OBJECTIVE: To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. METHODS: Cells culture, flow cytometric an...OBJECTIVE: To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. METHODS: Cells culture, flow cytometric analysis, affinity chromatography for protein purification, SDS-PAGE, Western-blotting and animal experiment were used. RESULTS: HSP70-PC immunization rendered protective effect to both naive tumorl-bearing mice. All of the naive mice obtained complete resistance to Hcaf cell attack; 40% of the tumor-bearing mice survived for over 90 days, whereas the mice of control group died within 2 weeks (P展开更多
Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first s...Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first studied the expression of HER-3 in breast cancer tissues and its relationship with patient characteristics.We then purified HSP70-PCs from primary breast cancer cells with different HER-2 and HER-3 expression profiles and determined the cytotoxicity of autogenous dendritic cells(DCs)and CD8+T cells induced by these complexes.Third,recombinant human HSP70-HER-3 protein complexes were used to inhibit the autogenous HSP70-PCs purified from HER-3-overexpressing breast cancer cells,and the resulting immunological response was examined.Results The results show that HSP70-PCs can be combined with recombinant HSP70-HER-3 protein complexes to induce stronger immunological responses than autogenous HSP70-PCs alone and that these treatments induce autogenous CD8+T cell killing of HER-3-positive breast cancer cells.Conclusion These findings provide a new direction for HSP70-DC-based immunotherapy for patients with HER-3-overexpressing breast cancer.展开更多
Objective The aim of this study was to purify effective tumor peptide complexes from human melanoma cell lines to enhance the treatment effects on melanoma.Methods We purified heat shock protein 70(HSP70)-peptide comp...Objective The aim of this study was to purify effective tumor peptide complexes from human melanoma cell lines to enhance the treatment effects on melanoma.Methods We purified heat shock protein 70(HSP70)-peptide complexes(PCs)from human melanoma cell lines A375,A875,M21,M14,WM-35,and SK-HEL-1.We named the purified product as M-HSP70-PCs and determined its immunological activities.Autologous HSP70-PCs purified from primary tumor cells of melanoma patients(9 cases)were used as controls.These two tumor antigenic complexes were loaded into dendritic cells(DCs)and used to stimulate an antitumor response against tumor cells in the corresponding patients.Results Mature DCs pulsed with M-HSP70-PCs stimulated autologous T cells to secrete the same levels of type I cytokines as the autologous HSP70-PCs.Moreover,DCs pulsed with M-HSP70-PCs endued CIK cells with an equal ability as autologous HSP70-PCs to kill melanoma cells in the patients.Conclusion M-HSP70-PCs may be used as an efficient and generalized tumor antigen in the treatment of DC-based malignant melanoma.展开更多
Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated withmany types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domai...Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated withmany types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domains (UBA, UBL1, UBL2, UAS, and UBX), eachdomain interacting with a specific partner. In particular, the interaction of UBL1 with heat shock protein 70 (Hsp70) is associatedwith tumor formation, although the molecular understanding remains unknown. In this study, the structural analysis revealed thatHis160 of FAF1 is important for its interaction with Hsp70. The association of Hsp70 with FAF1 is required for the interaction withIQGAP1. FAF1 negatively regulates RhoA activation by FAF1–Hsp70 complex formation, which then interacts with IQGAP1. Thesesteps play a key role in maintaining the stability of cell-to-cell junction. We conclude that FAF1 plays a critical role in the structureand function of adherens junction during tissue homeostasis and morphogenesis by suppressing RhoA activation, which induces theactivation of Rho-associated protein kinase, phosphorylation of myosin light chain, formation of actin stress fiber, and disruptionof adherens junction. In addition, depletion of FAF1 increased collective invasion in a 3D spheroid cell culture. These results provideinsightinto how the FAF1–Hsp70 complex acts as a novelregulator ofthe adherens junction integrity. The complex can be a potentialtherapeutic target to inhibit tumorigenesis and metastasis.展开更多
文摘OBJECTIVE: To study the efficacy and explore the mechanism of the anti-tumor immunity elicited by heat shock protein 70-peptide complexes (HSP70-PC) derived from tumor cells. METHODS: Cells culture, flow cytometric analysis, affinity chromatography for protein purification, SDS-PAGE, Western-blotting and animal experiment were used. RESULTS: HSP70-PC immunization rendered protective effect to both naive tumorl-bearing mice. All of the naive mice obtained complete resistance to Hcaf cell attack; 40% of the tumor-bearing mice survived for over 90 days, whereas the mice of control group died within 2 weeks (P
基金Supported by a grant from the National Natural Science Foundation of China(No.81260392).
文摘Objective The aim of this study was to enhance the treatment effect of tumor purified autogenous heat shock protein 70-peptide complexes(HSP70-PCs)on HER-3-overexpressing breast cancer.Methods In this study,we first studied the expression of HER-3 in breast cancer tissues and its relationship with patient characteristics.We then purified HSP70-PCs from primary breast cancer cells with different HER-2 and HER-3 expression profiles and determined the cytotoxicity of autogenous dendritic cells(DCs)and CD8+T cells induced by these complexes.Third,recombinant human HSP70-HER-3 protein complexes were used to inhibit the autogenous HSP70-PCs purified from HER-3-overexpressing breast cancer cells,and the resulting immunological response was examined.Results The results show that HSP70-PCs can be combined with recombinant HSP70-HER-3 protein complexes to induce stronger immunological responses than autogenous HSP70-PCs alone and that these treatments induce autogenous CD8+T cell killing of HER-3-positive breast cancer cells.Conclusion These findings provide a new direction for HSP70-DC-based immunotherapy for patients with HER-3-overexpressing breast cancer.
基金Supported by a grant from the National Natural Sciences Foundation of Inner Mongolia(No.2017MS(LH)0847)。
文摘Objective The aim of this study was to purify effective tumor peptide complexes from human melanoma cell lines to enhance the treatment effects on melanoma.Methods We purified heat shock protein 70(HSP70)-peptide complexes(PCs)from human melanoma cell lines A375,A875,M21,M14,WM-35,and SK-HEL-1.We named the purified product as M-HSP70-PCs and determined its immunological activities.Autologous HSP70-PCs purified from primary tumor cells of melanoma patients(9 cases)were used as controls.These two tumor antigenic complexes were loaded into dendritic cells(DCs)and used to stimulate an antitumor response against tumor cells in the corresponding patients.Results Mature DCs pulsed with M-HSP70-PCs stimulated autologous T cells to secrete the same levels of type I cytokines as the autologous HSP70-PCs.Moreover,DCs pulsed with M-HSP70-PCs endued CIK cells with an equal ability as autologous HSP70-PCs to kill melanoma cells in the patients.Conclusion M-HSP70-PCs may be used as an efficient and generalized tumor antigen in the treatment of DC-based malignant melanoma.
基金Thisworkwas supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(2017R1A2B3007224 and 2020R1A4A4079494 to E.E.K.2020R1F1A1055369 to K.-J.L.2019R1A2C2004052 to E.J.S.).S.S.and I.-K.S.were supported by Brain Korea 21 Plus(BK21 Plus)Project.
文摘Fas-associated factor 1 (FAF1) is a scaffolding protein that plays multiple functions, and dysregulation of FAF1 is associated withmany types of diseases such as cancers. FAF1 contains multiple ubiquitin-related domains (UBA, UBL1, UBL2, UAS, and UBX), eachdomain interacting with a specific partner. In particular, the interaction of UBL1 with heat shock protein 70 (Hsp70) is associatedwith tumor formation, although the molecular understanding remains unknown. In this study, the structural analysis revealed thatHis160 of FAF1 is important for its interaction with Hsp70. The association of Hsp70 with FAF1 is required for the interaction withIQGAP1. FAF1 negatively regulates RhoA activation by FAF1–Hsp70 complex formation, which then interacts with IQGAP1. Thesesteps play a key role in maintaining the stability of cell-to-cell junction. We conclude that FAF1 plays a critical role in the structureand function of adherens junction during tissue homeostasis and morphogenesis by suppressing RhoA activation, which induces theactivation of Rho-associated protein kinase, phosphorylation of myosin light chain, formation of actin stress fiber, and disruptionof adherens junction. In addition, depletion of FAF1 increased collective invasion in a 3D spheroid cell culture. These results provideinsightinto how the FAF1–Hsp70 complex acts as a novelregulator ofthe adherens junction integrity. The complex can be a potentialtherapeutic target to inhibit tumorigenesis and metastasis.