total Range Zone(Late Campanian), Globotruncanella havanensis Partial Range Zone(Late Campanian), Globotruncana aegyptiaca Interval Zone(Late to latest Campanian), Gansserina gansseri Interval Zone(Latest Campanian to Early Maastrichtian). These biozones indicates that the Gurpi Formation deposited during the Early Santonian- Early Maastrichtian. These biozones are compared to the most standard biozones defined in Tethysian domain. Based on distribution of morphotype groups of planktonic foraminifera, planktonic to benthic ratio(P/B) and content of carbonate, nine third-order sequences are recognized.