The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular ...The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular interest to utility companies,but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if they are not properly handled.In this study,we investigate distribution system service restoration using DGs as the primary power source,and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions.The distribution system service restoration problem can be described as a mixed-integer second-order cone programming model by modifying the radial topology constraints and power flow equations.The uncertainty of renewable DGs will be modeled using a chance-constrained approach.Furthermore,the forecast errors and noises in real-time operation are solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output.The proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system.展开更多
This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle...This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.展开更多
Active distribution network(ADN)is a solution for power system with interconnection of distributed energy resources(DER),which may change the network operation and power flow of traditional power distribution network....Active distribution network(ADN)is a solution for power system with interconnection of distributed energy resources(DER),which may change the network operation and power flow of traditional power distribution network.However,in some circumstances the malfunction of protection and feeder automation in distribution network occurs due to the uncertain bidirectional power flow.Therefore,a novel method of fault location,isolation,and service restoration(FLISR)for ADN based on distributed processing is proposed in this paper.The differential-activated algorithm based on synchronous sampling for feeder fault location and isolation is studied,and a framework of fault restoration is established for ADN.Finally,the effectiveness of the proposed algorithm is verified via computer simulation of a case study for active distributed power system.展开更多
We present a directed graph-based method for distribution network reconfiguration considering distributed generation. Two reconfiguration situations are considered: operation mode adjustment with the objective of mini...We present a directed graph-based method for distribution network reconfiguration considering distributed generation. Two reconfiguration situations are considered: operation mode adjustment with the objective of minimizing active power loss(situation Ⅰ) and service restoration with the objective of maximizing loads restored(situation Ⅱ). These two situations are modeled as a mixed integer quadratic programming problem and a mixed integer linear programming problem, respectively. The properties of the distribution network with distributed generation considered are reflected as the structure model and the constraints described by directed graph. More specifically, the concepts of "in-degree" and "out-degree"are presented to ensure the radial structure of the distribution network, and the concepts of "virtual node" and"virtual demand" are developed to ensure the connectivity of charged nodes in every independent power supply area.The validity and effectiveness of the proposed method are verified by test results of an IEEE 33-bus system and a 5-feeder system.展开更多
Two heuristic methods are proposed to find an effective and fast solution in modern power distribution networks.For solving the service restoration problem in distribution networks,switch selection indices based on an...Two heuristic methods are proposed to find an effective and fast solution in modern power distribution networks.For solving the service restoration problem in distribution networks,switch selection indices based on an analytic approach and a practicable heuristic graph-based method are given.The formulation of the problem includes four different objective functions:1)maximizing the total load restored;2)minimizing the number of switching operations;3)maximizing the top priority restored load;4)minimizing load shedding.A suitable evaluation of switch indices is used for all candidate tie switches(TSs)in the network to find the best solution and decrease the number of switching operations.A new graph-based approach is utilized for finding the best sectionalizes switch(SS)and minimizing the voltage drop.The accuracy and the validity of the approach are tested in two standard electrical distribution networks.The results of the approach are used for IEEE 69-bus and IEEE 119-bus test case.展开更多
A novel extended network for service restoration optimization problem under distributed generation scenarios is presented in which the main network restoration and DG island restoration problems are integrated into a ...A novel extended network for service restoration optimization problem under distributed generation scenarios is presented in which the main network restoration and DG island restoration problems are integrated into a unified spanning-tree problem.The proposed technique is aimed to realize synchronous optimization of both main network and island restorations,and thus ensure the algorithms that are used find the global optimization solution.A fast loop-breaking technique is also proposed in this paper.Based on the circuit-branch correlation matrix,the proposed technique can break the loops in the distribution systems through matrix operations that significantly improve calculation speeds.Simulation results verify the correctness and advantage of the proposed algorithms:the proposed integrated optimization strategy based on the extended network has better performance compared with a two-step restoration strategy;also,the proposed loop-breaking technique has faster calculation speed compared with prim algorithm and DFS based on adjacentmatrix.展开更多
Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss...Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss Equation and county-level socioeconomic data to assess the changes in the ecosystem service of soil conservation between 2000 and 2010, and to analyze its spatial characteristics and driving factors in the southwestern China. The results showed that cropland in the southwestern China decreased by 3.74%, while urban land, forest, and grassland areas increased by 46.78%, 0.86%, and 1.12%, respectively. The soil conservation increased by 1.88 × 10^(11) kg, with deterioration only in some local areas. The improved and the degraded areas accounted for 6.41% and 2.44% of the total land area, respectively. Implementation of the Sloping Land Conversion Program and urbanization explained 57.80% and 23.90% of the variation in the soil conservation change, respectively, and were found to be the main factors enhancing soil conservation. The 2008 Wenchuan earthquake was one of the factors that led to the degradation of soil conservation. Furthermore, industrial adjustment, by increasing shares of Industry and Service and reducing those of Agriculture, has also promoted soil conservation. Our results quantitatively showed and emphasized the contributions to soil conservation improvement made by implementing ecological restoration programs and promoting urbanization. Consequently, these results provide basic information to improve our understanding of the effects of ecological restoration programs, and help guide future sustainable urban development and regional industrial restructuring.展开更多
After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency...After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency of service restoration in the PDS is associated with the traffic efficiency of the TS,and vice versa,because the PDS and TS are mutually coupled through traffic lights and MERs.This paper proposes a service restoration method considering interdependency between the PDS and TS,which is formulated as a mixed-integer linear program(MILP).The objective includes maximizing the efficiency of both PDS restoration and TS.By solving the MILP,the dynamic load restoration and MER dispatch strategies can be obtained.For the PDS,the availability of MERs,including mobile sources and repair crews,relates to their dispatch in the TS,and their relationship is formulated as mathematical models.For the TS,the dynamic traffic flow is modeled using the cell transmission model and the effect of traffic lights is considered.Case studies validate the effectiveness of the proposed method.展开更多
An adjacent table-based simplified model of distribution networks containing medium voltage buses of a substation is established.Identification of bus outage and the condition to start fast restoration procedure are d...An adjacent table-based simplified model of distribution networks containing medium voltage buses of a substation is established.Identification of bus outage and the condition to start fast restoration procedure are discussed.A complex load shading parameter is set up to describe various load shading schemes.The imaginary part of the load shading parameter describes the states of switches of load shading schemes while the real part is the corresponding amount of shaded load.A new concept of independent tripping operation is also put forward.The procedure to search the operation with the least amount of shaded load for a feeder and a connected domain are detailed.The procedure for fast restoration of a large area breakdown of the whole distribution network under emergency states is dealt with using a typical grid distribution network as an example.Results of analysis show that the direct load shading scheme under the most balanced topology is not always the optimal scheme.The proposed method can obtain the optimal operating mode with the least amount of shaded load thus showing its feasibility.展开更多
Protection of the ecological environment is an effective strategy for maintaining ecosystem health,improving provision of ecosystem services,and increasing human well-being.However,traditional calculations of the valu...Protection of the ecological environment is an effective strategy for maintaining ecosystem health,improving provision of ecosystem services,and increasing human well-being.However,traditional calculations of the value of ecosystem services(VES)provide weak guidance because they ignore the costs of these services,leading to economically inefficient strategies.To understand the difference between VES and the net ecosystem services value(NES,after subtracting costs from VES)and to improve evaluations of ecosystem services,we estimated NES for China's Mainland(including farmland,grassland,forest,and wetland).NES totaled 10.0×10~3RMB ha^(-1)yr^(-1)in 2014,which is only 35.1%of the corresponding VES.Grassland NES was–0.7×10~3RMB ha^(-1)yr^(-1),in contrast with a positive grassland VES.NES of farmland,grassland,forest,and wetland in2014 totaled 7.2×10^(12)RMB,accounting for 27.0%of China’s GNP.Recent Chinese planning based on VES emphasizes forest conservation and ignores the conservation of other important ecosystems,such as grassland,leading to a continuing loss of China’s natural capital.Due to regional differences in economic conditions,resource endowments,and geographical characteristics,VES and NES differ among regions.To maximize the ecological benefits from conservation,it is necessary to account for these differences by comparing strategies based on NES,thereby choosing projects that maximize both economic and ecological benefits.To maintain the ecological balance,ecological restoration and socioeconomic activities should account for the costs of providing ecosystem services.This is essential to minimize the costs and maximize the benefits of projects.展开更多
The ever-increasing dependence on electrical power has posed more challenges to power system engineers to deliver secure, stable, and sustained energy to electricity consumers. Due to the increasing occurrence of shor...The ever-increasing dependence on electrical power has posed more challenges to power system engineers to deliver secure, stable, and sustained energy to electricity consumers. Due to the increasing occurrence of short-and long-term power interruptions in the power system, the need for a systematic approach to mitigate the negative impacts of such events is further manifested. Self-healing and its control strategies are generally accepted as a solution for this concern. Due to the importance of self-healing subject in power distribution systems, this paper conducts a comprehensive literature review on self-healing from existing published papers. The concept of self-healing is briefly described, and the published papers in this area are categorized based on key factors such as self-healing optimization goals, available control actions, and solution methods. Some proficient techniques adopted for self-healing improvements are also classified to have a better comparison and selection of methods for new investigators. Moreover, future research directions that need to be explored to improve self-healing operations in modern power distribution systems are investigated and described at the end of this paper.展开更多
Soft open points(SOPs)are power electronic devices that may replace conventional normally-open points in distribution networks.They can be used for active power flow control,reactive power compensation,fault isolation...Soft open points(SOPs)are power electronic devices that may replace conventional normally-open points in distribution networks.They can be used for active power flow control,reactive power compensation,fault isolation,and service restoration through network reconfiguration with enhanced operation flexibility and grid resiliency.Due to unbalanced loading conditions,the voltage unbalance issue,as a common problem in distribution networks,has negative impacts on distribution network operation.In this paper,a control strategy of voltage unbalance compensation for feeders using SOPs is proposed.With the power flow control,three-phase current is regulated simultaneously to mitigate the unbalanced voltage between neighboring feeders where SOPs are installed.Feeder voltage unbalance and current unbalance among three phases are compensated with the injection of negative-sequence and zero-sequence current from SOPs.Especially in response to power outages,three-phase voltage of isolated loads is regulated to be balanced by the control of SOPs connected to the feeders under faults,even if the loads are unbalanced.A MATLAB/Simulink model of the IEEE 13-bus test feeder with an SOP across feeder ends is implemented,and experimental tests on a hardware-in-the-loop platform are implemented to validate the effectiveness of the proposed control strategy.展开更多
基金the National Renewable Energy Laboratory(NREL)operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308the U.S.Department of Energy Office of Electricity AOP Distribution Grid Resilience Project.The views expressed in the article do not necessarily represent the views of the DOE or the U.S.Government.The U.S.Government retains and the publisher,by accepting the article for publication,acknowledges that the U.S.Government retains a nonexclusive,paid-up,irrevocable,worldwide license to publish or reproduce the published form of this work,or allow others to do so,for U.S.Government purposes.
文摘The rapid growth of distributed generator(DG)capacities has introduced additional controllable assets to improve the performance of distribution systems in terms of service restoration.Renewable DGs are of particular interest to utility companies,but the stochastic nature of intermittent renewable DGs could have a negative impact on the electric grid if they are not properly handled.In this study,we investigate distribution system service restoration using DGs as the primary power source,and we develop an effective approach to handle the uncertainty of renewable DGs under extreme conditions.The distribution system service restoration problem can be described as a mixed-integer second-order cone programming model by modifying the radial topology constraints and power flow equations.The uncertainty of renewable DGs will be modeled using a chance-constrained approach.Furthermore,the forecast errors and noises in real-time operation are solved using a novel model-free control algorithm that can automatically track the trajectory of real-time DG output.The proposed service restoration strategy and model-free control algorithm are validated using an IEEE 123-bus test system.
基金supported by National Natural Science Foundation of China(No.72171026).
文摘This paper proposes a new method for service restoration of distribution network with the support of transportable power sources(TPSs)and repair crews(RCs).Firstly,a coupling model of distribution networks and vehicle routing of TPSs and RCs is proposed,where the TPSs serve as emergency power supply sources,and the RCs are used to repair the faulted lines.Considering the uncertainty of traffic congestion,the probability distribution of the travel time spent on each road is derived based on the Nesterov user equilibrium model,and a two-stage stochastic program is formulated to determine the optimal routings of TPSs and RCs.To efficiently solve the proposed stochastic mixed-integer linear program(MILP),a two-phase scenario reduction method is then developed to scale down the problem size,and an adaptive progressive hedging algorithm is used for an efficient solution.The effectiveness of the proposed methods and algorithms has been illustrated in a modified IEEE 33-bus system.
基金This paper was supported by the National High Technology Research and Development Program of China(863 Program)(No.2014AA051902).
文摘Active distribution network(ADN)is a solution for power system with interconnection of distributed energy resources(DER),which may change the network operation and power flow of traditional power distribution network.However,in some circumstances the malfunction of protection and feeder automation in distribution network occurs due to the uncertain bidirectional power flow.Therefore,a novel method of fault location,isolation,and service restoration(FLISR)for ADN based on distributed processing is proposed in this paper.The differential-activated algorithm based on synchronous sampling for feeder fault location and isolation is studied,and a framework of fault restoration is established for ADN.Finally,the effectiveness of the proposed algorithm is verified via computer simulation of a case study for active distributed power system.
基金supported by the National Science and Technology Support Program of China (No. 2013BAA01B02)
文摘We present a directed graph-based method for distribution network reconfiguration considering distributed generation. Two reconfiguration situations are considered: operation mode adjustment with the objective of minimizing active power loss(situation Ⅰ) and service restoration with the objective of maximizing loads restored(situation Ⅱ). These two situations are modeled as a mixed integer quadratic programming problem and a mixed integer linear programming problem, respectively. The properties of the distribution network with distributed generation considered are reflected as the structure model and the constraints described by directed graph. More specifically, the concepts of "in-degree" and "out-degree"are presented to ensure the radial structure of the distribution network, and the concepts of "virtual node" and"virtual demand" are developed to ensure the connectivity of charged nodes in every independent power supply area.The validity and effectiveness of the proposed method are verified by test results of an IEEE 33-bus system and a 5-feeder system.
文摘Two heuristic methods are proposed to find an effective and fast solution in modern power distribution networks.For solving the service restoration problem in distribution networks,switch selection indices based on an analytic approach and a practicable heuristic graph-based method are given.The formulation of the problem includes four different objective functions:1)maximizing the total load restored;2)minimizing the number of switching operations;3)maximizing the top priority restored load;4)minimizing load shedding.A suitable evaluation of switch indices is used for all candidate tie switches(TSs)in the network to find the best solution and decrease the number of switching operations.A new graph-based approach is utilized for finding the best sectionalizes switch(SS)and minimizing the voltage drop.The accuracy and the validity of the approach are tested in two standard electrical distribution networks.The results of the approach are used for IEEE 69-bus and IEEE 119-bus test case.
基金supported by the Fundamental Research Funds for the Central Universities under Grant 2015MS06.
文摘A novel extended network for service restoration optimization problem under distributed generation scenarios is presented in which the main network restoration and DG island restoration problems are integrated into a unified spanning-tree problem.The proposed technique is aimed to realize synchronous optimization of both main network and island restorations,and thus ensure the algorithms that are used find the global optimization solution.A fast loop-breaking technique is also proposed in this paper.Based on the circuit-branch correlation matrix,the proposed technique can break the loops in the distribution systems through matrix operations that significantly improve calculation speeds.Simulation results verify the correctness and advantage of the proposed algorithms:the proposed integrated optimization strategy based on the extended network has better performance compared with a two-step restoration strategy;also,the proposed loop-breaking technique has faster calculation speed compared with prim algorithm and DFS based on adjacentmatrix.
基金Under the auspices of National Key Technology Research and Development Program of China(No.2011BAC09B08)Special Issue of National Remote Sensing Survey and Assessment of Eco-Environment Change between 2000 and 2010(No.STSN-04-01)
文摘Human activities significantly alter ecosystems and their services; however, quantifying the impact of human activities on ecosystems has been a great challenge in ecosystem management. We used the Universal Soil Loss Equation and county-level socioeconomic data to assess the changes in the ecosystem service of soil conservation between 2000 and 2010, and to analyze its spatial characteristics and driving factors in the southwestern China. The results showed that cropland in the southwestern China decreased by 3.74%, while urban land, forest, and grassland areas increased by 46.78%, 0.86%, and 1.12%, respectively. The soil conservation increased by 1.88 × 10^(11) kg, with deterioration only in some local areas. The improved and the degraded areas accounted for 6.41% and 2.44% of the total land area, respectively. Implementation of the Sloping Land Conversion Program and urbanization explained 57.80% and 23.90% of the variation in the soil conservation change, respectively, and were found to be the main factors enhancing soil conservation. The 2008 Wenchuan earthquake was one of the factors that led to the degradation of soil conservation. Furthermore, industrial adjustment, by increasing shares of Industry and Service and reducing those of Agriculture, has also promoted soil conservation. Our results quantitatively showed and emphasized the contributions to soil conservation improvement made by implementing ecological restoration programs and promoting urbanization. Consequently, these results provide basic information to improve our understanding of the effects of ecological restoration programs, and help guide future sustainable urban development and regional industrial restructuring.
基金This work was supported in part by Fundamental Funds for the Central University under Grant No.2018RC018the National Natural Science Foundation of China under Grant No.51807004the project of State Grid Shanghai Electrical Power Research Institute(B30940190000).
文摘After a major outage,mobile emergency resources(MERs)can be dispatched via the transportation system(TS)for service restoration to critical loads in the power distribution system(PDS).In this case study,the efficiency of service restoration in the PDS is associated with the traffic efficiency of the TS,and vice versa,because the PDS and TS are mutually coupled through traffic lights and MERs.This paper proposes a service restoration method considering interdependency between the PDS and TS,which is formulated as a mixed-integer linear program(MILP).The objective includes maximizing the efficiency of both PDS restoration and TS.By solving the MILP,the dynamic load restoration and MER dispatch strategies can be obtained.For the PDS,the availability of MERs,including mobile sources and repair crews,relates to their dispatch in the TS,and their relationship is formulated as mathematical models.For the TS,the dynamic traffic flow is modeled using the cell transmission model and the effect of traffic lights is considered.Case studies validate the effectiveness of the proposed method.
文摘An adjacent table-based simplified model of distribution networks containing medium voltage buses of a substation is established.Identification of bus outage and the condition to start fast restoration procedure are discussed.A complex load shading parameter is set up to describe various load shading schemes.The imaginary part of the load shading parameter describes the states of switches of load shading schemes while the real part is the corresponding amount of shaded load.A new concept of independent tripping operation is also put forward.The procedure to search the operation with the least amount of shaded load for a feeder and a connected domain are detailed.The procedure for fast restoration of a large area breakdown of the whole distribution network under emergency states is dealt with using a typical grid distribution network as an example.Results of analysis show that the direct load shading scheme under the most balanced topology is not always the optimal scheme.The proposed method can obtain the optimal operating mode with the least amount of shaded load thus showing its feasibility.
基金supported by the National Natural Science Foundation of China (Grant No. 41641002)
文摘Protection of the ecological environment is an effective strategy for maintaining ecosystem health,improving provision of ecosystem services,and increasing human well-being.However,traditional calculations of the value of ecosystem services(VES)provide weak guidance because they ignore the costs of these services,leading to economically inefficient strategies.To understand the difference between VES and the net ecosystem services value(NES,after subtracting costs from VES)and to improve evaluations of ecosystem services,we estimated NES for China's Mainland(including farmland,grassland,forest,and wetland).NES totaled 10.0×10~3RMB ha^(-1)yr^(-1)in 2014,which is only 35.1%of the corresponding VES.Grassland NES was–0.7×10~3RMB ha^(-1)yr^(-1),in contrast with a positive grassland VES.NES of farmland,grassland,forest,and wetland in2014 totaled 7.2×10^(12)RMB,accounting for 27.0%of China’s GNP.Recent Chinese planning based on VES emphasizes forest conservation and ignores the conservation of other important ecosystems,such as grassland,leading to a continuing loss of China’s natural capital.Due to regional differences in economic conditions,resource endowments,and geographical characteristics,VES and NES differ among regions.To maximize the ecological benefits from conservation,it is necessary to account for these differences by comparing strategies based on NES,thereby choosing projects that maximize both economic and ecological benefits.To maintain the ecological balance,ecological restoration and socioeconomic activities should account for the costs of providing ecosystem services.This is essential to minimize the costs and maximize the benefits of projects.
文摘The ever-increasing dependence on electrical power has posed more challenges to power system engineers to deliver secure, stable, and sustained energy to electricity consumers. Due to the increasing occurrence of short-and long-term power interruptions in the power system, the need for a systematic approach to mitigate the negative impacts of such events is further manifested. Self-healing and its control strategies are generally accepted as a solution for this concern. Due to the importance of self-healing subject in power distribution systems, this paper conducts a comprehensive literature review on self-healing from existing published papers. The concept of self-healing is briefly described, and the published papers in this area are categorized based on key factors such as self-healing optimization goals, available control actions, and solution methods. Some proficient techniques adopted for self-healing improvements are also classified to have a better comparison and selection of methods for new investigators. Moreover, future research directions that need to be explored to improve self-healing operations in modern power distribution systems are investigated and described at the end of this paper.
基金The work of R.You was supported by Shandong Provincial Key Research and Development Program(No.2019JZZY010902)Shandong Provincial Natural Science Foundation(No.ZR2020ME197).
文摘Soft open points(SOPs)are power electronic devices that may replace conventional normally-open points in distribution networks.They can be used for active power flow control,reactive power compensation,fault isolation,and service restoration through network reconfiguration with enhanced operation flexibility and grid resiliency.Due to unbalanced loading conditions,the voltage unbalance issue,as a common problem in distribution networks,has negative impacts on distribution network operation.In this paper,a control strategy of voltage unbalance compensation for feeders using SOPs is proposed.With the power flow control,three-phase current is regulated simultaneously to mitigate the unbalanced voltage between neighboring feeders where SOPs are installed.Feeder voltage unbalance and current unbalance among three phases are compensated with the injection of negative-sequence and zero-sequence current from SOPs.Especially in response to power outages,three-phase voltage of isolated loads is regulated to be balanced by the control of SOPs connected to the feeders under faults,even if the loads are unbalanced.A MATLAB/Simulink model of the IEEE 13-bus test feeder with an SOP across feeder ends is implemented,and experimental tests on a hardware-in-the-loop platform are implemented to validate the effectiveness of the proposed control strategy.